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ABSTRACT
The resilience of an unmanned underwater vehicle (UUV) can be defined as the vehicle’s ability to 
reliably perform its mission across a wide range of changing and uncertain environments. Resil-
ience is critical when operating UUVs where sensor uncertainty, environmental conditions, and 
stochastic decision-making all contribute to significant variations in performance. A challenge 
in quantifying the resilience of an autonomous system is the identification of the performance 
boundaries—critical locations in the testing space where a small change in the environment 
can cause a large change (i.e., failure) in an autonomous decision-making system. This article 
outlines a methodology for characterizing the performance boundaries of an autonomous 
decision-making system in the presence of stochastic effects and uncertain vehicle performance. 
This approach introduces a method for hierarchically scoring the autonomous decision-making 
of these systems, allowing the test engineer to quantitatively bound the performance prior to 
UUV deployment. When using this scoring approach, engineers apply a set of novel subcluster-
ing methods, allowing them to identify stable performance boundaries in stochastic systems. 
The result is a process that effectively measures the resilience of an autonomous decision-making 
system on UUVs.

close to obstacles in order to minimize path length, or 
another software that prioritizes reaching waypoints may 
result in the UUV running out of fuel before it returns 
home. There are multiple ways the system can fail or act 
in an unsatisfactory manner. Identifying faults where a 
subsystem throws an error or the system fails a hard con-
straint, such as exceeding a speed constraint or colliding, 
are straightforward and well-studied areas of research.1–3 

However, many events are ambiguous and cannot be 

INTRODUCTION
Autonomous vehicles are expected to execute com-

plex missions with multiple competing objectives. For 
example, consider an unmanned underwater vehicle 
(UUV) acting in an unknown environment with local 
sensing and limited fuel. Its mission is to reach specific 
waypoints, maintain a safe distance from obstacles, and 
keep enough fuel in reserve that it can make the trip to 
a recovery location. Autonomy software that values fuel 
consumption over safety may take paths that veer too 
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easily coded, requiring a human engineer to make a judg-
ment call. An example is assessing when it is appropriate 
for the UUV return home without completing the mis-
sion. Therefore, a methodology is needed to identify and 
group the many types of behaviors the autonomous vehi-
cle can exhibit and present them to the test engineer.

Because of the large degree of uncertainty in real-
world environments, autonomous vehicles must be capa-
ble of adapting to a wide variety of situations. Testing 
the resilience of these decision-making systems requires 
methods that evaluate system performance and account 
for stochasticity in planning, perception, and control 
submodules (i.e., sensor noise, plant disturbances, etc.).2 
Additionally, as the mission and the autonomy software 
become more complex, it is necessary to explore various 
emergent behaviors that arise through the combination 
of all system submodules. However, exploring all possi-
ble configurations of the system and the environment is 
simply impossible, particularly when each scenario must 
be run multiple times to account for stochastic effects. 
Thus, the limited computational budget for running 
simulations demands new methods for intelligently gen-
erating test cases.

To address the challenge of finding a diverse set of 
behavioral modes in a large testing space, the Range 
Adversarial Planning Tool (RAPT)4,5 was developed. 
RAPT is a software framework that allows test engi-
neers to identify safe operating envelopes for decision-
making systems. The objective of RAPT is to make field 
tests more cost effective by finding a small set of salient 
test scenarios that are known to demonstrate relevant 
changes in the vehicle’s behavior. Since field tests are 
expensive to run and execute, it does not make sense to 
run tests when the performance of the vehicle is known 
to be certain. Instead, RAPT focuses on finding tests 
that are in regions of high uncertainty that represent the 
thresholds of the vehicle’s perfor-
mance. While past works have 
used optimization techniques to 
search testing spaces for failure 
scenarios,3,6 these efforts have 
all used the discovery of collision 
cases as their only objective func-
tion. The aim of RAPT is to find 
a variety of different behaviors 
across multiple mission-relevant 
scoring criteria without the need 
for a single unifying objective 
function that defines the robust-
ness of a scenario. To achieve 
this, RAPT introduces the con-
cept of performance boundaries, 
which are a structural feature of 
any system under test that can be 
identified via unsupervised learn-
ing methods.

Performance boundaries are transitional regions 
in the testing space where small changes in scenario 
parameters (e.g., obstacle positions or environmental 
factors) cause large changes in system performance. Ref-
erences 4 and 5 outline methods for identifying test sce-
narios in the regions of these performance boundaries. 
For high-dimensional spaces where exhaustive testing is 
infeasible, identifying the system’s performance bound-
aries allows a test engineer to characterize the perfor-
mance landscape with a limited number of simulations. 
As an example, consider the autonomous UUV mission 
introduced at the beginning of this section. The vehicle 
must navigate to a waypoint while conserving fuel and 
avoiding obstacles. Figure 1 illustrates a performance 
boundary that occurs when a small change in the posi-
tion of the pentagonal obstacle closes a narrow channel 
that results in drastically different performance—the 
difference between obstacle avoidance and a collision. 
In this example, when the obstacle is moved the vehicle 
has more room to maneuver and avoids a collision. The 
vehicle makes the decision to return to a recovery point 
because the route around the large obstacle is estimated 
to be too long given the remaining fuel.

A key assumption of the methodology presented in 
Refs. 4 and 5, however, is that it used both a determinis-
tic autonomy and a deterministic simulation to measure 
the performance of the system. As shown in this article, 
additional research is needed to properly handle the 
stochastic effects produced by sensor noise, plant dis-
turbances, and other forms of uncertainty that result in 
probabilistic performance (i.e., instances where repeated 
tests of the same scenario produce uncertain, and poten-
tially drastically different, outcomes).

This article addresses these shortfalls by demonstrat-
ing RAPT’s ability to handle both deterministic and 
stochastic simulations. It begins with a brief overview 
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Figure 1. Example of the performance boundary for a simple UUV navigation mission. The 
green circle is the starting position of the vehicle, and the black circle on the right is the way-
point the UUV is trying to reach. A small change in the x1 location of the pentagonal obstacle 
results in the UUV avoiding a collision and then aborting its attempt to reach the waypoint.
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of the RAPT framework and our scoring methodology. 
It then discusses how noise in the sensing and controls 
of an autonomous vehicle affects RAPT’s ability to dis-
cover salient test cases. Next it introduces the subclus-
tering algorithms used to identify emergent behaviors 
and discusses the results of applying these techniques 
to our UUV simulation. The article concludes with a 
discussion on how these new techniques impact evalua-
tions of UUV resilience.

RANGE ADVERSARIAL PLANNING TOOL
This section briefly overviews the methodology 

RAPT used to generate salient test scenarios for autono-
mous systems. For a full discussion of this framework and 
the underlying algorithms, refer to Ref. 4. See Fig. 2 for 
an architectural overview of the tool. The process begins 
with the test engineer specifying two configurations 
for the autonomy under test (AUT): the testing state 
space and the scoring space. The testing state space dic-
tates the elements of the simulation that will be varied 
between scenarios, including obstacle positions, mission 
parameters, ocean current magnitudes, or any other fac-
tors that could influence the autonomy decision-making. 
The scoring space then controls how the AUT is evalu-
ated for each completed scenario. Once the testing state 
space and scoring space are defined, the performance 
evaluation process is broken into two phases: adaptive 
sampling followed by boundary identification.

Adaptive Sampling
In the first step, adaptive sampling is used to gener-

ate test scenarios that give insight into the performance 
boundaries of the system. This iterative process builds 
a surrogate model of the AUT’s performance based on 

the results of completed simulations. Inputs of the sur-
rogate model are defined as parameters in the testing 
state space, and the outputs are the evaluation criteria 
defined in the scoring space. This surrogate model is 
then used to generate subsequent scenarios in regions 
of the testing state space where performance boundaries 
are expected to occur (e.g., regions characterized by high 
variance in the AUT performance). A key feature of the 
adaptive sampling algorithm is the ability to balance the 
trade-off between fully exploring the testing state space 
while also preferentially focusing samples on regions of 
predicted performance boundaries. The best-perform-
ing version of the adaptive sampling algorithm used 
the nearest-neighbor density and variance (NNDV) 
meta-model. By searching for areas that predicted high 
variance but were far away from previous samples, it gen-
erated samples in the regions of interest more effectively 
than any other technique.

Boundary Identification
After all the simulations have been executed, the 

second step is to use the raw simulation data to charac-
terize the performance boundaries of the system. How-
ever, because these performance boundaries are highly 
nonlinear and exist in high-dimensional spaces, they 
are not easily characterized analytically. Thus, their 
structure is inferred based on adjacent scenario pairings 
that exhibit distinct differences in performance, where 
groupings of performance classes are identified using 
unsupervised clustering methods. These scenario pair-
ings along the system’s performance boundaries are then 
returned to the user. Ultimately, scenarios that straddle 
performance boundaries aid in diagnosing the AUT’s 
decision-making by attributing small changes in sce-
nario parameters to large transitions in performance.
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Figure 2. Overview of the RAPT framework.
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Scoring Methodology
The RAPT framework is domain agnostic and can 

accept any parameterized simulation and set of scoring 
criteria. It gives the user the capability to design studies 
based on a combination of a testing space and perfor-
mance metrics that define a mission. The user defines 
a score tree structure that describes the relationship 
between continuous metrics extracted from the simula-
tion (e.g., distance from an obstacle) and the resulting 
scores (e.g., whether a collision occurred). These rela-
tionships can be any mathematical expression but are 
traditionally a combination of logical statements and 
thresholds. For example, the vehicle must achieve a cer-
tain distance from a waypoint to achieve a success at that 
objective and must achieve success at all objectives to 
succeed at the mission. Returning to the UUV example 
described in the introduction, there are two primary cri-
teria to evaluate the vehicle performance: mission suc-
cess and safety success. Mission success is a binary score 
representing that the vehicle completed all the objec-
tives of the mission, such as reaching waypoints and 
completing surveys. It is computed of continuous sub-
metrics such as the distance from each waypoint and the 
time in which the vehicle completed the mission. Safety 
success is a binary score representing that the vehicle 
has not violated any safety constraints —for example, 
that it avoided obstacles and reached the recovery point 
successfully. The score-tree structure used for this UUV 
mission is shown in Fig. 3.

The score tree is a flexible and intuitive way of 
describing the performance of an AUT. Performance 
boundaries are derived from the scores used to evaluate 
the mission. Selection of these metrics will affect the 
types of boundaries RAPT discovers. Using more met-
rics increases the possibility of finding all boundaries for 

a given study, but it also dilutes the search. Therefore, 
searching over a small number of score criteria results 
in a more focused search, and test engineers can use the 
saved subscore and metric information to discover the 
causes of performance boundaries during post-processing 
and analysis.

PROBABILISTIC PERFORMANCE BOUNDARIES
Whether the result of error in the sensor inputs, 

stochasticity in the vehicle dynamics, or random pro-
cesses inside the autonomy software, there is an inher-
ent level of uncertainty when executing a scenario in 
the real world. A resilient UUV must be capable of 
operating within a large range of scenarios and should 
not be sensitive to small errors or minor changes to the 
environment.7 Testing the resilience of an autonomous 
vehicle requires a simulation environment that incorpo-
rates the stochastic properties of both the environment 
and the platform. This means that the test-generation 
algorithms must be robust against probabilistic effects. 
This section discusses the results of applying our test-
generation algorithms to a system with noisy output.

Uncertainty in the UUV Simulation
The UUV simulation and autonomy software used in 

the previous RAPT work shows that a relatively simple 
mission can still exhibit multiple informative perfor-
mance boundaries. This simulation models an IVER 
underwater vehicle equipped with a sonar sensor with 
a 100-meter range and a 120° field of view and an iner-
tial navigation system (INS). The vehicle must reach 
one or more waypoints, avoiding obstacles as well as 
no-go areas, and then reach a recovery point with suf-
ficient fuel remaining. The no-go areas are known in 
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Figure 3. Diagram of the hierarchical score trees for our UUV simulation, illustrating the first three levels of the score tree for both mis-
sion success and safety success.
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advance but cannot be detected by the sonar; they can 
be avoided only by using the INS. The obstacles are not 
known in advance but can be detected by the sonar. The 
testing space is designed such that the vehicle has just 
enough fuel to complete the mission if minimal obsta-
cles are detected and must abort if safety thresholds 
are encountered.

To add realistic uncertainty to the UUV’s dynamics, 
the RAPT simulation incorporates stochastic models 
that account for difficulties in navigating underwater, 
including perturbations of the ocean current and drift 
in the INS.8 To understand how these changes to the 
simulation will affect the test scenarios and boundar-
ies RAPT generates, it is necessary to characterize the 
effect that this type of noise has on the output of the 
system. This characterization allows the creation of a 
synthetic function that has the same properties as the 
system under test.

For noise characterization tests, 40,000 scenarios in a 
five-dimensional state space were generated. These sce-
narios used start time, obstacle latitude and longitude, 

and no-go area latitude and longitude as the parame-
ters to be varied. For this study, each scenario was run 
10 times. The mission objective was to avoid obstacles 
and no-go areas and explore two survey areas before 
returning to the recovery point. The vehicle had the 
ability to detect obstacles by using its sonar sensors but 
had to rely on its state estimate to avoid no-go areas and 
reach the mission areas. The mission areas were deliber-
ately made small for this test to increase the overall dif-
ficulty. An illustration of a representative scenario run 
three different times is shown in Fig. 4.

It is clear from these examples that the amount of error 
in the vehicle’s state estimate is directly responsible for 
deviations in the trajectory that cause it to either travel 
through the shaded no-go area or miss the mission area. 
The vehicle’s autonomy software fails to account for this 
error when performing its path planning and thus fails 
under low levels of estimation inaccuracy. The effect of 
the error is most strongly evidenced when plotting the 
relationship between the latitude of the no-go area with 
the distance of the closest point of approach; see Fig. 5.
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Total success

Scenario 70, run 2
Safety success

Scenario 70, run 3
Mission success

Figure 4. Three runs of an UUV scenario designed to evaluate the effects of noise.
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Effects of Noise on Adaptive Sampling
To perform a more rigorous analysis of the effects of 

noise, two synthetic systems were created by modeling 
different outputs of the stochastic UUV simulation. 
Each of these systems were parameterized to accom-
modate varying levels of noise. The first of these was a 
system with continuous output modeled after the sensor 
placement accuracy of the simulation. The second of 
these systems was a binary output model of the safety 
success metric. In each case, the noise variable was rep-
resented with a Gaussian distribution. The first system 
is a continuous function with a standard deviation of m 
illustrated in Fig. 6a. The second results from applying 
a binary threshold to the first system, resulting a proba-
bilistic performance boundary with a width of c. This 
generated both one-dimensional and two-dimensional 
synthetic systems that shared the same properties as the 
UUV simulation. Instead of a sharp boundary between 
categorical outputs, the boundary was a region where 
two Gaussian distributions overlapped. These systems 
are illustrated in Fig. 6.

The probability of obtaining a sample of an incorrect 
performance mode is given by the equation

 .P C x e0 5
d x
2–

c

2

)+ = )^
^

h
h

, (1)

where d(x) is the distance of the sample x from the near-
est boundary. An illustration of this function is shown 
in Fig. 6d, with the true boundaries shown as red lines 
and the standard deviation from the boundary shown 
as a gray-shaded region. The width of this region was 
described via the standard deviation c of these distribu-
tions and was varied between 0 and 0.4.

We used these systems to compare the adaptive sam-
pling algorithm NNDV5 with a commonly used uniform 
sampling method known as a Sobol design, using two 
metrics of performance boundary quality. The first is 
boundary precision, the percentage of the total samples 
taken that lie within 0.01 units of the true boundary 
location. The second is boundary coverage, the percent-
age of the boundary region that has been sampled. The 
results of this experiment are shown in Figs. 7 and 8.

While the resulting boundary regions are wider than 
in the original deterministic 
function, the NNDV search 
successfully samples the cor-
rect regions and returns tighter 
boundaries than the Sobol set. 
As boundary width increases, 
the NNDV search begins to 
degrade in performance. Once 
the standard deviation of the 
boundary region reaches 0.35, 
the adaptive search begins sam-
pling in the same space-filling 
manner as the Sobol design. 
At this point the entire search 
space becomes probabilistic 
as all the performance modes 
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overlap, causing the entire system to consist primarily 
of noise. As such, there is insufficient information for 
the adaptive search to exploit, and defaulting to a global 
search approach is appropriate.

Effects of Noise on Boundary Identification
For the UUV system, boundary identification 

becomes difficult in some cases because of the effects 
of noise. Consider a system where there are two simpli-
fied performance modes: success and failure. Significant 

noise could cause the entire region that contains this 
performance mode to become probabilistic. This effect 
can clearly be seen in Fig. 9, a scatter plot of both the 
performance modes and the boundaries between them. 
Each of the points in the plot represents a single sce-
nario. In the top plots, each scenario is given a color 
based on one of four possible score modes accounting for 
the permutations of mission success and safety success. 
In this example, the red points indicate the areas where 
the vehicle collides with an obstacle or no-go area, while 
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the purple points indicate scenarios where the vehicle 
completes the mission with no violations. As INS drift 
increases, the vehicle becomes increasingly likely to fail: 
first the mission criteria, as the vehicle fails to correctly 
reach the waypoint, and then the safety, as it collides 
with obstacles and no-go regions more frequently. The 
bottom plots show the locations of each scenario on a 
performance boundary as a colored x, with other scenar-
ios shown as gray dots. In the far-left plot, the boundaries 
show up as easily distinguished lines of colored points, 
but as the INS drift rate increases these become broader 
and more scattered. This continues until the entire test-
ing space is categorized as a performance boundary.

While the RAPT algorithms are robust to noise and 
will accurately find and label boundary regions as they 
exist, when stochastic effects become too large these 
boundaries cease being accurate indicators of changes 
in the autonomous vehicle’s behavior. Therefore, it is 
necessary to look at another way to measure the sys-
tem’s performance. One method is to use the continuous 
valued metrics rather than the binary criteria that result 
from applying thresholds.

SUBCLUSTERING
When the system under test exhibits probabilistic 

effects, binary success criteria are not the best indica-
tors of a change in the vehicle’s behavior. Sometimes it 
is better to use continuous metrics, such as closest dis-
tance to a waypoint or fuel consumed, because they are 
affected more by large changes in the vehicle’s trajectory. 
Therefore, a set of analytical tools that can explore the 
boundaries for many different possible scoring metrics 
is required. This section covers the hierarchical bound-
ary identification method, which allows faster computa-
tion and retrieval boundary information for any scoring 
metric in the simulation.

Background
For decades hierarchical clustering has been one of 

the most popular methods for organizing data into sets 
and classifying data.9 There are two broad categories of 
hierarchical clustering techniques: agglomerative and 
divisive. With agglomerative methods, each data point 
starts as its own cluster and then forms small local clus-
ters, which then merge together to create larger clusters. 
This includes pairwise comparison methods, which have 
been used successfully for test-case prioritization in the 
past.10 With divisive methods, all data points start in one 
cluster and then iteratively break up the into smaller and 
smaller sets. Divisive clustering has been used to quickly 
filter for test cases likely to cause software failures.11 The 
subclustering algorithm described in this section is a 
combination of both a divisive clustering algorithm and 
an agglomerative algorithm. It first operates in a divisive 

manner, breaking clusters into smaller subclusters, and 
then merges those subclusters back together to identify 
individual score clusters.

Clustering test cases has been a been a popular 
method for prioritizing testing suites10,12–14 that find a 
diverse set of failures. Our approach differs from algo-
rithms described in other works in its use of multiple 
scoring criteria. While most hierarchical algorithms 
split or merge clusters based on a single metric space, 
our algorithm applies multiple distinct metric spaces as 
defined by the score tree. This means that rather than 
trying to detect a hierarchical structure in the test data, 
the algorithm instead imposes the structure defined 
by the expert knowledge inherent in the relationships 
between the performance metrics.

Definition of Subclusters
Clustering over continuous metrics rather than 

binary score criteria can mitigate the effects of noise in 
the search for and identification of performance bound-
aries. The challenge is identifying the continuous met-
rics to cluster over. Including all possible metrics leads to 
a diluted search, and the points become too far apart to 
cluster. Selecting only a few metrics tends to improves 
clustering. However, discovering a diverse set of behav-
iors requires a diverse set of metrics, as each metric 
could potentially reveal a different type of performance 
boundary. Ideally, test metrics are selected that have the 
greatest impact on the primary performance metrics of 
interest. In the case of the UUV mission, the perfor-
mance metrics of interest are safety success and mission 
success. Subclustering using hierarchical relationships is 
one way to balance the needs of including many metrics 
for diversity, while not diluting the results of the search 
or clustering algorithms.

The key to the new approach is the subscore tree 
introduced in the section on RAPT. It is the structure 
that defines the relationships between a binary success 
criterion such as mission success to subscore criteria such 
as waypoint success or transmission success. Each ele-
ment of the subscore tree H has two properties, a set 
of indices H.K and a set of child nodes H.children. The 
indices H.K indicate the position of that score element 
in the score vector Y, as a flattened representation of the 
score tree.

Using the subscore tree, it is possible to develop 
both subclusters and subboundaries for our system. A 
cluster V VC 1  is defined as the subset of samples in 
V that all have the same class c C! . Each cluster is 
composed of a number of disjointed subclusters such 
that ,,V V V VC C C C

n1 2 f= $ .. The cluster V C is cre-
ated by applying our algorithms to the score elements 
at the root of the score tree H, and its subclusters are 
created by applying our algorithms to the children 
of H. For example, if we cluster based on the mis-
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Hand in hand with the concept of subclusters is the 
concept of subboundaries. Subboundaries are the divi-
sions between subclusters inside of a larger cluster. The 
synthetic system includes six primary boundary types 
based on the transitions between different classes. The 
subclusters of the intermediate scores are separated by 
subboundaries between the primary boundaries, thereby 
dividing each cluster and subcluster into smaller and 
smaller sets. An example of this process is shown in 
Fig. 11.

Hierarchical Subclustering
Our goal is to obtain boundary information for any 

score element in the score tree without having a priori 
knowledge of which elements will be important. How-
ever, it is not possible to compute all score elements 
simultaneously using our previous clustering technique. 
This section introduces an approach for creating a sub-
boundary structure more quickly than the method 

sion and safety scores to create V C, we create its sub-
clusters , ,V V VC C

n
C

1 2 f$ . by applying the clustering 
algorithm to the next level of scores: waypoint, trans-
mission, etc. Finally, a subboundary is defined as a set 
of paired samples that lie between two subclusters, 

, , , ,B v vv v,C C
nn1 2

1 2
21

f=^ h 6 6@ @" ,, where all members 
of the boundary are members of V C and each pair is 
made up of a member of VC

1  and a member of VC
2 .

The second category of clusters is the subscore clus-
ter Vk, which is created by applying clustering to the 
kth element of the score vector. For example, once the 
score tree is flattened, the waypoint distance metric 
may be the 12th element in the score vector. These, in 
turn, have a subscore boundary designated as Bk. These 
subscore clusters are our true objective, and later in 
this section we discuss how these two types of clusters 
are related and how each is used for our analysis of the 
UUV simulation.

Figure 10 shows the different subclusters and subscore 
clusters for a simple three-element tree. In this system, 
the primary clusters are defined by the root element A 
that is computed via an AND operator on the leaf ele-
ments B and C. The subclusters provide different ways of 
subdividing the system using the values of leaf elements. 
If both B and C are used (Fig. 10b), the original parent 
cluster [A=0] is split into two clusters: [B=0,C=1] and 
[B=1,C=0]. Isolating either score element B or C would 
create subscore clusters based on their values alone, as 
shown in Figs. 10c and 10d.

As illustrated in Fig. 11, as more subscore elements are 
used for clustering, more subclusters are created. The syn-
thetic system has four classes that define the primary clus-
ters. Each of these can be broken into smaller subclusters 
by applying clustering algorithms to the second level of 
the tree. These subclusters can then, in turn, be broken 
down further by applying a clustering algorithm to the 
third level of the tree. Figure 11 illustrates this process.

*+,-.+*/)0*

*+,-.+*/)0*

*+,-.+*/)0*

Primary clusters

Primary boundaries

[0 1] mode
2 subclusters

[0 0] mode
6 subclusters

[0 1] mode
2 subboundaries

[0 0] mode
8 subboundaries

[0 0][0 0] mode

[0 0][0 1] mode

[0 1][0 0] mode

1 subboundary

1 subboundary

2 subboundaries

The [0 1] region contains two
interior boundaries.
The [0 0] region contains eight
interior boundaries.

Figure 11. Example illustrating how each cluster of the system is split into smaller subclusters and subboundaries. The [0 1] cluster can 
be broken up into two subclusters, while the [0 0] cluster can be broken up to six subclusters using the level 2 score elements. These can 
be broken up further using the level 3 score elements.

(a)

(b)

(c)

(d)

[1]
[1]

[1]

[0]

[0] A

B C

A

B C

A

B C

A

B C

[1 0]

[0 1]
[1 1]

[0]

Figure 10. Illustration of the various subclusters and subbound-
aries for a simple three-element score tree. (a) The clusters and 
boundaries for the root element A. (b) Subclusters formed by 
applying our clustering algorithm to both B and C simultane-
ously. (c) The subscore clusters for element B. (d) The subscore 
clusters for element C.
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of different clusters to identify the boundary pairs. Since 
the sizes of these clusters become progressively smaller 
as the process continues, each child in the subbound-
ary tree takes less time to compute than its parent. This 
process is described more formally in Algorithm 1.

The output of this algorithm is a boundary tree struc-
ture. Each level in the boundary tree relates directly to 

described in Ref. 2. It also allows for efficient retrieval of 
any score boundary.

The new subboundary algorithm uses the hierarchi-
cal nature of the subscore tree to break the problem into 
smaller pieces. This turns an O(m2n2) operation and 
into an O(mn2) operation, allowing us to more quickly 
create clusters and their boundaries for every metric in 
our score tree. This process is 
illustrated in Fig. 11, where we 
broke each cluster into smaller 
and smaller subclusters by 
iteratively applying our cluster-
ing algorithms. The algorithm 
works as follows:

•	 The primary clusters of 
the system are identified 
by applying mean-shift 
clustering15 to the root ele-
ments of the score tree.

•	 Each of these clusters is 
then subjected to cluster-
ing using the metrics at 
the next level down on the 
score tree.

•	 These new clusters are then 
added as children to the 
parent cluster.

This process is applied 
recursively until it has reached 
the bottom of the score tree or 
a cluster cannot be subdivided. 
At each step of the subcluster-
ing process, we use pairwise 
comparison between members 
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Figure 12. Examples of reconstructed subscore clusters and boundaries for the synthetic 
system.

ALGORITHM 1
Subboundaries(X,Y,H)

1. Set the subscore indices K = H.K
2. Cluster using the selected subscores [L, C] = MeanShift(Y(K))
3. Create labeled sample set V = [X, Y, L]
4. Set the subclusters for V as , ,V V C CC C

i
n1 f 6 !" ,

5. Foreach C Ci !

a. Foreach ,C C k ik 2!

i. , ,X XI knnsearch 1ik
C Ci k= ^ h" ,

ii. , ,X XI knnsearch 1ki
C Ck i= ^ h" ,

iii. Create boundary pairs ,b x x B I x x I x xif and,
k j l

C C
ik j l ki l j

i k!= = =^ ^h h6 @ " " ", , ,
iv. .B append B ,C Ci k^ h

b. , , .T Subboundaries Y H childrenXC C Ci i i= ^ h
c. .appendS TCi^ h

6. Return T = [V, B, C, S, K]

http://www.jhuapl.edu/techdigest


Methods for Evaluating the Resilience of Autonomous UUVs

Johns Hopkins APL Technical Digest, Volume 34, Number 4 (2019), www.jhuapl.edu/techdigest 507    

ters that have the same value for the specified score 
element, then merging all the identified subclusters and 
subboundaries into a single set. The method is detailed 
in Algorithm 2.

An example of reconstructed subscore boundaries for 
score elements 6 and 11 is shown in Fig. 12. The clusters 

a level in the score tree. Each node in the boundary tree 
contains information about the clusters at that level, the 
boundaries for those clusters, the score indices used for 
clustering, and the cluster’s child subboundary nodes.

Subscore Clusters and Boundaries
The objective is to identify the 

boundaries for every score ele-
ment in the tree. However, it is 
too computationally intensive to 
apply our original boundary iden-
tification algorithm to every score 
element simultaneously. Instead 
of computing all boundaries indi-
vidually, the subboundary tree 
T can be used instead to recon-
struct the boundaries associated 
with any scoring element. This 
means the clusters and boundar-
ies can be retrieved for any given 
score element with minimal addi-
tional computation. This process 
involves searching the subbound-
ary tree structure for all subclus-

UUV simulation subclusters

UUV simulation subboundaries

INS drift rate = 0.3 m/s INS drift rate = 1 m/sINS drift rate = 0 m/s

Figure 13. Scatterplots showing the effect of increased stochasticity in the form of INS drift on the boundaries identified by the sub-
clustering algorithms. The plots show the reconstructed subclusters and subboundaries for the waypoint distance and recovery point 
distance metrics.

ALGORITHM 2
Reconstruct (T, yS, Ks)

1. [V, B, C, S, K] = T
2. If K = Ks

a. Find yk = nearestNeighbor(ys, Y)
b. Set ck to the label of yk
c. Set sV VCk=
d. Set , ,B B b v v B v V v Vs.t either ors i j s j s sl l61 ! ! != 6 @

Else

e. Foreach T Si !

i. [Vi, Bi] = Reconstruct(Ti, ys, K)
ii. Vs.append(Vi)
iii. Bs.append(Bi)

3. Return [Vs, Bs]
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for quantifying the sharpness of the performance 
boundary is measuring how well it separates the two 
classes. These classes can be calculated by training a 
classifier on both the original performance boundaries 
and the subboundaries comparing the cross-validation 
loss of each. A more accurate classifier means the data 
are easier to separate, and thus identified boundaries 
are “sharper.” A classification tree model16 was trained 
for both data sets for varying levels of INS drift rate, 
and the results of this comparison are shown in Fig. 14. 
Classification loss for the subboundaries remains con-
stant despite the level of the INS drift rate, whereas 
the loss for the original boundaries grows significantly 
until the classifier is no better at separating the two 
classes than random chance.

The subboundaries derived from the continuous 
metrics also tend to be more representative of changes 

are shown in red and blue for when the score is 0 or 
1, respectively. The different colors in the reconstructed 
boundary indicate the different subboundaries that were 
merged in the reconstruction process.

APPLICATION TO THE UUV MISSION
The ability to find subclusters and then use them 

to reconstruct any subscore boundary makes it possible 
to efficiently identify performance boundaries for any 
of the continuous metrics in the subscore tree. Differ-
ent metrics will reveal different behavioral modes of 
the system under test, and some will be less impacted 
by stochastic effects than others. This provides a way 
to differentiate resilience of the autonomy’s subsystems 
from resilience in its decision-making process. For 
example, as shown in Fig. 4, there is a great deal of 
variance in the binary success criteria of the vehicle 
without much change in the vehicle’s trajectory. The 
vehicle’s navigation is unreliable, but the decision-
making process is stable.

Applying these new subclustering and subbound-
ary identification algorithms to the UUV simulation 
immediately reveals their robustness to increasing sto-
chasticity in the simulation. Figure 13 illustrates the 
effect of increasing INS drift on the subboundaries 
defined by the waypoint distance and recovery point 
distance metrics. These metrics were selected because 
they are primary contributors to the safety success and 
mission success criteria. Comparing Fig. 13 to Fig. 9 
shows the dramatic difference in stability between the 
original binary success clusters and the subclusters cre-
ated by the continuous metrics. Even when the INS 
drift rate is increased to the point where the vehicle is 
unable to complete the mission because it consistently 
misses the target, the identified subboundaries remain 
the same.

One of the desirable qualities of the system under 
test is a sharp performance boundary. It is both an 
indicator of resilience and can help a test engineer iso-
late the cause in the behavior of the system. A method 
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Figure 14. Plot showing the effect of increasing simulator sto-
chasticity in the form of INS drift on ability of the boundary and 
subboundaries to separate the performance modes.

Binary score boundary pair Continuous metric boundary pair 

Figure 15. Comparison of a boundary pair found for the original boundaries using the binary scores versus the subboundary pairs using 
the continuous metrics.
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cess criteria, the search and boundary identification 
methods become more robust against the effects of 
noise. Hierarchical scoring combined with subcluster-
ing algorithms generates salient boundaries for a large 
number of scoring metrics in a computationally effi-
cient manner. These techniques enable application of 
the RAPT framework to stochastic simulations that are 
key for testing the resilience of unmanned underwater 
systems.

The use of a score tree is an intuitive extension of 
how autonomy designers are already evaluating autono-
mous systems, where requirements are typically written 
as binary success criteria based on a continuous metric 
reaching a threshold. While RAPT provides a flexible 
method for defining these criteria, the problem of how 
to design effective resilient scoring metrics remains. It is 
still the responsibility of subject-matter experts to iden-
tify the AUT’s requirements and how they should be 
measured. The purpose of RAPT is to enable test engi-
neers to quickly study the effects of a large number of 
metrics and inform them of the performance modes that 
result from that evaluation. The tool allows engineers 
to iterate on their metric designs to find the best way to 
measure the resilience of the system.

Subclustering as a method for finding the different 
emergent behaviors of an autonomous system remains 
an open area of investigation. Black-box testing is lim-
ited by what can be externally observed, and as such it 
can be difficult to differentiate when a new behavior 
has been triggered or when two different performance 
modes are actually the result of the different behaviors. 
Unsupervised methods for identifying these behavioral 
modes are a powerful tool that can discover phenom-
enon the test engineer did not expect.

Research into methods of measuring AUT resilience 
and automatically identifying these performance modes 
from externally observable data continues.

in the decision-making than the those identified by 
the binary score metrics. An example of this is shown 
in Fig. 15, which compares boundary pairs found for 
each method. The boundary pair found for the binary 
score exhibits no change in behavior, just a violation 
of the mission constraints by touching a no-go area. 
The boundary pair for the continuous metrics exhibits 
a different decision on when to attempt to return to the 
recovery point.

The final key feature of the subboundary identifica-
tion process is that it discovers all the subboundaries of 
the system without significantly increasing the compu-
tational time. The subboundary algorithm was evalu-
ated on 1 million data points generated by the Sobol 
design technique. Some of the 1 million data points were 
invalid for reasons such as spawning an obstacle over a 
waypoint. This left a total of 863,000 valid UUV simu-
lation runs. The resulting data set was then run against 
both the new and old boundary identification algo-
rithms against progressively deeper levels of the score 
tree. The results of this comparison are shown in Fig. 16. 
The new algorithm takes approximately 20 s to process a 
subscore tree with four levels and 66 leaf metrics that is 
comparable to applying the original boundary identifi-
cation algorithm to nine metrics simultaneously. Apply-
ing the original boundary identification technique to all 
66 leaf metrics simultaneously takes approximately 2 h. 
Thus, this new approach for analyzing all the score ele-
ments simultaneously takes 200-fold less time than our 
prior approach.

CONCLUSIONS AND FUTURE WORK
This article introduces a hierarchical approach for 

evaluating an AUT’s performance and how uncertainty 
in that performance affects the RAPT framework. By 
focusing on continuous metrics rather than binary suc-
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Figure 16. Timing comparison of the subboundary algorithm and previous algorithm. Left, Bar chart showing the time to cluster a 
30,000 data set for increasing numbers of subscores, with the new technique on the far right. Right, Line plot showing the time to clus-
ter a data set for increasing numbers of samples. The new subclustering process is collinear with the results for clustering seven scores 
simultaneously.
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