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ABSTRACT
The NASA Van Allen Probes (previously known as Radiation Belt Storm Probes, or RBSP) mission 
addresses how populations of high-energy charged particles are created, vary, and evolve in space 
environments, specifically within Earth’s magnetically trapped radiation belts. The Probes were 
launched 30 August 2012 and comprise two spacecraft making in situ measurements for the past 
several years in nearly the same highly elliptical, low inclination orbits (1.1 × 5.8 RE , 10°). The initial 
orbits are slightly different so that one spacecraft laps the other spacecraft about every 67 days, 
allowing separation of spatial from temporal effects over spatial scales ranging from ~0.1 to 5 RE. 
The uniquely comprehensive suite of instruments, identical on the two spacecraft, measures all of 
the particles (electrons, ions, ion composition), fields (E and B), and wave distributions (dE and dB) 
needed to resolve the most critical science questions. Summarized in this article are the high-level 
science objectives for the Probes mission, examples of the radiation belts’ most compelling scien-
tific mysteries that motivated the mission, and the mission design that targets these mysteries and 
objectives. The instruments that are now working to deliver these measurements are also addressed.

to characterizing their properties for engineering and 
space environment applications. The belts are known to 
be highly hazardous to satellites and astronauts.

In the early 1990s, several observations revealed 
that the behavior of Earth’s radiation belts was far more 
dynamic and interesting than previously thought. Spe-
cifically, the observations of the Air Force Combined 
Release and Radiation Effects Satellite (CRRES) mis-
sion, flying in a highly elliptical geosynchronous trans-
fer orbit, revealed the sudden creation of a brand-new 
radiation belt that filled the electron slot region (Fig. 1; 
Ref. 8), caused by a coronal mass ejection from the Sun. 
Also in the early 1990s, NASA’s Solar, Anomalous, and 

INTRODUCTION
It has now been more than 50 years since observa-

tions from the first spacecraft in the late 1950s were 
used to discover the radiation belts and reveal their basic 
configuration.1,2 Those discoveries led to an explosion 
of investigations into the nature of the belts over the 
next two decades, including studies of the behavior 
of the transient belts created artificially with nuclear 
explosions.1,3,4 Textbooks like those written by Hess,5 
Roederer,6 and Schulz and Lanzerotti7 captured the fun-
damental physics of the radiation belts discovered during 
the first decade of study. By the mid-1970s, interest in 
studying the radiation belts had dwindled, and those 
who continued to work on the belts shifted their focus 
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Magnetospheric Particle Explorer (SAMPEX) mission 
launched into a low-altitude polar orbit with the sci-
ence goals of studying cosmic rays, radiation belts, and 
other energetic particles.9 The extended SAMPEX mis-
sion, two decades long and still ongoing, has enabled 
studies of the dynamics of the low-altitude, high-lat-
itude extensions of Earth’s radiation belts. SAMPEX 
revealed that the radiation belts change dramatically 
over multiple timescales for reasons that are not always 
readily apparent.

These scientific findings and uncertainties, and the 
fact that Earth’s radiation belts pose such a serious threat 
to satellites and astronauts, led NASA, as a part of its 
Living With a Star (LWS) program, to develop the con-
cept of the science mission originally called the Radia-
tion Belt Storm Probes (RBSP). After launch in 2012, 
the name of the mission was changed to the Van Allen 
Probes to honor a key individual responsible for the dis-
covery of the radiation belts.

The science objectives for the mission were first 
articulated by the NASA-sponsored Geospace Mission 
Definition Team (GMDT) report published in 2002.10 
They were refined in the payload announcement of 
opportunity issued in 2005. They were finalized in the 
RBSP program-level (level 1) requirements document 
signed by NASA’s associate administer for science in 
2008. The fundamental objective of the mission is to 
provide understanding, ideally to the point of predict-
ability, of how populations of relativistic electrons and 
penetrating ions in space form or change in response to 
variable inputs of energy from the Sun. The principal 
concern regards those particles that can penetrate the 
walls of spacecraft and other vehicles in Earth’s space 
environment.

This broad objective is parsed into three overarching 
science questions:

1. Which physical processes produce radiation belt 
enhancements?

2. What are the dominant mechanisms for relativistic 
electron loss?

3. How do ring current and other geomagnetic pro-
cesses affect radiation belt behavior?

The Van Allen Probes have now been in orbit for 
more than 3 years and are making great progress in 
answering these questions.11 The purpose of this article 
is to provide the background and context for these over-
arching questions and to reveal the most compelling 
scientific issues regarding the behavior of the radiation 
belts. We describe how these questions motivated the 
development of the Van Allen Probes and how the char-
acteristics and capabilities of the Probes enable the reso-
lution of the outstanding issues. A much more extensive 
exposition of these materials is provided by Mauk et al.12

RADIATION BELT SCIENCE MYSTERIES
After more than 50 years of study, we know a lot 

about Earth’s radiation belts. Many of the fundamental 
processes that control radiation belt behaviors have been 
studied both observationally and theoretically. However, 
we are still far from having a predictive understanding 
of the radiation belts. We do not fully understand the 
complexity of how the various processes combine to pro-
duce different radiation belt configurations or the char-
acteristics and complex behaviors of some of the specific 
mechanisms. In this article we provide some illustrative 
examples of selected scientific mysteries regarding the 
behaviors of Earth’s radiation belts.

As to the continuing mysteries of radiation belt 
dynamics, it has long been conventional wisdom that 
the radiation belts dramatically intensify in association 
with geomagnetic storms. Such storms are often created 
by the impact of solar coronal mass ejections with Earth’s 
magnetosphere and also the passage of high-speed solar 
wind streams. The north-south orientation of the inter-
planetary magnetic field also plays an important role. 
Storms last for one to several days, occur roughly a dozen 
times a year, and cause dramatic increases in the flux of 
hot ion populations at geocentric distances between 2 
and 6 RE. Currents associated with these “ring current” 
ion populations distort inner magnetospheric magnetic 
fields and depress equatorial magnetic fields on Earth’s 
surface. The storm time disturbance (Dst) index, a 
measure of these magnetic field depressions, is gener-
ally taken to provide a direct measurement of the ring 
current energy content according to the Dessler-Parker-
Sckopke relationship;14,15 however, there are caveats.16

Reeves et al.17 published a now classic paper that 
showed that radiation belt responses to storms can con-
tradict conventional wisdom. At times Earth’s outer 
radiation belt populations do increase during mag-
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Figure 1. CRRES spacecraft observation of the creation of a new 
electron radiation belt that filled the slot region between 2 and 
3  RE (Ref.  8; figure discussed by Hudson et al.13). The new belt 
(bright red) is thought to be the result of an interplanetary shock 
wave impinging on Earth’s magnetosphere.
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netic storms (accompanied by decreases in Dst), but at 
other times they remain largely unchanged by magnetic 
storms or even decrease dramatically (Fig. 2). We do not 
know why the outer electron belt responds so differently 
during individual magnetic storm events, and these 
results highlight our lack of predictive understanding 
about radiation belts.

The work performed in conjunction with and after 
the CRRES and SAMPEX missions convinced the sci-
entific community that it is far from having a predictive 
understanding of the behavior of Earth’s radiation belts.

Energization (Quasi-Linear and Nonlinear)
Radiation belt particles have higher energy than they 

“should” have. For example, in Earth’s magnetic field 
environment, the magnetosphere reconfigures con-
stantly with different solar wind drivers. Simplistically, 
a particle contained within the magnetosphere would 
vary in energy predictably in relation to the particle’s 
surrounding magnetic field (i.e., in a magnetically reg-
ulated fashion referred to as energization via adiabatic 
invariants). However, the particle behaves in a much 
more complicated fashion.

One might assume that Earth’s radiation belts result 
from the transport of electrons that populate Earth’s 
comet-like magnetic tail into the inner magnetosphere 
in a fashion that conserves the first and possibly the 
second adiabatic invariants, those associated with 
gyration and bounce motion. Conservation of the first 
adiabatic invariant requires the energies of core and 
tail populations to increase by a factor of perhaps 40 
as particles are transported Earthward from regions in 
the magnetotail where magnetic field strengths are on 
the order of 5 nT to regions of the inner magnetosphere 
where field strengths are on the order of 200 nT.

However, recent results indicate that adiabatic 
energization of plasma populations is not sufficient to 
account for the >1 MeV component of Earth’s outer 
electron radiation belt (see Fig. 3 and Ref. 18). We have 

also learned that at least some of that unaccounted-for 
energization occurs within the regions of the radiation 
belts themselves.19

And so the question remains: how does that addi-
tional energization of the radiation belt populations 
come about?

One possibility is that the particles gain energy by 
interacting with plasma waves in the magnetosphere. 
Quasi-linear interactions with whistler mode plasma 
waves may provide the additional energization, effec-
tively by transferring energy from low- to high-energy 
electrons.20–22 Whistler waves that propagate parallel to 
the magnetic field establish a cyclotron resonance with 
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Figure 2. Variable responses of Earth’s outer electron belt (top of each panel) to magnetospheric storms as diagnosed with the Dst 
parameter (bottom). (Adapted from Ref. 17.)
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Figure 3. Comparison between CRRES-measured electron spec-
tra during a very strong magnetic storm with the maximized 
expectations from the most intense spectra observed within the 
magnetotail (R = 11 RE) after transporting the magnetotail spec-
tra adiabatically to the measurement position by conserving the 
adiabatic invariants of gyration and bounce. The different-col-
ored lines refer to different initial pitch angles (angles of the par-
ticle velocity vectors with respect to the local magnetic field). The 
adiabatically transported spectra cannot explain the >1 MeV por-
tion of the spectra measured within the inner magnetosphere. 
(Reproduced from Ref. 18.)
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gyrating electrons. This process represents a quasi-linear 
mechanism of transporting energy from low- to high-
energy particles.23 The timescale for high-energy par-
ticle energization via this mechanism has been modeled 
and compared with observed energization timescales, 
and a reasonable match has been achieved.22 However, 
this and other hypotheses need further testing. In view 
of recent observations (Ref. 24) and theoretical stud-
ies (Refs. 25 and 26), the role of large amplitude waves 
interacting in a highly nonlinear fashion with the parti-
cles must be considered. Theoretical modeling indicates 
that other wave modes, for example the so-called fast 
magnetosonic waves,27 must also be considered. Figure 4 
shows the regions in which the various proposed wave 
interactions are thought to occur.28 Understanding 
how and when particles are locally accelerated is very 
important for understanding how the radiation belts are 
formed and maintained.

The ultimate sources of radiation belt electrons are 
the ionosphere and the solar wind. Ionospheric electron 
temperatures are less than 0.1 eV. Temperatures of the 
core population in the solar wind are on the order of 
10 eV, whereas temperatures of the halo (heated) popu-
lation in the solar wind are on the order of 60 eV.29,30 
Auroral and related magnetospheric interaction pro-
cesses extract and energize ionospheric electrons, pro-
viding them to the outer magnetosphere (generally at 
distances beyond 9 RE) at energies ranging from one to 
tens of kilo-electronvolts. Processes occurring at Earth’s 
bow shock and magnetopause both energize and trans-
port electrons into the magnetosphere. Processes occur-
ring within Earth’s magnetic tail may then accelerate 

electrons of both ionospheric and solar wind origins 
still further. One such process, called magnetic recon-
nection, is thought to occur when magnetic field lines 
connected to both Earth and the solar wind “break” and 
become connected only to Earth. The resulting plasma 
sheet populations have temperatures of order 5 keV but 
often exhibit very substantial high-energy tails in their 
energy distribution.31

The purpose of these examples is to specifically con-
front the long-standing notion that developing a predic-
tive understanding of Earth’s radiation belts is simply 
one of characterization or modeling. On <1-h timescales, 
dynamic events called substorm injections are thought 
to only modestly perturb the distribution of mega-
electronvolt-class electrons in the outer radiation belts. 
Substorms are transient releases of magnetic energy that 
occur on timescales much shorter than (hour) those 
associated with magnetic storms (day). Their impor-
tance has traditionally been viewed as helping in the 
transport of the source populations, specifically by pro-
viding a “seed” population for the subsequent transport 
and energization that occurs during the generation of 
the radiation belts.32–34

Evidence suggests that substorms are critical to the 
fundamental processes that energize radiation belt elec-
trons.35 Substorms may even increase radiation belt 
intensities while storms reduce intensities.36 Substorm 
injections disturb the structure of medium-energy elec-
tron pitch angle distributions, making them highly 
conducive to the generation of strong whistler/chorus 
mode emissions. The waves in turn can accelerate the 
higher-energy electrons in the manner described in the 

discussion above. The evidence 
in favor of this scenario is based 
on observed correlations between 
magnetic storms and substorms as 
diagnosed with magnetic indices 
(Dst, Kp, Ap, etc.), observations of 
whistler/chorus mode emissions, 
and observations of radiation belt 
intensities over a wide range of 
energies and extended periods of 
time. It is of interest that a simi-
lar scenario has been proposed for 
Jupiter’s dramatic radiation belt.27

Because we are so uncertain 
about the role of substorms in 
the processes of transporting par-
ticles from the magnetotail to the 
middle and inner magnetosphere, 
much work remains to be done in 
testing the ideas discussed above 
and in generally understanding 
the role of substorms in the gen-
eration of Earth’s radiation belts.
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Figure 4. A now standard schematic of the regions of the influence of plasma waves on the 
radiation belts. (Reproduced from Ref. 28.)
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Loss
What causes the dramatic, sudden, large-scale 

dropout of radiation belt particles as near to Earth as 
L = 4 RE? These losses are distinct from the losses associ-
ated with the so-called slot region that occurs closer to 
Earth (2.5 RE).

Closely related to the issue of the variable responses 
of the radiation belts to magnetic storms are the sur-
prising observations of very sudden dropouts of particle 
fluxes in the outer electron radiation belt for L values 
as close to Earth as 4 RE. Su et al.37 have modeled sev-
eral particular dropouts as amalgamations of multiple 
processes acting simultaneously, all making significant 
contributions. The processes included are magneto-
pause shadowing, adiabatic transport, radial diffusion, 
and wave-particle scattering losses associated with the 
so-called plasmaspheric plumes (comprising losses due 
to electromagnetic ion cyclotron waves and whistler 
hiss waves). Multiple processes (magnetopause shadow-
ing and wave scattering) were also invoked by Millan et 
al.38 to explain a similar depletion; such was the basis of 
the Balloon Array for RBSP Relativistic Electron Losses 
(BARREL) arctic balloon campaign39 to be selected and 
integrated into the Van Allen Probes mission.

For another observed depletion, Turner et al.40 
invoked magnetopause shadowing followed by modeled 
outward radiation diffusion. A common element in all 
of the most recent proposed ideas is the robust partici-

pation of magnetopause shadowing, whereby initially 
closed magnetic drift paths encounter the magnetopause 
because of changes in the global magnetic field configu-
ration. Ukhorskiy et al.41 have shown that the partial 
ring current can distort trajectories in the middle mag-
netosphere to a greater extent than previously appreci-
ated, even to the extent of generating isolated drift path 
islands (Fig. 5). These strong distortions can substan-
tially enhance the magnetopause shadowing losses. This 
idea remains highly controversial, and it and other ideas 
need to be tested with a mission like Probes that can 
separate spatial from temporal processes.

Although they were seemingly dismissed in the pre-
vious discussions, major storm and substorm reconfigu-
ration with its attendant acceleration or deceleration is 
extremely important in distributing energetic particles 
within (and without) Earth’s magnetosphere.

The uncertainties about the configuration of the 
global electric field configuration, and whether or not 
enhanced global electric fields move magnetotail plasma 
sheet particles Earthward during geomagnetic storms, 
raised the importance of establishing the fundamental 
role that substorm injections may play in the transport 
of particles to the middle and inner magnetosphere. The 
relative importance of that role needed to be explored 
and resolved.

SCIENCE PLAN/SUMMARY
The high-level objectives of the Probes mission artic-

ulated above are specific enough to invite the generation 
of testable hypotheses. The Probes mission design has 
many of the capabilities needed to discriminate between 
and test these hypotheses. Most critical is the Probes’ 
ability to perform simultaneous multipoint sampling 
over a broad spectrum of spatial and temporal scales, 
combined with extremely capable and highly coordi-
nated instrumentation. These capabilities will enable 
researchers to discriminate between time and space 
variations. Key elements of the Van Allen Probes design 
are as follows:

•	 It comprises two identically instrumented spacecraft.

•	 The two spacecraft are in nearly identical orbits with 
perigee of ~600 km altitude, apogee of 5.8 RE geo-
centric, and inclination of 10°. These orbits allow 
the Probes to access all of the most critical regions 
of the radiation belts.

•	 The lines of apogee for the two spacecraft precess 
in local time at a rate of about 220° per year in the 
clockwise direction (looking down from the north). 
The 2-year nominal mission lifetime (~4 more years 
of expendables are available) allows all local times 
to be studied. By starting the mission with lines of 
apogee at dawn (a program-level mission require-
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Figure 5. A model of magnetic configurations that accompany 
the evacuation of the outer radiation belts based on partial ring 
currents that are stronger than anticipated. The partial ring cur-
rent is strong enough to generate topological changes in the 
electron drift orbits. The contours show drift orbits and the colors 
indicate perturbations in the night-day component of the mag-
netic field (Bx). (Reproduced from Ref. 41.)
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ment), the nightside hemisphere will be accessed 
twice within the nominal 2-year mission lifetime.

•	 Slightly different (~100 km) orbital apogees cause 
one spacecraft to lap the other every ~67 days, cor-
responding to about twice for every quadrant of the 
magnetosphere visit during the 2-year mission.

•	 Because the spacecraft lap each other, their radial 
spacing varies periodically between ~100 km and 
~5 RE, and resampling times for specific positions 
vary from minutes to 4.5 h.

•	 The orbital cadence (9-h periods; an average of 
4.5 h between inbound and outbound sampling for 
each spacecraft) is faster than the relevant magnetic 
storm timescales (day).

•	 The low inclination (10°) allows for the measure-
ments of most of the magnetically trapped particles, 
while the precession of the line of apogee and the 
tilt of the Earth’s magnetic axis enable nominal sam-
pling to magnetic latitudes of 0 ± 21°.

With all of these capabilities, one may compare the 
timescales for the generation of local particle accelera-
tion features with the theoretical expectations based on 
the measurements of the static and dynamic fields. With 
such capabilities, one may measure, rather than just 
infer, the gradients that generate currents and the gra-
dients that reveal electric potential distributions. With 
the capabilities of the Probes’ instrumentation, one may 
determine the detailed characteristics of resonant inter-
actions between particles and waves.

An important element in achieving some of the sci-
ence objectives is the use of sophisticated models and 
simulations to place the Probes’ multipoint measure-
ments into the broader 3-D picture. Strong coordination 
among data analysts and model builders is described in 
each of the investigation reports in a special volume of 
Space Science Reviews (volume 179, 2013).

The papers cited in the special volume describe the 
instrument investigations for the Energetic Particle, 
Composition, and Thermal Plasma suite (ECT); the 
Electric and Magnetic Field Instrument Suite and Inte-
grated Science (EMFISIS); the Radiation Belt Storm 
Probes Ion Composition Experiment (RBSPICE); the 
Electric Field and Waves Instrument (EFW); and the 
Relativistic Proton Spectrometer (RPS) investigations. 
These instruments cover enormous parameter ranges. 
These papers describe in various degrees the science 
objectives of the individual team investigations; the 
science teams involved; the data processing, analysis, 
and archiving plans; the role of theory and modeling 
in resolving the targeted science issues; and the role 
of modeling in synthesizing the two point measure-

ments that are made possible by the Probes’ instrument 
investigations.

As the reader can fully assess, the discovery and 
subsequent research of Earth’s radiation belts produced 
both understanding and more mysteries. As one may 
suspect, such a dangerous environment has hitherto 
been observed minimally, but it is important because 
it impacts electronics, as well as the longevity and per-
formance of vital platforms. The important myster-
ies involve the radiation belt’s intensity, location, and 
dynamics. These parameters are known only climati-
cally with sporadic and far-too-averaged input.

The common theme in all precedents, publications, 
books, and journals concentrates on the dynamics and 
absolute levels of the belts in all aspects—size, loca-
tion, intensity energy content, radiation equivalent, 
dosage, acceleration, and losses. Awareness about radia-
tion began with its discovery by James Van Allen with 
Explorer 1 in 1958, but also with nuclear explosion tests 
that produced long-living, artificially created radiation 
belts (e.g., Starfish in July 1962). The most noticeable 
U.S. experiment, because of the power of the weapon 
and the altitude at which it was exploded, was the Star-
fish Prime experiment, which led to the formation of 
enhanced flux zones in the inner belt between 400 and 
1600 km and beyond. The USSR experiments are not 
well documented, but it is believed that they contributed 
to flux enhancements in the outer belt. These modified 
fluxes finally extended in all the radiation belt regions 
and were detectable as late as the early 1970s. In some 
zones of the inner electron belt, fluxes increased by a 
factor of 100. Electrons from the Starfish blast domi-
nated the inner belt fluxes for 5 years. These artificial 
fluxes delayed the study of representative natural radia-
tion belt models, and Starfish artifacts are present in 
some zones of the AE8 and AP8 models in use today.

The Van Allen Probes have achieved their 2-year 
baseline mission and have been extended into the 
declining phase of the present solar cycle; the declin-
ing phase very often results in increased geomagnetic 
activity. The Probes’ high-resolution and comprehensive 
instrumentation will continue to unravel the mysteries 
of Earth’s radiation belts. The Van Allen Probes mis-
sion is concentrating on a limited but universal region 
of Earth’s magnetosphere. Our solar system, our galaxy, 
and all galaxy systems have mysterious physical processes 
that escape our current understanding. Improving this 
understanding is critically important to the advance-
ment of science but also to the ultimate goal of being 
able to predict the space environment and conditions.
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