
Methods for Evaluating the Resilience of Autonomous UUVs

Johns Hopkins APL Technical Digest, Volume 34, Number 4 (2019), www.jhuapl.edu/techdigest 497

Search-Based Testing Methods for Evaluating
the Resilience of Autonomous Unmanned
Underwater Vehicles

Galen E. Mullins, Paul G. Stankiewicz, and Melissa A. Huntley

ABSTRACT
The resilience of an unmanned underwater vehicle (UUV) can be defined as the vehicle’s ability to
reliably perform its mission across a wide range of changing and uncertain environments. Resil-
ience is critical when operating UUVs where sensor uncertainty, environmental conditions, and
stochastic decision-making all contribute to significant variations in performance. A challenge
in quantifying the resilience of an autonomous system is the identification of the performance
boundaries—critical locations in the testing space where a small change in the environment
can cause a large change (i.e., failure) in an autonomous decision-making system. This article
outlines a methodology for characterizing the performance boundaries of an autonomous
decision-making system in the presence of stochastic effects and uncertain vehicle performance.
This approach introduces a method for hierarchically scoring the autonomous decision-making
of these systems, allowing the test engineer to quantitatively bound the performance prior to
UUV deployment. When using this scoring approach, engineers apply a set of novel subcluster-
ing methods, allowing them to identify stable performance boundaries in stochastic systems.
The result is a process that effectively measures the resilience of an autonomous decision-making
system on UUVs.

close to obstacles in order to minimize path length, or
another software that prioritizes reaching waypoints may
result in the UUV running out of fuel before it returns
home. There are multiple ways the system can fail or act
in an unsatisfactory manner. Identifying faults where a
subsystem throws an error or the system fails a hard con-
straint, such as exceeding a speed constraint or colliding,
are straightforward and well-studied areas of research.1–3

However, many events are ambiguous and cannot be

INTRODUCTION
Autonomous vehicles are expected to execute com-

plex missions with multiple competing objectives. For
example, consider an unmanned underwater vehicle
(UUV) acting in an unknown environment with local
sensing and limited fuel. Its mission is to reach specific
waypoints, maintain a safe distance from obstacles, and
keep enough fuel in reserve that it can make the trip to
a recovery location. Autonomy software that values fuel
consumption over safety may take paths that veer too

http://www.jhuapl.edu/techdigest

G. E. Mullins et al.

Johns Hopkins APL Technical Digest, Volume 34, Number 4 (2019), www.jhuapl.edu/techdigest498

easily coded, requiring a human engineer to make a judg-
ment call. An example is assessing when it is appropriate
for the UUV return home without completing the mis-
sion. Therefore, a methodology is needed to identify and
group the many types of behaviors the autonomous vehi-
cle can exhibit and present them to the test engineer.

Because of the large degree of uncertainty in real-
world environments, autonomous vehicles must be capa-
ble of adapting to a wide variety of situations. Testing
the resilience of these decision-making systems requires
methods that evaluate system performance and account
for stochasticity in planning, perception, and control
submodules (i.e., sensor noise, plant disturbances, etc.).2
Additionally, as the mission and the autonomy software
become more complex, it is necessary to explore various
emergent behaviors that arise through the combination
of all system submodules. However, exploring all possi-
ble configurations of the system and the environment is
simply impossible, particularly when each scenario must
be run multiple times to account for stochastic effects.
Thus, the limited computational budget for running
simulations demands new methods for intelligently gen-
erating test cases.

To address the challenge of finding a diverse set of
behavioral modes in a large testing space, the Range
Adversarial Planning Tool (RAPT)4,5 was developed.
RAPT is a software framework that allows test engi-
neers to identify safe operating envelopes for decision-
making systems. The objective of RAPT is to make field
tests more cost effective by finding a small set of salient
test scenarios that are known to demonstrate relevant
changes in the vehicle’s behavior. Since field tests are
expensive to run and execute, it does not make sense to
run tests when the performance of the vehicle is known
to be certain. Instead, RAPT focuses on finding tests
that are in regions of high uncertainty that represent the
thresholds of the vehicle’s perfor-
mance. While past works have
used optimization techniques to
search testing spaces for failure
scenarios,3,6 these efforts have
all used the discovery of collision
cases as their only objective func-
tion. The aim of RAPT is to find
a variety of different behaviors
across multiple mission-relevant
scoring criteria without the need
for a single unifying objective
function that defines the robust-
ness of a scenario. To achieve
this, RAPT introduces the con-
cept of performance boundaries,
which are a structural feature of
any system under test that can be
identified via unsupervised learn-
ing methods.

Performance boundaries are transitional regions
in the testing space where small changes in scenario
parameters (e.g., obstacle positions or environmental
factors) cause large changes in system performance. Ref-
erences 4 and 5 outline methods for identifying test sce-
narios in the regions of these performance boundaries.
For high-dimensional spaces where exhaustive testing is
infeasible, identifying the system’s performance bound-
aries allows a test engineer to characterize the perfor-
mance landscape with a limited number of simulations.
As an example, consider the autonomous UUV mission
introduced at the beginning of this section. The vehicle
must navigate to a waypoint while conserving fuel and
avoiding obstacles. Figure 1 illustrates a performance
boundary that occurs when a small change in the posi-
tion of the pentagonal obstacle closes a narrow channel
that results in drastically different performance—the
difference between obstacle avoidance and a collision.
In this example, when the obstacle is moved the vehicle
has more room to maneuver and avoids a collision. The
vehicle makes the decision to return to a recovery point
because the route around the large obstacle is estimated
to be too long given the remaining fuel.

A key assumption of the methodology presented in
Refs. 4 and 5, however, is that it used both a determinis-
tic autonomy and a deterministic simulation to measure
the performance of the system. As shown in this article,
additional research is needed to properly handle the
stochastic effects produced by sensor noise, plant dis-
turbances, and other forms of uncertainty that result in
probabilistic performance (i.e., instances where repeated
tests of the same scenario produce uncertain, and poten-
tially drastically different, outcomes).

This article addresses these shortfalls by demonstrat-
ing RAPT’s ability to handle both deterministic and
stochastic simulations. It begins with a brief overview

x1, y1

+

+
x3, y3

x2, y2

+

x1, = 0.8, y1 = 0.84 x1, = 0.79, y1 = 0.84

x1, y1

+
x3, y3

x2, y2

+

Figure 1. Example of the performance boundary for a simple UUV navigation mission. The
green circle is the starting position of the vehicle, and the black circle on the right is the way-
point the UUV is trying to reach. A small change in the x1 location of the pentagonal obstacle
results in the UUV avoiding a collision and then aborting its attempt to reach the waypoint.

http://www.jhuapl.edu/techdigest

Methods for Evaluating the Resilience of Autonomous UUVs

Johns Hopkins APL Technical Digest, Volume 34, Number 4 (2019), www.jhuapl.edu/techdigest 499

of the RAPT framework and our scoring methodology.
It then discusses how noise in the sensing and controls
of an autonomous vehicle affects RAPT’s ability to dis-
cover salient test cases. Next it introduces the subclus-
tering algorithms used to identify emergent behaviors
and discusses the results of applying these techniques
to our UUV simulation. The article concludes with a
discussion on how these new techniques impact evalua-
tions of UUV resilience.

RANGE ADVERSARIAL PLANNING TOOL
This section briefly overviews the methodology

RAPT used to generate salient test scenarios for autono-
mous systems. For a full discussion of this framework and
the underlying algorithms, refer to Ref. 4. See Fig. 2 for
an architectural overview of the tool. The process begins
with the test engineer specifying two configurations
for the autonomy under test (AUT): the testing state
space and the scoring space. The testing state space dic-
tates the elements of the simulation that will be varied
between scenarios, including obstacle positions, mission
parameters, ocean current magnitudes, or any other fac-
tors that could influence the autonomy decision-making.
The scoring space then controls how the AUT is evalu-
ated for each completed scenario. Once the testing state
space and scoring space are defined, the performance
evaluation process is broken into two phases: adaptive
sampling followed by boundary identification.

Adaptive Sampling
In the first step, adaptive sampling is used to gener-

ate test scenarios that give insight into the performance
boundaries of the system. This iterative process builds
a surrogate model of the AUT’s performance based on

the results of completed simulations. Inputs of the sur-
rogate model are defined as parameters in the testing
state space, and the outputs are the evaluation criteria
defined in the scoring space. This surrogate model is
then used to generate subsequent scenarios in regions
of the testing state space where performance boundaries
are expected to occur (e.g., regions characterized by high
variance in the AUT performance). A key feature of the
adaptive sampling algorithm is the ability to balance the
trade-off between fully exploring the testing state space
while also preferentially focusing samples on regions of
predicted performance boundaries. The best-perform-
ing version of the adaptive sampling algorithm used
the nearest-neighbor density and variance (NNDV)
meta-model. By searching for areas that predicted high
variance but were far away from previous samples, it gen-
erated samples in the regions of interest more effectively
than any other technique.

Boundary Identification
After all the simulations have been executed, the

second step is to use the raw simulation data to charac-
terize the performance boundaries of the system. How-
ever, because these performance boundaries are highly
nonlinear and exist in high-dimensional spaces, they
are not easily characterized analytically. Thus, their
structure is inferred based on adjacent scenario pairings
that exhibit distinct differences in performance, where
groupings of performance classes are identified using
unsupervised clustering methods. These scenario pair-
ings along the system’s performance boundaries are then
returned to the user. Ultimately, scenarios that straddle
performance boundaries aid in diagnosing the AUT’s
decision-making by attributing small changes in sce-
nario parameters to large transitions in performance.

User input

RAPT simulation framework

Simulation manager

Infrastructure External Algorithmic System output

Computing cluster

Scenario
generator

Scoring
component

Scenario
�les

Simulation
results

Simulation

AUT

Simulation

AUT
• • •

2 3

Score space �le

Safety criteria

Performance metrics

Requirements

Test scenarios
recommendations

Ranked scenarios

Scenario
data set

State space �le

Environment

Adaptive
sampling

4

Boundary
identi�cation

Vehicle

Mission elements

Scores

States

Settings

1

Performance boundaries

Mission �le parser

Figure 2. Overview of the RAPT framework.

http://www.jhuapl.edu/techdigest

G. E. Mullins et al.

Johns Hopkins APL Technical Digest, Volume 34, Number 4 (2019), www.jhuapl.edu/techdigest500

Scoring Methodology
The RAPT framework is domain agnostic and can

accept any parameterized simulation and set of scoring
criteria. It gives the user the capability to design studies
based on a combination of a testing space and perfor-
mance metrics that define a mission. The user defines
a score tree structure that describes the relationship
between continuous metrics extracted from the simula-
tion (e.g., distance from an obstacle) and the resulting
scores (e.g., whether a collision occurred). These rela-
tionships can be any mathematical expression but are
traditionally a combination of logical statements and
thresholds. For example, the vehicle must achieve a cer-
tain distance from a waypoint to achieve a success at that
objective and must achieve success at all objectives to
succeed at the mission. Returning to the UUV example
described in the introduction, there are two primary cri-
teria to evaluate the vehicle performance: mission suc-
cess and safety success. Mission success is a binary score
representing that the vehicle completed all the objec-
tives of the mission, such as reaching waypoints and
completing surveys. It is computed of continuous sub-
metrics such as the distance from each waypoint and the
time in which the vehicle completed the mission. Safety
success is a binary score representing that the vehicle
has not violated any safety constraints —for example,
that it avoided obstacles and reached the recovery point
successfully. The score-tree structure used for this UUV
mission is shown in Fig. 3.

The score tree is a flexible and intuitive way of
describing the performance of an AUT. Performance
boundaries are derived from the scores used to evaluate
the mission. Selection of these metrics will affect the
types of boundaries RAPT discovers. Using more met-
rics increases the possibility of finding all boundaries for

a given study, but it also dilutes the search. Therefore,
searching over a small number of score criteria results
in a more focused search, and test engineers can use the
saved subscore and metric information to discover the
causes of performance boundaries during post-processing
and analysis.

PROBABILISTIC PERFORMANCE BOUNDARIES
Whether the result of error in the sensor inputs,

stochasticity in the vehicle dynamics, or random pro-
cesses inside the autonomy software, there is an inher-
ent level of uncertainty when executing a scenario in
the real world. A resilient UUV must be capable of
operating within a large range of scenarios and should
not be sensitive to small errors or minor changes to the
environment.7 Testing the resilience of an autonomous
vehicle requires a simulation environment that incorpo-
rates the stochastic properties of both the environment
and the platform. This means that the test-generation
algorithms must be robust against probabilistic effects.
This section discusses the results of applying our test-
generation algorithms to a system with noisy output.

Uncertainty in the UUV Simulation
The UUV simulation and autonomy software used in

the previous RAPT work shows that a relatively simple
mission can still exhibit multiple informative perfor-
mance boundaries. This simulation models an IVER
underwater vehicle equipped with a sonar sensor with
a 100-meter range and a 120° field of view and an iner-
tial navigation system (INS). The vehicle must reach
one or more waypoints, avoiding obstacles as well as
no-go areas, and then reach a recovery point with suf-
ficient fuel remaining. The no-go areas are known in

Mission

Transmission

Transmission
area

TasksWaypoints

Waypoint
2

Waypoint
1

Mission
area 2

Mission
area 1

Safety

Recovery

ObstaclesNo-go
areas

No-go
area 1

No-go
area 2

Obstacle
1

Obstacle
2

Figure 3. Diagram of the hierarchical score trees for our UUV simulation, illustrating the first three levels of the score tree for both mis-
sion success and safety success.

http://www.jhuapl.edu/techdigest

Methods for Evaluating the Resilience of Autonomous UUVs

Johns Hopkins APL Technical Digest, Volume 34, Number 4 (2019), www.jhuapl.edu/techdigest 501

advance but cannot be detected by the sonar; they can
be avoided only by using the INS. The obstacles are not
known in advance but can be detected by the sonar. The
testing space is designed such that the vehicle has just
enough fuel to complete the mission if minimal obsta-
cles are detected and must abort if safety thresholds
are encountered.

To add realistic uncertainty to the UUV’s dynamics,
the RAPT simulation incorporates stochastic models
that account for difficulties in navigating underwater,
including perturbations of the ocean current and drift
in the INS.8 To understand how these changes to the
simulation will affect the test scenarios and boundar-
ies RAPT generates, it is necessary to characterize the
effect that this type of noise has on the output of the
system. This characterization allows the creation of a
synthetic function that has the same properties as the
system under test.

For noise characterization tests, 40,000 scenarios in a
five-dimensional state space were generated. These sce-
narios used start time, obstacle latitude and longitude,

and no-go area latitude and longitude as the parame-
ters to be varied. For this study, each scenario was run
10 times. The mission objective was to avoid obstacles
and no-go areas and explore two survey areas before
returning to the recovery point. The vehicle had the
ability to detect obstacles by using its sonar sensors but
had to rely on its state estimate to avoid no-go areas and
reach the mission areas. The mission areas were deliber-
ately made small for this test to increase the overall dif-
ficulty. An illustration of a representative scenario run
three different times is shown in Fig. 4.

It is clear from these examples that the amount of error
in the vehicle’s state estimate is directly responsible for
deviations in the trajectory that cause it to either travel
through the shaded no-go area or miss the mission area.
The vehicle’s autonomy software fails to account for this
error when performing its path planning and thus fails
under low levels of estimation inaccuracy. The effect of
the error is most strongly evidenced when plotting the
relationship between the latitude of the no-go area with
the distance of the closest point of approach; see Fig. 5.

Scenario 70, run 1
Total success

Scenario 70, run 2
Safety success

Scenario 70, run 3
Mission success

Figure 4. Three runs of an UUV scenario designed to evaluate the effects of noise.

350

300

250

200

150

100

50

0

-50

Cl
os

es
t d

is
ta

nc
e

to
 n

o-
go

 a
re

a
(m

)

47.678 47.68 47.682 47.684 47.686 47.688 47.69 47.692 47.694
No-go latitude (degrees)

47.678 47.68 47.682 47.684 47.686 47.688 47.69 47.692 47.694
No-go latitude (degrees)

47.678 47.68 47.682 47.684 47.686 47.688 47.69 47.692 47.694
No-go latitude (degrees)

Simulation data
Failure region

Pr
ob

ab
ili

ty
 o

f
sa

fe
ty

 s
uc

ce
ss

Pe
rf

or
m

an
ce

un

ce
rt

ai
nt

y

1

0.5

0

0.3

0.2

0.1

0

Figure 5. Left, Simulation results for the distance to no-go area metric are distributed with Gaussian noise around an unknown mean
function. Top right, Plotting the binary success/failure metric leads to varying probabilities of success. Bottom right, The locations of the
performance boundaries can be seen as regions where there is high uncertainty in the performance criteria.

http://www.jhuapl.edu/techdigest

G. E. Mullins et al.

Johns Hopkins APL Technical Digest, Volume 34, Number 4 (2019), www.jhuapl.edu/techdigest502

Effects of Noise on Adaptive Sampling
To perform a more rigorous analysis of the effects of

noise, two synthetic systems were created by modeling
different outputs of the stochastic UUV simulation.
Each of these systems were parameterized to accom-
modate varying levels of noise. The first of these was a
system with continuous output modeled after the sensor
placement accuracy of the simulation. The second of
these systems was a binary output model of the safety
success metric. In each case, the noise variable was rep-
resented with a Gaussian distribution. The first system
is a continuous function with a standard deviation of m
illustrated in Fig. 6a. The second results from applying
a binary threshold to the first system, resulting a proba-
bilistic performance boundary with a width of c. This
generated both one-dimensional and two-dimensional
synthetic systems that shared the same properties as the
UUV simulation. Instead of a sharp boundary between
categorical outputs, the boundary was a region where
two Gaussian distributions overlapped. These systems
are illustrated in Fig. 6.

The probability of obtaining a sample of an incorrect
performance mode is given by the equation

 .P C x e0 5
d x
2–

c

2

)+ =)^
^

h
h

, (1)

where d(x) is the distance of the sample x from the near-
est boundary. An illustration of this function is shown
in Fig. 6d, with the true boundaries shown as red lines
and the standard deviation from the boundary shown
as a gray-shaded region. The width of this region was
described via the standard deviation c of these distribu-
tions and was varied between 0 and 0.4.

We used these systems to compare the adaptive sam-
pling algorithm NNDV5 with a commonly used uniform
sampling method known as a Sobol design, using two
metrics of performance boundary quality. The first is
boundary precision, the percentage of the total samples
taken that lie within 0.01 units of the true boundary
location. The second is boundary coverage, the percent-
age of the boundary region that has been sampled. The
results of this experiment are shown in Figs. 7 and 8.

While the resulting boundary regions are wider than
in the original deterministic
function, the NNDV search
successfully samples the cor-
rect regions and returns tighter
boundaries than the Sobol set.
As boundary width increases,
the NNDV search begins to
degrade in performance. Once
the standard deviation of the
boundary region reaches 0.35,
the adaptive search begins sam-
pling in the same space-filling
manner as the Sobol design.
At this point the entire search
space becomes probabilistic
as all the performance modes

0 0.1 0.2 0.3 0.4
Boundary width standard deviation

10

20

30

40

50

60

70

80

%
 o

f s
am

pl
es

 a
dj

ac
en

t t
o

bo
un

da
ry

Boundary precision

Sobol
NNDV

0 0.1 0.2 0.3 0.4
Boundary width standard deviation

20

40

60

80

100

%
 o

f b
ou

nd
ar

y
sa

m
pl

ed

Boundary coverage

Sobol
NNDV

Figure 7. Plots for the boundary precision and coverage for each of our search approaches as
the boundary width increases.

0 2 4 6 8 10
Current (m/s)

0

0.5

1

0 2 4 6 8 10
Current (m/s) D1

0

1

2

3

Pr
ed

ic
tio

n
un

ce
rt

ai
nt

y
Pr

ob
ab

ilt
y

of
fa

ilu
re

0 2 4 6 8 10
Current (m/s)

10

20

30

40

50

60

70

80

90

100

Se
ns

or
 p

la
ce

m
en

t e
rr

or
 (m

) Simulation data
Mean prediction
Standard deviation
Failure region

100 3020 5040 7060 9080 100
0

10
20
30
40
50
60
70
80
90

100

D2

(d)(a) (b)

(c)

Figure 6. (a) Data points from the simulation for this continuous metric are distributed with Gaussian noise around a modeled mean
function. (b) Plotting the binary success/failure metric leads to an increasing probability of failure as current increases as well as a region
of high uncertainty in the binary metric (c) in the boundary region. (d) A scatterplot of the noisy synthetic function with boundary width
 = 0.1. The colored markers indicate the different classes, while the red lines indicate the true performance boundaries. The gray-
shaded region indicates the area within 1 standard deviation of the boundary.

http://www.jhuapl.edu/techdigest

Methods for Evaluating the Resilience of Autonomous UUVs

Johns Hopkins APL Technical Digest, Volume 34, Number 4 (2019), www.jhuapl.edu/techdigest 503

overlap, causing the entire system to consist primarily
of noise. As such, there is insufficient information for
the adaptive search to exploit, and defaulting to a global
search approach is appropriate.

Effects of Noise on Boundary Identification
For the UUV system, boundary identification

becomes difficult in some cases because of the effects
of noise. Consider a system where there are two simpli-
fied performance modes: success and failure. Significant

noise could cause the entire region that contains this
performance mode to become probabilistic. This effect
can clearly be seen in Fig. 9, a scatter plot of both the
performance modes and the boundaries between them.
Each of the points in the plot represents a single sce-
nario. In the top plots, each scenario is given a color
based on one of four possible score modes accounting for
the permutations of mission success and safety success.
In this example, the red points indicate the areas where
the vehicle collides with an obstacle or no-go area, while

D1
100 3020 5040 7060 9080 100

0

10
20

30

40
50

60

70
80

90
100

D2

32p6 to 40p0
(guides indicate minimum;

artboard is set at maximum)

When �gure is �nished,
use Artboard tool to resize
height of artboards to art.

D1
100 3020 5040 7060 9080 100

0

10
20

30

40
50

60

70
80

90
100

D2

D1
100 3020 5040 7060 9080 100

0

10
20

30

40
50

60

70
80

90
100

D2

NNDV search
σ = 0

NNDV search
σ = 0.1

NNDV search
σ = 0.2

Figure 8. Scatterplots showing the effect of increasing boundary width on our adaptive search.

UUV simulation clusters

UUV simulation boundaries

INS drift rate = 0.3 m/s INS drift rate = 1 m/sINS drift rate = 0 m/s

Figure 9. Plot showing the effect of stochasticity in the form of increasing INS drift rate on the performance modes and boundaries.

http://www.jhuapl.edu/techdigest

G. E. Mullins et al.

Johns Hopkins APL Technical Digest, Volume 34, Number 4 (2019), www.jhuapl.edu/techdigest504

the purple points indicate scenarios where the vehicle
completes the mission with no violations. As INS drift
increases, the vehicle becomes increasingly likely to fail:
first the mission criteria, as the vehicle fails to correctly
reach the waypoint, and then the safety, as it collides
with obstacles and no-go regions more frequently. The
bottom plots show the locations of each scenario on a
performance boundary as a colored x, with other scenar-
ios shown as gray dots. In the far-left plot, the boundaries
show up as easily distinguished lines of colored points,
but as the INS drift rate increases these become broader
and more scattered. This continues until the entire test-
ing space is categorized as a performance boundary.

While the RAPT algorithms are robust to noise and
will accurately find and label boundary regions as they
exist, when stochastic effects become too large these
boundaries cease being accurate indicators of changes
in the autonomous vehicle’s behavior. Therefore, it is
necessary to look at another way to measure the sys-
tem’s performance. One method is to use the continuous
valued metrics rather than the binary criteria that result
from applying thresholds.

SUBCLUSTERING
When the system under test exhibits probabilistic

effects, binary success criteria are not the best indica-
tors of a change in the vehicle’s behavior. Sometimes it
is better to use continuous metrics, such as closest dis-
tance to a waypoint or fuel consumed, because they are
affected more by large changes in the vehicle’s trajectory.
Therefore, a set of analytical tools that can explore the
boundaries for many different possible scoring metrics
is required. This section covers the hierarchical bound-
ary identification method, which allows faster computa-
tion and retrieval boundary information for any scoring
metric in the simulation.

Background
For decades hierarchical clustering has been one of

the most popular methods for organizing data into sets
and classifying data.9 There are two broad categories of
hierarchical clustering techniques: agglomerative and
divisive. With agglomerative methods, each data point
starts as its own cluster and then forms small local clus-
ters, which then merge together to create larger clusters.
This includes pairwise comparison methods, which have
been used successfully for test-case prioritization in the
past.10 With divisive methods, all data points start in one
cluster and then iteratively break up the into smaller and
smaller sets. Divisive clustering has been used to quickly
filter for test cases likely to cause software failures.11 The
subclustering algorithm described in this section is a
combination of both a divisive clustering algorithm and
an agglomerative algorithm. It first operates in a divisive

manner, breaking clusters into smaller subclusters, and
then merges those subclusters back together to identify
individual score clusters.

Clustering test cases has been a been a popular
method for prioritizing testing suites10,12–14 that find a
diverse set of failures. Our approach differs from algo-
rithms described in other works in its use of multiple
scoring criteria. While most hierarchical algorithms
split or merge clusters based on a single metric space,
our algorithm applies multiple distinct metric spaces as
defined by the score tree. This means that rather than
trying to detect a hierarchical structure in the test data,
the algorithm instead imposes the structure defined
by the expert knowledge inherent in the relationships
between the performance metrics.

Definition of Subclusters
Clustering over continuous metrics rather than

binary score criteria can mitigate the effects of noise in
the search for and identification of performance bound-
aries. The challenge is identifying the continuous met-
rics to cluster over. Including all possible metrics leads to
a diluted search, and the points become too far apart to
cluster. Selecting only a few metrics tends to improves
clustering. However, discovering a diverse set of behav-
iors requires a diverse set of metrics, as each metric
could potentially reveal a different type of performance
boundary. Ideally, test metrics are selected that have the
greatest impact on the primary performance metrics of
interest. In the case of the UUV mission, the perfor-
mance metrics of interest are safety success and mission
success. Subclustering using hierarchical relationships is
one way to balance the needs of including many metrics
for diversity, while not diluting the results of the search
or clustering algorithms.

The key to the new approach is the subscore tree
introduced in the section on RAPT. It is the structure
that defines the relationships between a binary success
criterion such as mission success to subscore criteria such
as waypoint success or transmission success. Each ele-
ment of the subscore tree H has two properties, a set
of indices H.K and a set of child nodes H.children. The
indices H.K indicate the position of that score element
in the score vector Y, as a flattened representation of the
score tree.

Using the subscore tree, it is possible to develop
both subclusters and subboundaries for our system. A
cluster V VC 1 is defined as the subset of samples in
V that all have the same class c C! . Each cluster is
composed of a number of disjointed subclusters such
that ,,V V V VC C C C

n1 2 f= $.. The cluster V C is cre-
ated by applying our algorithms to the score elements
at the root of the score tree H, and its subclusters are
created by applying our algorithms to the children
of H. For example, if we cluster based on the mis-

http://www.jhuapl.edu/techdigest

Methods for Evaluating the Resilience of Autonomous UUVs

Johns Hopkins APL Technical Digest, Volume 34, Number 4 (2019), www.jhuapl.edu/techdigest 505

Hand in hand with the concept of subclusters is the
concept of subboundaries. Subboundaries are the divi-
sions between subclusters inside of a larger cluster. The
synthetic system includes six primary boundary types
based on the transitions between different classes. The
subclusters of the intermediate scores are separated by
subboundaries between the primary boundaries, thereby
dividing each cluster and subcluster into smaller and
smaller sets. An example of this process is shown in
Fig. 11.

Hierarchical Subclustering
Our goal is to obtain boundary information for any

score element in the score tree without having a priori
knowledge of which elements will be important. How-
ever, it is not possible to compute all score elements
simultaneously using our previous clustering technique.
This section introduces an approach for creating a sub-
boundary structure more quickly than the method

sion and safety scores to create V C, we create its sub-
clusters , ,V V VC C

n
C

1 2 f$. by applying the clustering
algorithm to the next level of scores: waypoint, trans-
mission, etc. Finally, a subboundary is defined as a set
of paired samples that lie between two subclusters,

, , , ,B v vv v,C C
nn1 2

1 2
21

f=^ h 6 6@ @" ,, where all members
of the boundary are members of V C and each pair is
made up of a member of VC

1 and a member of VC
2 .

The second category of clusters is the subscore clus-
ter Vk, which is created by applying clustering to the
kth element of the score vector. For example, once the
score tree is flattened, the waypoint distance metric
may be the 12th element in the score vector. These, in
turn, have a subscore boundary designated as Bk. These
subscore clusters are our true objective, and later in
this section we discuss how these two types of clusters
are related and how each is used for our analysis of the
UUV simulation.

Figure 10 shows the different subclusters and subscore
clusters for a simple three-element tree. In this system,
the primary clusters are defined by the root element A
that is computed via an AND operator on the leaf ele-
ments B and C. The subclusters provide different ways of
subdividing the system using the values of leaf elements.
If both B and C are used (Fig. 10b), the original parent
cluster [A=0] is split into two clusters: [B=0,C=1] and
[B=1,C=0]. Isolating either score element B or C would
create subscore clusters based on their values alone, as
shown in Figs. 10c and 10d.

As illustrated in Fig. 11, as more subscore elements are
used for clustering, more subclusters are created. The syn-
thetic system has four classes that define the primary clus-
ters. Each of these can be broken into smaller subclusters
by applying clustering algorithms to the second level of
the tree. These subclusters can then, in turn, be broken
down further by applying a clustering algorithm to the
third level of the tree. Figure 11 illustrates this process.

+,-.+/)0*

+,-.+/)0*

+,-.+/)0*

Primary clusters

Primary boundaries

[0 1] mode
2 subclusters

[0 0] mode
6 subclusters

[0 1] mode
2 subboundaries

[0 0] mode
8 subboundaries

[0 0][0 0] mode

[0 0][0 1] mode

[0 1][0 0] mode

1 subboundary

1 subboundary

2 subboundaries

The [0 1] region contains two
interior boundaries.
The [0 0] region contains eight
interior boundaries.

Figure 11. Example illustrating how each cluster of the system is split into smaller subclusters and subboundaries. The [0 1] cluster can
be broken up into two subclusters, while the [0 0] cluster can be broken up to six subclusters using the level 2 score elements. These can
be broken up further using the level 3 score elements.

(a)

(b)

(c)

(d)

[1]
[1]

[1]

[0]

[0] A

B C

A

B C

A

B C

A

B C

[1 0]

[0 1]
[1 1]

[0]

Figure 10. Illustration of the various subclusters and subbound-
aries for a simple three-element score tree. (a) The clusters and
boundaries for the root element A. (b) Subclusters formed by
applying our clustering algorithm to both B and C simultane-
ously. (c) The subscore clusters for element B. (d) The subscore
clusters for element C.

http://www.jhuapl.edu/techdigest

G. E. Mullins et al.

Johns Hopkins APL Technical Digest, Volume 34, Number 4 (2019), www.jhuapl.edu/techdigest506

of different clusters to identify the boundary pairs. Since
the sizes of these clusters become progressively smaller
as the process continues, each child in the subbound-
ary tree takes less time to compute than its parent. This
process is described more formally in Algorithm 1.

The output of this algorithm is a boundary tree struc-
ture. Each level in the boundary tree relates directly to

described in Ref. 2. It also allows for efficient retrieval of
any score boundary.

The new subboundary algorithm uses the hierarchi-
cal nature of the subscore tree to break the problem into
smaller pieces. This turns an O(m2n2) operation and
into an O(mn2) operation, allowing us to more quickly
create clusters and their boundaries for every metric in
our score tree. This process is
illustrated in Fig. 11, where we
broke each cluster into smaller
and smaller subclusters by
iteratively applying our cluster-
ing algorithms. The algorithm
works as follows:

•	 The primary clusters of
the system are identified
by applying mean-shift
clustering15 to the root ele-
ments of the score tree.

•	 Each of these clusters is
then subjected to cluster-
ing using the metrics at
the next level down on the
score tree.

•	 These new clusters are then
added as children to the
parent cluster.

This process is applied
recursively until it has reached
the bottom of the score tree or
a cluster cannot be subdivided.
At each step of the subcluster-
ing process, we use pairwise
comparison between members

Clusters

0.9

0.7
0.8

0.6
0.5
0.4
0.3

0.2
0.1

0

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Reconstructed boundaries

0 10 20 30 40 50 60 70 80 90 100

90

70
80

60
50
40
30

20

10
0

100
Score element 6

Clusters

0.9

0.7

0.8

0.6

0.5
0.4

0.3

0.2

0.1
0

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Reconstructed boundaries

0 10 20 30 40 50 60 70 80 90 100

90

70
80

60
50
40
30

20
10
0

100
Score element 11

Figure 12. Examples of reconstructed subscore clusters and boundaries for the synthetic
system.

ALGORITHM 1
Subboundaries(X,Y,H)

1. Set the subscore indices K = H.K
2. Cluster using the selected subscores [L, C] = MeanShift(Y(K))
3. Create labeled sample set V = [X, Y, L]
4. Set the subclusters for V as , ,V V C CC C

i
n1 f 6 !" ,

5. Foreach C Ci !

a. Foreach ,C C k ik 2!

i. , ,X XI knnsearch 1ik
C Ci k= ^ h" ,

ii. , ,X XI knnsearch 1ki
C Ck i= ^ h" ,

iii. Create boundary pairs ,b x x B I x x I x xif and,
k j l

C C
ik j l ki l j

i k!= = =^ ^h h6 @ " " ", , ,
iv. .B append B ,C Ci k^ h

b. , , .T Subboundaries Y H childrenXC C Ci i i= ^ h
c. .appendS TCi^ h

6. Return T = [V, B, C, S, K]

http://www.jhuapl.edu/techdigest

Methods for Evaluating the Resilience of Autonomous UUVs

Johns Hopkins APL Technical Digest, Volume 34, Number 4 (2019), www.jhuapl.edu/techdigest 507

ters that have the same value for the specified score
element, then merging all the identified subclusters and
subboundaries into a single set. The method is detailed
in Algorithm 2.

An example of reconstructed subscore boundaries for
score elements 6 and 11 is shown in Fig. 12. The clusters

a level in the score tree. Each node in the boundary tree
contains information about the clusters at that level, the
boundaries for those clusters, the score indices used for
clustering, and the cluster’s child subboundary nodes.

Subscore Clusters and Boundaries
The objective is to identify the

boundaries for every score ele-
ment in the tree. However, it is
too computationally intensive to
apply our original boundary iden-
tification algorithm to every score
element simultaneously. Instead
of computing all boundaries indi-
vidually, the subboundary tree
T can be used instead to recon-
struct the boundaries associated
with any scoring element. This
means the clusters and boundar-
ies can be retrieved for any given
score element with minimal addi-
tional computation. This process
involves searching the subbound-
ary tree structure for all subclus-

UUV simulation subclusters

UUV simulation subboundaries

INS drift rate = 0.3 m/s INS drift rate = 1 m/sINS drift rate = 0 m/s

Figure 13. Scatterplots showing the effect of increased stochasticity in the form of INS drift on the boundaries identified by the sub-
clustering algorithms. The plots show the reconstructed subclusters and subboundaries for the waypoint distance and recovery point
distance metrics.

ALGORITHM 2
Reconstruct (T, yS, Ks)

1. [V, B, C, S, K] = T
2. If K = Ks

a. Find yk = nearestNeighbor(ys, Y)
b. Set ck to the label of yk
c. Set sV VCk=
d. Set , ,B B b v v B v V v Vs.t either ors i j s j s sl l61 ! ! != 6 @

Else

e. Foreach T Si !

i. [Vi, Bi] = Reconstruct(Ti, ys, K)
ii. Vs.append(Vi)
iii. Bs.append(Bi)

3. Return [Vs, Bs]

http://www.jhuapl.edu/techdigest

G. E. Mullins et al.

Johns Hopkins APL Technical Digest, Volume 34, Number 4 (2019), www.jhuapl.edu/techdigest508

for quantifying the sharpness of the performance
boundary is measuring how well it separates the two
classes. These classes can be calculated by training a
classifier on both the original performance boundaries
and the subboundaries comparing the cross-validation
loss of each. A more accurate classifier means the data
are easier to separate, and thus identified boundaries
are “sharper.” A classification tree model16 was trained
for both data sets for varying levels of INS drift rate,
and the results of this comparison are shown in Fig. 14.
Classification loss for the subboundaries remains con-
stant despite the level of the INS drift rate, whereas
the loss for the original boundaries grows significantly
until the classifier is no better at separating the two
classes than random chance.

The subboundaries derived from the continuous
metrics also tend to be more representative of changes

are shown in red and blue for when the score is 0 or
1, respectively. The different colors in the reconstructed
boundary indicate the different subboundaries that were
merged in the reconstruction process.

APPLICATION TO THE UUV MISSION
The ability to find subclusters and then use them

to reconstruct any subscore boundary makes it possible
to efficiently identify performance boundaries for any
of the continuous metrics in the subscore tree. Differ-
ent metrics will reveal different behavioral modes of
the system under test, and some will be less impacted
by stochastic effects than others. This provides a way
to differentiate resilience of the autonomy’s subsystems
from resilience in its decision-making process. For
example, as shown in Fig. 4, there is a great deal of
variance in the binary success criteria of the vehicle
without much change in the vehicle’s trajectory. The
vehicle’s navigation is unreliable, but the decision-
making process is stable.

Applying these new subclustering and subbound-
ary identification algorithms to the UUV simulation
immediately reveals their robustness to increasing sto-
chasticity in the simulation. Figure 13 illustrates the
effect of increasing INS drift on the subboundaries
defined by the waypoint distance and recovery point
distance metrics. These metrics were selected because
they are primary contributors to the safety success and
mission success criteria. Comparing Fig. 13 to Fig. 9
shows the dramatic difference in stability between the
original binary success clusters and the subclusters cre-
ated by the continuous metrics. Even when the INS
drift rate is increased to the point where the vehicle is
unable to complete the mission because it consistently
misses the target, the identified subboundaries remain
the same.

One of the desirable qualities of the system under
test is a sharp performance boundary. It is both an
indicator of resilience and can help a test engineer iso-
late the cause in the behavior of the system. A method

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.2 0.4 0.6 0.8 1.0

INS drift rate (m)

Original boundaries
Subboundaries

Cl
as

si
�c

at
io

n
lo

ss

Figure 14. Plot showing the effect of increasing simulator sto-
chasticity in the form of INS drift on ability of the boundary and
subboundaries to separate the performance modes.

Binary score boundary pair Continuous metric boundary pair

Figure 15. Comparison of a boundary pair found for the original boundaries using the binary scores versus the subboundary pairs using
the continuous metrics.

http://www.jhuapl.edu/techdigest

Methods for Evaluating the Resilience of Autonomous UUVs

Johns Hopkins APL Technical Digest, Volume 34, Number 4 (2019), www.jhuapl.edu/techdigest 509

cess criteria, the search and boundary identification
methods become more robust against the effects of
noise. Hierarchical scoring combined with subcluster-
ing algorithms generates salient boundaries for a large
number of scoring metrics in a computationally effi-
cient manner. These techniques enable application of
the RAPT framework to stochastic simulations that are
key for testing the resilience of unmanned underwater
systems.

The use of a score tree is an intuitive extension of
how autonomy designers are already evaluating autono-
mous systems, where requirements are typically written
as binary success criteria based on a continuous metric
reaching a threshold. While RAPT provides a flexible
method for defining these criteria, the problem of how
to design effective resilient scoring metrics remains. It is
still the responsibility of subject-matter experts to iden-
tify the AUT’s requirements and how they should be
measured. The purpose of RAPT is to enable test engi-
neers to quickly study the effects of a large number of
metrics and inform them of the performance modes that
result from that evaluation. The tool allows engineers
to iterate on their metric designs to find the best way to
measure the resilience of the system.

Subclustering as a method for finding the different
emergent behaviors of an autonomous system remains
an open area of investigation. Black-box testing is lim-
ited by what can be externally observed, and as such it
can be difficult to differentiate when a new behavior
has been triggered or when two different performance
modes are actually the result of the different behaviors.
Unsupervised methods for identifying these behavioral
modes are a powerful tool that can discover phenom-
enon the test engineer did not expect.

Research into methods of measuring AUT resilience
and automatically identifying these performance modes
from externally observable data continues.

in the decision-making than the those identified by
the binary score metrics. An example of this is shown
in Fig. 15, which compares boundary pairs found for
each method. The boundary pair found for the binary
score exhibits no change in behavior, just a violation
of the mission constraints by touching a no-go area.
The boundary pair for the continuous metrics exhibits
a different decision on when to attempt to return to the
recovery point.

The final key feature of the subboundary identifica-
tion process is that it discovers all the subboundaries of
the system without significantly increasing the compu-
tational time. The subboundary algorithm was evalu-
ated on 1 million data points generated by the Sobol
design technique. Some of the 1 million data points were
invalid for reasons such as spawning an obstacle over a
waypoint. This left a total of 863,000 valid UUV simu-
lation runs. The resulting data set was then run against
both the new and old boundary identification algo-
rithms against progressively deeper levels of the score
tree. The results of this comparison are shown in Fig. 16.
The new algorithm takes approximately 20 s to process a
subscore tree with four levels and 66 leaf metrics that is
comparable to applying the original boundary identifi-
cation algorithm to nine metrics simultaneously. Apply-
ing the original boundary identification technique to all
66 leaf metrics simultaneously takes approximately 2 h.
Thus, this new approach for analyzing all the score ele-
ments simultaneously takes 200-fold less time than our
prior approach.

CONCLUSIONS AND FUTURE WORK
This article introduces a hierarchical approach for

evaluating an AUT’s performance and how uncertainty
in that performance affects the RAPT framework. By
focusing on continuous metrics rather than binary suc-

'

Level 1
(2 scores)

Level 2
(7 scores)

Level 3
(19 scores)

Level 4
(38 scores)

Subclustering
algorithm

 (66 scores)

104

103

102

101

100

Ru
nt

im
e

(s
ec

)

Ru
nt

im
e

(s
ec

)

Effect of number of subscores on boundary ID

1000

800

600

400

200

0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Number of samples
Original boundary ID algorithm

Level 1 (2 scores)
Level 2 (7 scores
Level 3 (19 scores)
Level 4 (38 scores)
Subclustering (66 scores)

Time to identify boundaries in a 30,000 ATK data set

×105

Figure 16. Timing comparison of the subboundary algorithm and previous algorithm. Left, Bar chart showing the time to cluster a
30,000 data set for increasing numbers of subscores, with the new technique on the far right. Right, Line plot showing the time to clus-
ter a data set for increasing numbers of samples. The new subclustering process is collinear with the results for clustering seven scores
simultaneously.

http://www.jhuapl.edu/techdigest

G. E. Mullins et al.

Johns Hopkins APL Technical Digest, Volume 34, Number 4 (2019), www.jhuapl.edu/techdigest510

REFERENCES

 1Chen, J., and Patton, R. J., Robust Model-Based Fault Diagnosis for
Dynamic Systems, Springer Science & Business Media, Berlin (2012).

 2Koopman, P., and Wagner, M., “Challenges in Autonomous Vehicle
Testing and Validation,” SAE Int. J. Transport. Safety 4(1), 15–24
(2016).

 3Tuncali, C. E., Fainekos, G., Ito, H., and Kapinski, J., “Sim-ATAV:
Simulation-Based Adversarial Testing Framework for Autonomous
Vehicles,” in Proc. 21st International Conf. on Hybrid Systems:
Computation and Control (Part of CPS Week), New York, pp. 283–284
(2018).

 4Mullins, G. E., Stankiewicz, P. G., Hawthorne, R. C., and Gupta, S.
K., “Adaptive Generation of Challenging Scenarios for Testing and
Evaluation of Autonomous Vehicles,” J. Syst. Softw. 137, 197–215
(2018).

 5Mullins, G. E., Stankiewicz, P. G., and Gupta, S. K., “Automated
Generation of Diverse and Challenging Scenarios for Test and
Evaluation of Autonomous Vehicles,” in Proc. 2017 IEEE International
Conf. on Robotics and Automation (ICRA), Singapore, pp. 1443–1450
(2017).

 6Zou, X., Alexander, R., and McDermid, J., “Safety Validation of Sense
and Avoid Algorithms Using Simulation and Evolutionary Search,”
in A. Bondavalli and F. Di Giandomenico (eds.), Computer Safety,
Reliability, and Security, Springer, Cham, pp. 33–48 (2014).

 7Steinberg, M., Stack, J., and Paluszkiewicz, T., “Long Duration Auton-
omy for Maritime Systems: Challenges and Opportunities,” Auton.
Robots 40(7), 1119–1122 (2016).

 8Tan, H.-P., Diamant, R., Seah, W. K., and Waldmeyer, M., “A Survey
of Techniques and Challenges in Underwater Localization,” Ocean
Eng. 38(14–15), 1663–1676 (2011).

 9Murtagh, F., and Contreras, P., “Algorithms for Hierarchical
Clustering: An Overview,” WIRES Data Min. Knowl. 2(1), 86–97
(2012).

10Yoo, S., Harman, M., Tonella, P., and Susi, A., “Clustering Test
Cases to Achieve Effective And Scalable Prioritisation Incorporat-
ing Expert Knowledge,” in Proc. 18th International Symp. on Software
Testing and Analysis, Chicago, pp. 201–212 (2009).

11Dickinson, W., Leon, D., and Podgurski, A., “Finding Failures by
Cluster Analysis of Execution Profiles,” in Proc. 23rd international
Conf. on Software Engineering, Toronto, pp. 339–348 (2001).

12Sapna, P. G., and Mohanty, H., “Clustering Test Cases to Achieve
Effective Test Selection,” in Proc. 1st Amrita ACM-W Celebration on
Women in Computing in India, Coimbatore, India, p. 15 (2010).

13Zalmanovici, M., Raz, O., and Tzoref-Brill, R., “Cluster-Based Test
Suite Functional Analysis,” in Proc. 2016 24th ACM SIGSOFT Inter-
national Symp. on Foundations of Software Engineering, New York,
pp. 962–967 (2016).

14Nurmuradov, D., Bryce, R., Piparia, S., and Bryant, B., “Clustering
and Combinatorial Methods for Test Suite Prioritization of GUI and
Web Applications,” in Proc. 14th International Conf. on Information
Technology, Las Vegas, pp. 459–466 (2018).

15Comaniciu, D., and Meer, P., “Mean Shift: A Robust Approach
Toward Feature Space Analysis,” IEEE Trans. Pattern Anal. Mach.
Intell. 24(5), 603–619 (2002).

16Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A., Classifica-
tion and Regression Trees, 1st Ed., Routledge, New York (1984).

Galen	 E.	 Mullins, Research and
Exploratory Development Department,
Johns Hopkins University Applied
Physics Laboratory, Laurel, MD

Galen E. Mullins is a roboticist in
APL’s Research and Development
Department. He received bachelor’s
degrees in mechanical engineering

and mathematics from Carnegie Mellon University, a mas-
ter’s degree in applied physics from Johns Hopkins Uni-
versity, and a doctorate in mechanical engineering from
University of Maryland. He is the algorithm lead for the
Range Adversarial Planning Tool (RAPT) program and
has research interests in robotics, autonomy, machine
learning, and numerical optimization. His e-mail address
is galen.mullins@jhuapl.edu.

Paul	G.	Stankiewicz, Force Projection
Sector, Johns Hopkins University
Applied Physics Laboratory, Laurel,
MD

Paul G. Stankiewicz is an engineer
in the Ocean Systems and Engineer-
ing Group of APL’s Force Projection
Sector. He received an M.S. and a B.S.

in mechanical engineering from Penn State in 2015 and
2013, respectively. His research background is in dynamic
systems and control, with a focus on autonomous systems.
Paul supported the Range Adversarial Planning Tool
(RAPT) algorithm development for intelligent search
and boundary identification. His e-mail address is paul.
stankiewicz@jhuapl.edu.

Melissa	 A.	 Huntley, Force Projection
Sector, Johns Hopkins University
Applied Physics Laboratory, Laurel, MD

Melissa Huntley is the assistant sec-
tion supervisor of the Autonomous
Systems Section in the Ocean Systems
and Engineering Group in APL’s Force
Projection Sector. She led the test

range software development effort for the Range Adver-
sarial Planning Tool (RAPT). She received a B.S. in com-
puter engineering from University of Maryland, Baltimore
County, in 2013 and an M.S. in systems engineering from
Johns Hopkins University in 2016. Her e-mail address is
melissa.huntley@jhuapl.edu.

http://www.jhuapl.edu/techdigest
mailto:galen.mullins@jhuapl.edu
mailto:paul.stankiewicz@jhuapl.edu
mailto:paul.stankiewicz@jhuapl.edu
mailto:melissa.huntley@jhuapl.edu

	Search-Based Testing Methods for Evaluating the Resilience of Autonomous Unmanned Underwater Vehicles
	Galen E. Mullins, Paul G. Stankiewicz, and Melissa A. Huntley
	ABSTRACT
	INTRODUCTION
	RANGE ADVERSARIAL PLANNING TOOL
	Adaptive Sampling
	Boundary Identification
	Scoring Methodology

	PROBABILISTIC PERFORMANCE BOUNDARIES
	Uncertainty in the UUV Simulation
	Effects of Noise on Adaptive Sampling
	Effects of Noise on Boundary Identification

	SUBCLUSTERING
	Background
	Definition of Subclusters
	Hierarchical Subclustering
	Subscore Clusters and Boundaries

	APPLICATION TO THE UUV MISSION
	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	Author Bios
	ALGORITHM 1
	ALGORITHM 2
	Figure 1. Example of the performance boundary for a simple UUV navigation mission.
	Figure 2. Overview of the RAPT framework.
	Figure 3. Diagram of the hierarchical score trees for our UUV simulation.
	Figure 4. Three runs of an UUV scenario designed to evaluate the effects of noise.
	Figure 5. Simulation results for the distance to no-go area metric, plot of binary success/failure metric, locations of the performance boundaries.
	Figure 6. Data points from the simulation for this continuous metric, plot of the binary success/failure metric as well as a region of high uncertainty in the binary metric, and scatterplot of the noisy synthetic function.
	Figure 7. Plots for the boundary precision and coverage for each of our search approaches as the boundary width increases.
	Figure 8. Scatterplots showing the effect of increasing boundary width on our adaptive search.
	Figure 9. Plot showing the effect of stochasticity in the form of increasing INS drift rate on the performance modes and boundaries.
	Figure 10. Illustration of the various subclusters and subboundaries for a simple three-element score tree.
	Figure 11. Example illustrating how each cluster of the system is split into smaller subclusters and subboundaries.
	Figure 12. Examples of reconstructed subscore clusters and boundaries for the synthetic system.
	Figure 13. Scatterplots showing the effect of increased stochasticity in the form of INS drift on the boundaries identified by the subclustering algorithms.
	Figure 14. Plot showing the effect of increasing simulator stochasticity in the form of INS drift on ability of the boundary and subboundaries to separate the performance modes.
	Figure 15. Comparison of a boundary pair found for the original boundaries using the binary scores versus the subboundary pairs using the continuous metrics.
	Figure 16. Timing comparison of the subboundary algorithm and previous algorithm.

