
Model-Based Design for a Netted ISR Concept

Johns Hopkins APL Technical Digest, Volume 33, Number 1 (2015), www.jhuapl.edu/techdigest 23

Model-Based Design for Affordability of
a Netted Intelligence, Surveillance, and
Reconnaissance Concept

K. Dewayne Brown, Mary Beth A. Chipkevich, Robert J. Bamberger,
Tam-Thanh C. Huang, Mark A. Matties, James D. Reeves, and Christopher A. Rouff

ABSTRACT
This article highlights the critical importance of systems engineering methodology and its
influence on downstream outcomes in complex engineering concepts. It makes a development
case for complex systems of systems that contrasts netted with traditional intelligence,
surveillance, and reconnaissance. Model-based systems engineering methods supported by
development infrastructure can significantly impact the life-cycle affordability of complex
systems of systems. The long-standing systems engineering practices of the Johns Hopkins
University Applied Physics Laboratory (APL), the International Council on Systems Engineering,
and the Open Group Future Airborne Capability Environment Consortium, as well as the
objectives for projects such as the Defense Advanced Research Projects Agency Air Dominance
Initiative, provide context for an APL brand of model-based methods. This article introduces
an APL model-based systems engineering methodology within an integrated development
environment and discusses the methodology in the context of a netted intelligence, surveillance,
and reconnaissance concept.

BACKGROUND
The overall complexity of national security and oper-

ational warfare is increasing.1 Complexity of the systems
of systems (SoS) needed to deliver mission capability is
also increasing, particularly with regard to the amount of
information exchanged, the degree of interaction among
battle force units, and the battlespace environment.2
Concurrently, DoD budgets are trending downward.1
Affordability is the new number one threat to develop-
ing, delivering, integrating, and sustaining needed capa-
bilities.3 The DoD has recognized the need to reduce
life-cycle costs early in the development of concepts and
capabilities, as evidenced by various studies and initia-
tives (see Fig. 1).

INTRODUCTION
More than 70% of program life-cycle costs are deter-

mined in the concept engineering phases. A model-
based systems engineering (MBSE) methodology,
integrated development environment (IDE), and systems
engineering (SE) infrastructure provide engineers the
capability to cost-effectively explore, model, prototype,
and validate concepts. A case study for intelligence, sur-
veillance, and reconnaissance (ISR) concept engineer-
ing piloted use of this capability, and it was determined
that one concept was more affordable (in terms of life-
cycle costs) and rapidly realizable (in terms of develop-
ment time lines) than an alternative concept.

http://www.jhuapl.edu/techdigest

K. D. Brown et al.

Johns Hopkins APL Technical Digest, Volume 33, Number 1 (2015), www.jhuapl.edu/techdigest24

MOTIVATION
Applying SE practices provides necessary structure

throughout the life cycle of a system. Supporting model-
based infrastructure enables effective management of
performance, schedule, and cost over significant portions
of the concept-development life cycle, including explo-
ration, verification, and validation. Models facilitate
efficient expression of system requirements, structure,

behavior, and function along with rapid communication,
distribution, and functional decomposition of complex
systems. Model-based methods enable effective, rapid,
and low-cost decisions to be made among alternatives
when engineering a complex SoS. In this case study,
application of a model-based methodology demonstrates
the ability of these methods to significantly impact the
life-cycle affordability of ISR concepts.

Figure 2. A maritime interdiction scenario.

The Reality...

—GEN DEMPSEY, CJCS
Testimony to SASC, 12 Feb 2013

$800

$700

$600

$500

$400

$300

$200

$100

$0

Korea Vietnam Reagan Buildup/
Cold War

OEF/OIF

65-year Average
= $477BActual

65-year Avg.
PB13 Projection
Sequestration Projection
Historical Trough Projection

19
48

19
51

19
54

19
57

19
60

19
63

19
66

19
69

19
72

19
75

19
78

19
81

19
84

19
87

19
90

19
93

19
96

19
99

20
02

20
05

20
08

20
11

20
17

19
96

20
14

20
20

C
Y

13
 $

 in
 B

“Our current security challenges are more formidable and
complex than those we faced in downturns following Korea,
Vietnam, and the Cold War. There is no foreseeable ‘peace
dividend’ on our horizon.”

Figure 1. Battlespace complexity and affordability. [Right image from G. Boltz (APL) and left from Ref. 1.]

http://www.jhuapl.edu/techdigest

Model-Based Design for a Netted ISR Concept

Johns Hopkins APL Technical Digest, Volume 33, Number 1 (2015), www.jhuapl.edu/techdigest 25

THE ISR CASE: THE CHALLENGE
Warfighters need a capability to command and oper-

ate an ISR SoS more effectively and affordably than they
can today. Tasking–collection–processing–exploitation–
dissemination (TCPED) is a process that uses an SoS
during military operations to achieve ISR mission objec-
tives determined by commander’s intent. The tasking–
collection (TC) portion of TCPED encompasses actions
and decisions related to planning for, tasking of, and
operation of systems that contribute to ISR mission
objectives. The increasing number and diversity of ISR
assets as well as competing ISR mission requirements
challenge the effectiveness of existing doctrine, pro-
cesses, and systems to command and manage the use of
ISR platforms and sensors.4, 5 The volume and multiple
modalities of sensor data can overwhelm the processing–
exploitation–dissemination (PED) portion of TCPED.5

“As-is” traditional ISR SoS TCPED processes have
time-consuming and manpower-intensive TC and PED
activities and require high-bandwidth reachback com-
munications. As-is TC requires mission control opera-
tors at ground control stations or on manned airborne,
surface, or subsurface platforms to perform sensor con-
trol and platform control of assigned “stovepiped” ISR

assets in a reactive rather than a predictive manner.
This reduces time available to properly respond to a
situation and suboptimizes overall ISR SoS perfor-
mance. As-is PED involves transfer of raw sensor data
via reachback communications to intelligence commu-
nity facilities. Analysts use available systems at these
locations to process, exploit, and disseminate fused
intelligence products for use by command-and-control
decision makers.

In dense battlespace environments and with increas-
ingly complex SoSs, synchronization among nodes in
the SoSs operated by naval, joint, and coalition forces
requires timely and tight coupling with operations, tar-
geting, and intelligence operational doctrine to deliver
the ISR targeting information necessary to support weap-
ons planning.5, 6 This is particularly true for dynamic
targeting scenarios. As-is TCPED with traditional ISR
SoSs does not provide the required timely coordination
and reporting between operational processes and nodes/
capabilities.2, 4, 5

Figures 2 and 3 show notional scenarios for mari-
time interdiction and anti-access/area-denial maritime
dynamic targeting, which provide operational context
with communications, threat detection tracking, classifi-
cation, and other challenges for the netted ISR concept.

Figure 3. Anti-access/area-denial maritime dynamic targeting scenario.

http://www.jhuapl.edu/techdigest

K. D. Brown et al.

Johns Hopkins APL Technical Digest, Volume 33, Number 1 (2015), www.jhuapl.edu/techdigest26

THE ISR CASE: NETTED ISR CONCEPT
The concept of a “to-be” TCPED-centric netted ISR

SoS is an alternative to the present as-is ISR architec-
ture. A TCPED-centric netted ISR SoS enables the
warfighter to command a collaborative sensor fusion
capability and optimally, reliably, and locally control
actions and decisions for each node; it also increases the
ability of the SoS accomplish missions and tasks. Data
fusion (e.g., PED), previously completed in central loca-
tions, now occurs on sensor platforms. It uses organic
and remote sensor data, increasing resiliency in degraded
communications environments. Data fusion also occurs
at data fusion centers specified by the commander.
Constellation-wide sensor resource allocation (e.g., TC)
occurs on both platforms and among operational com-
mands designated by the commander to optimize data
collection. The output of data fusion is fed back nearly
instantaneously as input to sensor fusion. The netted
ISR concept is enabled by end-to-end connectivity with
quality of service that allows in-degree nodes of the SoS
to assuredly share relevant information.

With netted ISR, command, sensor fusion, and data
fusion capability is allocated to functional elements on
segments that distribute across physical nodes in the
SoS. Segments are a collection of functional elements.
The expected role of each node determines the extent
to which each segment is instantiated on the node. The
designated role of each node for a specific operational
mission determines the extent to which the instantiated
segments are used on each node. As such, the netted ISR
concept is extensible to platforms with varying space,
weight, and power constraints; scalable to a very large
number of connected nodes; and adaptable to a range of
collaborative behaviors (e.g., nodes behaving as individ-
ual contributors, as neighbors, as a community, or with
a swarm identity).

Functional elements of command include the abil-
ity to collaborate, translate the commander’s intent
into measures allocated to tasks and objectives, assess
the performance of the SoS and infer achievement of
the commander’s intent, decide the priority of mission
requirements to achieve the commander’s intent, and
assign mission requirements to ISR assets.

Functional elements of sensor fusion include the
ability to infer sensor collection needs, decide and task
sensor data collections and platform movement, skew
sensors, move sensor platforms, collect sensor data, and
share sensor data.

Functional elements of data fusion include the ability
to receive and prepare sensor data for processing; screen
sensor data; share relevant sensor data; perform processing
to detect objects, track hostiles, precisely track hostiles,
track all objects, classify targets, and determine intent of
targets; develop object/target reports; share object/target
reports; and maintain an ISR data repository.

Implementation of data fusion includes data con-
ditioners, screening components specialized to multi-
intelligence and multi-modality sensors, fusion
components that perform data association, kinematics
state estimation, class estimation, and data association.
The data fusion approach exploits complementary attri-
butes of diverse sensor phenomenology/geometries and
data collected over time to maintain a low system-level,
post-correlation false-alarm rate. Output conditioning
prepares and disseminates fusion output (e.g., action-
able information, target reports, and target nomination
reports) at achievable data transmission rates.7

Implementing sensor fusion will include automated
components that coordinate and synchronize ISR sensor
platforms as an integrated unit to continuously maxi-
mize aggregate net fused information gain and adju-
dicate tasking among competing priorities across the
entire search volume and all targets, as well as over a
configurable finite planning time horizon.8

Implementing command of a netted ISR SoS will
involve automation that shifts much knowledge and
inference functionality performed by operators in the
cognitive domain to processors in the logical domain.
Collaborative cognition will occur between warfighters
and the command capability of the netted ISR SoS. The
netted ISR command functional element will provide
the capability to reliably optimize responses to emergent
behaviors associated with SoS complexity;9 relate those
responses to commander’s intent, battlespace complex-
ity, cognitive parameters, and decision policies estab-
lished in doctrine; and synchronize the information,
social, cognitive, and physical domains of battlespace
management command and control.10

The concept of netted ISR and its collaborative
command, sensor fusion, and data fusion capability
aligns well with the Navy Information Dominance Road-
map, which states, “Battlespace Awareness will require
enhanced information content, advanced means to rap-
idly sense, collect, process, analyze, evaluate and exploit
intelligence regarding our adversaries and the operating
environment.”11

Netted ISR Reference Architecture
To facilitate SE of the netted ISR concept, a refer-

ence architecture was developed, as depicted in Fig. 4.
The reference architecture is intended to guide and
frame architecture and solution development. There
are sensor, command, and fusion segments, which are
instantiated on nodes that distribute across an SoS and
interconnect by a heterogeneous network.

All node types have a multiprocessing hardware archi-
tecture. The processors can be subdivided into non-real-
time and near-real-time types. Software that is event
driven, such as user/mission applications and higher-level
networking services (application, presentation, session,

http://www.jhuapl.edu/techdigest

Model-Based Design for a Netted ISR Concept

Johns Hopkins APL Technical Digest, Volume 33, Number 1 (2015), www.jhuapl.edu/techdigest 27

transport, and network OSI [Open System Interconnec-
tion] layers), are hosted on the non-real-time processors,
such as general-purpose processors and/or graphic proces-
sor units. The software architecture can be partitioned
into two broad groups. Software that is near real time,
such as lower-layer networking services (data and physi-
cal OSI layers), is hosted on near-real-time processors,
such as digital signal processors or field-programmable
gate arrays. The software architecture can be partitioned
into user/mission applications and services such as local
core, networking, and communication. The local core,
networking, and communication services enable applica-
tions to execute the mission and interact with any node
distributed in the SoS and across all segments of the
SoS. User/mission applications are specific to each type
of segment. For instance, sensor segments host sensor
interfaces, whereas the command segment hosts user
interfaces and fusion segments host data-repository inter-
faces. This reference architecture is modular and scalable,
which facilitates rapid integration of innovative technol-
ogy, legacy design reuse, and interoperability between
diverse functional platforms and heterogeneous networks.

Case Study Approach: Netted ISR Model-Based Design
for Affordability

With the ISR challenge defined, operational context
provided, and initial netted ISR concept and reference
architecture developed, the SE challenge is to validate
that the netted ISR concept can realize the needed ISR
capability more affordably and rapidly than the tradi-
tional ISR of today.

Resource constraints on the MBSE methodology
development were a 4-month schedule and eight part-
time subject-matter experts. The study team focused
on design for affordability of the netted ISR concept
and performed one innovation cycle using the MBSE
methodology and SE infrastructure. The approach
included modeling and analysis of ISR performance
for an operationally relevant scenario as well as rapid
development of an ISR network model, which enabled
efficient exploration of both the traditional and netted
ISR concepts. The network model was central to rapidly
establishing ISR prototypes of both the traditional
and netted concepts. Preliminary verification tests
demonstrated performance of the ISR concepts. A cost
model was developed and used to assess the affordability
of both concepts.

Results of Netted ISR Case Study
Results from one innovation cycle of the concept

engineering phase showed that the netted ISR concept
directly improved the affordability and effectiveness of
ISR. Preliminary verification tests for one scenario dem-
onstrated that the netted ISR concept required 30%
fewer sensor platforms and at least 25% fewer opera-
tors than the traditional ISR model. Netted ISR can
reduce operational costs and reduce the number of assets
needed to perform ISR. Cost modeling and affordability
analysis showed significant, compounded life-cycle sav-
ings with the netted ISR concept compared to the tra-
ditional concept, especially as the battlespace becomes
more complex.

Local core services

Command applications

Network services
Communications services

Network services
Communications services

Hardware

Command segment ∑in (n = 1, 2,..., N)
Hetero-
geneous
network

Task
sensors

Local core services

ISR fusion applications

Hardware

Fusion segment ∑ip (p = 1, 2,..., P)

Task
platforms

Decide Infer Translate
intent

Sensor
data

fusion
Sensor
fusion

Common
operating
pictureISR

repository

Network services
Communications services

Hardware

Local
sensor
fusion

Sense segment ∑im (m = 1, 2,..., M)

Local sensor data fusion
applications

Platform
control

subsystem

Sensor
subsystem
Sensor 1
Sensor N

Platform
manager

Sensor
manager

Local core services

Task
weapons

Figure 4. Netted ISR reference architecture.

http://www.jhuapl.edu/techdigest

K. D. Brown et al.

Johns Hopkins APL Technical Digest, Volume 33, Number 1 (2015), www.jhuapl.edu/techdigest28

This case study made use of an MBSE methodology,
IDE, and SE infrastructure to design for affordability as
part of a 4-month concept engineering phase of a com-
plex SoS. The remainder of this article describes the
Johns Hopkins University Applied Physics Laboratory
(APL) MBSE methodology, IDE, and SE infrastructure
used for this case study and its relevance to supporting
and influencing SE over the life cycle of a system.

APL SE Process
Implementation of the netted ISR architecture

requires an effective balance of scientific and engineer-
ing principles, performance, requirements, and sponsor
program constraints. This is a classical SE challenge.
The APL SE loop,12 which has matured over decades,
is shown in Fig. 5, and the major phases used to solve
national and international critical SE challenges are
described in Table 1. Every step produces knowledge
and experience, which is fed back into subsequent spi-
rals. The APL SE process is mature and proven and has
informed the development of the APL MBSE IDE.

INCOSE MBSE
MBSE provides a methodology to more effectively

manage the SE challenge at lower cost and shorter
development cycles. The International Council on Sys-
tems Engineering (INCOSE) has developed an MBSE
methodology,13 which is shown in Fig. 6. This diagram
highlights how models are central to this methodol-
ogy. The Integrated System Model is a repository for
all knowledge about the system (aiding in communica-
tion and collaboration). Capability and product archi-
tectures, along with design, verification, and validation
testing, are derived from the Integrated System Model.
This results in consistency, which improves maintain-
ability and reduces ambiguity. Requirements traceability

Systems Engineering

 Critical
needs

Capability
 assessment

 Solution
validation

Solution
 implementationDeployment

Concept exploration

Figure 5. APL SE process. (Reprinted from Ref. 12.)

Table 1. APL SE Process

Process Step Description

Critical needs Operational/mission data analysis is con-
ducted, focused on establishing concept feasi-
bility and exposing critical needs.

Capability
assessment

Existing systems are evaluated to determine
whether they can meet the need or whether a
new capability development is required.

Concept
exploration

Alternative candidate concept designs, models,
and analyses are completed. Trade analysis
enables effective down-selection to a best con-
cept based on any number of metrics, such as
performance, efficiency, economy, risk, utility,
or a combination of these characteristics.

Validation Proof-of-concept (PoC) prototypes are devel-
oped to verify functional performance in a
representative environment.

Implementation The concept is realized in an operational pro-
totype, and verification tests are completed.

Deployment The concept is deployed for field test
validation.

Capability
architecture

Capability
integration

Detailed
design

Integration,
test, and

veri�cation

Implementation

Operation and
maintenance

Concept of
operations

Mission/operational
architecture and capabilities

Systems
engineering

views
HW/SW
views

Requirements
and

architecture

System
veri�cation and

validation

Systems and services
architecture views

Mission/operational
architecture views

Solution (systems and services)
architecture and functionality

Integrated System Model

Pr
od

uc
t t

es
t a

nd
 in

te
gr

at
io

n

Product architecture and design

Figure 6. INCOSE MBSE methodology. HW/SW, hardware/soft-
ware. (Reprinted from Ref. 13.)

Commercial
partners

Government
partners

Development Framework

IDE

Development
tool set

Reference
architecture

Development framework

MBSE methodology

Project
repository

Figure 7. Integrated development environment.

http://www.jhuapl.edu/techdigest

Model-Based Design for a Netted ISR Concept

Johns Hopkins APL Technical Digest, Volume 33, Number 1 (2015), www.jhuapl.edu/techdigest 29

to architecture and associated design elements enables
change impact analysis. Documentation is generated
from the Integrated System Model, ensuring accuracy.
Automatic code-generation processes ensure efficient
implementation and quality management. Because the
INCOSE MBSE developments are embraced by a broad
range of SE organizations, the INCOSE model has
informed the APL MBSE IDE development.

MBSE IDE
APL is maturing an MBSE IDE that enables distrib-

uted stakeholders to collaboratively contribute solutions
to the SE challenge. The APL SE IDE is initially provi-
sioned and targeted for the concept exploration, imple-
mentation, validation, and deployment SE processes. It is
relevant for application by projects such as the Defense
Advanced Research Projects Agency-sponsored Air
Dominance Initiative project,14 whose objective was to
integrate its Strategic Technologies Office capabilities for
communications in a contested environment. The goals
of the Air Dominance Initiative project included integra-
tion of legacy and future airborne communication wave-

forms through heterogeneous networking protocols across
increasing numbers of pervasive airborne nodes while
achieving drastically reduced innovation cycles. The APL
IDE as shown in Fig. 7 facilitates distributed collabora-
tion on shared centralized resources among government
sponsors, users, and technical leadership with commer-
cial hardware, software, and service providers. It is based
on an integration of MBSE methodology, a distributed
integration framework, hardware and software reference
architectures, development toolsets, and a repository.

AN APL-Branded MBSE Methodology
An APL-branded MBSE methodology (APL has

developed a unique collection of processes, methods, and
tools) is shown in Figs. 8 and 9. The major iterative and
collaborative processes include (i) concept exploration
through modeling and simulation, (ii) rapid prototyping
through code generation, (iii) verification and validation
(V&V) testing, and (iv) submission to the project reposi-
tory. An inner closed loop enables rapid verification of
concepts developed in the low-cost-of-change (relative

System M&S
concept

exploration

System
PoC

prototyping

System concept
implementation

System concept
validation

MBSE
IDE Validated conceptSponsor challenge

System concept
veri�cation

Figure 8. APL MBSE methodology. M&S, modeling and
simulation.

Provides a
rich system
design and
analysis
environment

Design �ows
provide
machine-
generated
code

Provides a
scalable collection
of recon�gurable
multiprocessor
architectures

Provides a rich
collection of
programmable test
vectors and
measurements

Concept system
modeling and

simulation
(blade servers)

V&V testing/�eld
demonstrations
(programmable
test equipment)

Machine-
generated

code

Prototype
models

to industry

Test results
feedback to

system concept

Process capabilities feedback to system concept

Industry product
implementation

Recon�gurable
processing hard-
ware prototypes

(SDR 4000)

Figure 9. APL MBSE methodology flow.

Reference architecture

Concept exploration: M&S

HW/SW prototyping

Development tools

V&V tools

Repository

ID
E

 fr
am

ew
or

k

IDE
backplane

Figure 10. APL IDE framework. HW/SW, hardware/software.

IDE framework

Repository
tools

Concept
V&V tools

Reference
HW/SW
architectures/
design kits

Application,
network, and
communication
services devel-
opment tools

Concept
exploration

tools

Figure 11. APL IDE notional user interface.

http://www.jhuapl.edu/techdigest

K. D. Brown et al.

Johns Hopkins APL Technical Digest, Volume 33, Number 1 (2015), www.jhuapl.edu/techdigest30

to cost of change in physi-
cal hardware and software)
modeling and simulation
environment and influ-
enced by lessons learned
from V&V testing. The
outer closed loop enables
stakeholders to influence
the concept development
through disciplined design
for X (where X is a variable
for affordability, six-sigma,
testing, manufacturing, and
so forth).

IDE Framework
The SE IDE framework

shown in Fig. 10 illustrates
how hardware and soft-
ware reference architec-
tures, development, V&V
tools, and a repository can
be integrated. This integra-
tion facilitates transfer of
information, availability
of resources, and matura-
tion of concepts. Shown in
Fig. 11 is a notional frame-
work interface that enables
distributed developers to
navigate, access, and process
using shared IDE resources
for concept exploration,
implementation, verifica-
tion, and validation. Within
the IDE, integrated tools are
able to interoperate across a
common backplane. Future
tool versions will be provi-
sioned with plug-and-play
interfaces, common refer-
ence architecture templates,
and repository libraries.

Hardware and Software Reference Architecture
Within the SE IDE is a hardware and software master

reference architecture, as shown in Fig. 12; it is based
on the Technical Standard for Future Airborne Capabil-
ity Environment (FACE)15 and provides functional and
interface definitions for the hardware and software to be
implemented. It illustrates the major software applica-
tion, networking, and communication services as well
as the major non-real-time and near-real-time hardware
processor types. Incremental implementation of this ref-

erence architecture is planned for several APL projects
over the next few years.

Concept Exploration
The SE IDE includes modeling and simulation toolsets

that enable concept exploration through PoC modeling
and simulation. These concept virtual prototypes (VPs)
enable exploration of a range of alternative approaches,
analyzing the performance, costs, and benefits of each
approach in an agile and low-cost-of-change environment.

Netted ISR master reference architecture

Software computing architecture

Portable components segment (applications)

Input/output
services segment
(networking services)

Platform common services

Con�g

GPS

Logging

Distribution (Dist) capabilities

Platform device services

WF
functions

Virtual
machine

(VM)

Transport services segment
(network/communications services)

Platform-speci�c services segment
(local core services)

Dist QoS Con�g

WF fcn
transport

Inter-
working fcn

Secured
data service

Red
routing

Red
QoS

Data-processing applications

App 1 App 2 App N

Sensing applications

Sensor 1 Sensor 2 Sensor N

Fusion applications

Process 1 Process 2 Process N

DNS/subnet
formation

Addressing
services

Black
routing

Neighbor
discovery

Flow
control

Power
control

Mobility
management Black QoS

Operating system (OS) segment

Hardware architecture

OS kernel Partitioning File system Hypervisor

Digital hardware

Analog hardware

Device
driver

Switch fabric

Link-16 TTNT MADL CDL Future

VM

VM

VM

Backplane switching

Device
driver

Waveform processor Application/
networking processor

Figure 12. APL master reference architecture. CDL, common data link; Config, configuration; DNS,
domain name service; fcn, function; MADL, multifunction advanced data link; QoS, quality of ser-
vice; WF, web file.

http://www.jhuapl.edu/techdigest

Model-Based Design for a Netted ISR Concept

Johns Hopkins APL Technical Digest, Volume 33, Number 1 (2015), www.jhuapl.edu/techdigest 31

Hop time will vary by changing packet size

Frequency hopping code

Receiver

Transmitter

P library

Hop frequency in MHz

Generate
15 possible carriers
–12 MHz to 12 MHz
D

DD

U

15-FSK

Carrier freq

Down-
converter

Channel
(549)

(54900×1) D

Carrier
frequency
monitor

TxPacket

RxPacket

Received signal
spectrum

RxPacket

Channel

Channel
(54900×1)

Delay
380

BER calculation

Frequency hopping
FM demodulator

Shortened
hamming (15×10)

decoder

Cyclic
encoder

Packet
(10×1)

Bernoulli
binary

(10×1)D2 (549×1)D3(5×1)D2

Assemble
various seed packets

at mbps

Frequency
hopping GFSK

modulator

s1
s2Align

signals

s1 del

delay
Align signals BER

3 D2(54900×1)

(54900×1)D

nfmt19937af,
“seed”

(54900×1)

FH-CPM
modulator

(54900×1) D3(54900×1)D3(10×1)

(10×1) D2
(10×1) D2

D5

(10×1)

Error rate
calculation

Tx

Rx
5.253e+05

0
0

Open
scopes

Close
scopes

Spectrum
scope

Pulse n: 256 encoded bits + 24 bits (S1) +
24 bits (S2) + 105 bits (NTmin) +

max 512 bits (corresponding to largest Ln) =
(max) 921 bits into GMSK

Select Packet Size = [size, delay]
using Callback InitFcn
in model properties

Carrier freq
Up-

converter AWGN

Disassemble
packet

FH-FM
demodulator

Cyclic
decoder

To
frame

(54900×1)

(54900×1)
(5×1)D2(549×1)

Carrier freq

(5×1)D2

(54900×1)

s2

(10×1)

(10×1)
6

AWGN, additive white Gaussian noise; BER, bit error rate; FH-CPM, frequency hopping
continuous phase modulation; FH-FM, frequency hopping frequency modulation; freq,
frequency; FSK, frequency shift keying; GFSK, Gaussian frequency shift keying; GMSK,
Gaussian minimum shift keying; Ln, length; NTmin, number of minimum time periods;
PN, pseudo random; RxPacket, receive packet; TxPacket, transmit packet

Figure 13. TTNT Simulink physical layer modulation virtual prototype.

Figure 14. Netted ISR maritime interdiction scenario virtual prototype.

http://www.jhuapl.edu/techdigest

K. D. Brown et al.

Johns Hopkins APL Technical Digest, Volume 33, Number 1 (2015), www.jhuapl.edu/techdigest32

As a second example,
consider the netted ISR
communication network SM
for the maritime interdiction
scenario shown in Fig. 14.
This VP enables exploration
of operational performance
sensitivity to communication
link parameters such as qual-
ity of service, throughput,
range, power, and bandwidth.
Each of these exemplar vir-
tual prototypes enabled rapid
exploration of critical perfor-
mance parameters in a low-
cost-of-change environment.

Concept Validation
The SE IDE also includes

source-code-generation tool-
sets for rapid prototyping
(i.e., converting system SMs
developed during concept

exploration into a PoC physical prototype [PhP] whose
response to physical environmental processes can be
measured with calibrated equipment). The calibration
enables quantification of SM confidence intervals when
measurements are compared to simulated responses. To
enable rapid, low-cost-of-change prototypes, rapid soft-
ware prototype tools are used, as shown in Fig. 15. These
tools convert SM into source code, which can be com-
piled into executable code for target processors.

Alternative down-selection and optimization highlight
how rapid concept engineering is achieved.

As an example, consider a Tactical Targeting Net-
work Technology (TTNT)16 surrogate modulator
model, as shown in Fig. 13. This simulation model (SM)
is only a portion of the communication physical layer
processing but highlights the capability to test system
performance sensitivity under a range of modulation
parametric variations.

C-IDE

MATLAB
system
model

DSP
compiler/

linker

DSP
device

programming

GPP
compiler/

linker

GPP
device

programming

VHDL
compiler/

linker

Simulink
system
model

System
generator

Real-time
workshop/
embedded

coder

Executable build

Concept M&S analytical TB
Source code

Executable code

Reconfigurable
multiprocessor

prototype
HDL IDE

VHDL
device

programming

Figure 15. Rapid prototype auto-generation processing. DSP, digital signal processor;
GPP, general-purpose processor; HDL, Hardware Description Language; M&S, modeling and simu-
lation; TB, testbed; VHDL, Very High-Speed Integrated Circuit HDL.

Requirements
Reference

architecture Constraints

SysML updates/
modi�cations

Legacy
source code

Simulation-
driven

development

SysML tools
(MagicDraw,
Rhaposody, etc.)

New source
code

Reverse
engineering

Automated
code

generation

Custom
code

tracking

Simulink

1

mode OR

OR

double

double

RC

3
Ro

S
S

== 1

>= 0

< 0

== 2
Vs

4

0Is

Io
RC

IL

IL

1/L

RL

vL

Vo 1
y

Vc

Ic

Vc 1/C

1
s

1
s

++

÷

×

×

×

×

÷

+
+

+

×

+_

_

2

+
–
–

NISR master reference architecture

Software computing architecture

Portable components segment (applications)

I/O services segment
(networking services)

Platform common services

Con�g

GPS

Logging

Distribution capabilities

Platform device services

WF
functions

Virtual
machine

(VM)

Transport services segment
(network/communications services)

Platform-speci�c services segment
(local core services)

Dist QoS Con�g

WF fcn
transport

Inter-
working fcn

Secured
data service

Red
routing

Red
QoS

Data-processing applications

App 1 App 2 App N

Sensing applications

Sensor 1 Sensor 2 Sensor N

Fusion applications

Process 1 Process 2 Process N

DNS/subnet
formation

Addressing
services

Black
routing

Neighbor
discovery

Flow
control

Power
control

Mobility
management Black QoS

Operating system segment

Hardware architecture

OS kernel Partitioning File system Hypervisor

Digital hardware

Analog hardware

Device
driver

Switch Fabric

Link-16 TTNT MADL CDL Future

VM

VM

VM

Backplane switching

Device
driver

Waveform processor Application/
networking processor

Figure 16. PhPs by automatic code generation.

System model testbed

Laboratory or demonstration
environmental testbed

Uplink
channel

impairments

Satellite
RX

Satellite
processing

Satellite
TX

Test
lessons
learned

Model
response

Hardware
response

Executable
code

Base station
RX hardware

Downlink
channel

impairments

Concept validation

Concept
exploration

Difference

Terminal TX
system model

validation
Calibrated

V&V
testing

Terminal TX
hardware
in the loop

Terminal
TX

Figure 17. Hardware/software-in-the-loop (SiL) V&V TB.
RX, receiver; TX, transmitter.

http://www.jhuapl.edu/techdigest

Model-Based Design for a Netted ISR Concept

Johns Hopkins APL Technical Digest, Volume 33, Number 1 (2015), www.jhuapl.edu/techdigest 33

RF
signal

generator

Data
pattern

generator

Function/
noise

generator

BERT

Digital
oscilloscope

Vector
signal

analyzer

Digital
logic

analyzer

TX
UUT

RX
UUT

Large-/small-scale
fading

Wireless
MIMO channel

emulator

Measurement
equipment

Multipath
fading

Doppler
spread

Stimulus
equipment

Noise/
interference

Network
analyzer

Figure 18. Communication V&V TB. BERT, bit error rate tester; MIMO, multiple-input and multiple-output; RX UUT, receive unit under
test; TX UUT, transmit unit under test.

Frequency hopping code

Hop frequency in MHz

Generate
15 possible carriers
–12 MHz to 12 MHz

D4

D4D4

U

15-FSK

(54900×1) D4

Carrier
frequency
monitor

(54900×1)

nfmt19937af,
“Seed”
Seed

To
frame

Carrier freq

6

TxPacket

RxPacket

Delay
750

BER calculation

s1
s2Align

signals

s1 del

delay
Align signals BER

3 D2
(10×1) D2
(10×1) D2

D5

(10×1)

Error rate
calculation

Tx

Rx
5.13e+04

0
0

s2

(10×1)

(10×1)

Received signal
spectrum

Channel

Channel
(54900×1)

(54900×1)

(54900×1)D3

Open
scopes

Close
scopes

Spectrum
scope

AWGN
(54900×1)

Transmitter

Cyclic
encoder

TxPacket
(10×1)

Bernoulli
binary

(10×1)D2 (549×1)D3(5×1)D2

Assemble
various seed packets

at 1 Mbps

Carrier Freq

SIL
D3

FH-GMSK Demod

Carrier freq

Channel
(54900×1)D3

(54900×1)D4

SIL D3

FH-GMSK Demod

Receiver

RxPacket

Shortened
hamming (15×10)

decoder

Disassemble
packet Cyclic

decoder

(5×1)D2 (5×1)D2

FH-GMSK Demod

AWGN, additive white Gaussian noise; BER, bit error
rate; freq, frequency; FSK, frequency shift keying;
GMSK, Gaussian minimum shift keying; RxPacket,
receive packet; TxPacket, transmit packet

Figure 19. TTNT physical layer modulation SiL.

http://www.jhuapl.edu/techdigest

K. D. Brown et al.

Johns Hopkins APL Technical Digest, Volume 33, Number 1 (2015), www.jhuapl.edu/techdigest34

Fig. 18 can be integrated with the concept exploration
environment by applying the same stimulus used in the
SM, and responses from the V&V TB can be compared
to the simulated responses in the SM.

Consider the rapid prototyping example in Fig. 19;
it is a software-in-the-loop (SiL) emulation, which is
derived from the previous TTNT modulation SM. The
SiL provides a capability to emulate the behavior of
source code generated from the SM.

As a second example, consider the processor-in-the-
loop (PiL) shown in Fig. 20; it is a digital signal processor
hardware emulation derived from the same SM. It pro-
vides a capability to embed physical hardware running
the SiL software within the SM. Implementation errors
associated with fixed-point precision, timing, and clock-
ing can be evaluated with the PiL. Both the SiL and

Reference Architecture SysML
Rapid Prototyping

An MBSE rapid software proto-
typing example includes a process-
ing hardware and software reference
architecture such as FACE, perfor-
mance requirements, and resource
constraints. System designers can
leverage legacy code to prototype
new source code. As shown in
Fig. 16, the SE IDE provisioned with
SysML (Systems Modeling Lan-
guage) and UML (Unified Model-
ing Language) toolsets (reference
templates and libraries) is capable
of leveraging legacy design, inte-
grating new requirements within a
reference architecture, and generat-
ing new source code. This example
demonstrates how legacy code is
reverse-engineered by a SysML17 tool, such as MagicDraw
(http://www.nomagic.com/products/magicdraw.htm) or
Rhapsody (http://www-142.ibm.com/software/products/
us/en/ratirhapfami/). The reverse engineering produces
SysML diagrams of what the code represents and how
they are interconnected and can be reused in the new
system design. Based on the requirements and reference
architecture, the system designer develops a model of the
system in SysML and UML.18 Throughout the system
design process, Simulink (http://www.mathworks.com)
code can be generated/developed to simulate target com-
ponents. After the system has been modeled, code that
represents the system is automatically generated. Custom
code can be written for any components where automatic
code generation is not possible. The SysML tool then
tracks any custom code inserted or added to include in
future automatic code generation.
Automatic test cases are also gener-
ated from the requirements stored
in SysML. The automatic code
generation can also be done for a
partial system model or for subsys-
tems to test the system as the model
is being developed to support an
incremental or spiral development.

The PoC PhP can be stressed
by mechanical, electrical, or
environmental conditions in an
integrated hardware/software-in-
the-loop V&V testbed (TB), as
shown in Fig. 17. These tests can
be conducted within a laboratory
or extended to include field-test
demonstrations. For instance, the
communication V&V TB shown in

Figure 20. TTNT physical layer modulation PiL.

Laptop-Cutter Laptop-UAV

Laptop-UAV

SBC-Sensor

SBC-Command

Figure 21. Netted ISR physical layer prototype. SBC, single-board computer.

http://www.jhuapl.edu/techdigest
http://www.nomagic.com/products/magicdraw.htm
http://www-142.ibm.com/software/products/us/en/ratirhapfami
http://www-142.ibm.com/software/products/us/en/ratirhapfami
http://www.mathworks.com

Model-Based Design for a Netted ISR Concept

Johns Hopkins APL Technical Digest, Volume 33, Number 1 (2015), www.jhuapl.edu/techdigest 35

structure facilitates effective, agile, rapid, and afford-
able concept exploration, verification, and validation
for complex SoS such as netted ISR. For the netted ISR
case, a rapid innovation cycle project over the course
of 4 months used an IDE to define, model, prototype,
and produce initial results that indicated that 30% fewer
sensor platforms and at least 25% fewer operators were
necessary for one scenario, contributing to the poten-
tial for significant, compounded life-cycle savings with
netted compared to traditional ISR SoS.

Studies conducted by the National Defense Indus-
trial Association, INCOSE, and other SE organizations
recommend adoption of MBSE methodologies based on
member-documented project cost and schedule reduc-
tions.19–21 The INCOSE MBSE roadmap is shown in
Fig. 22. APL is midway through maturing its brand of
MBSE methodology.

REFERENCES
 1Shaffer, A., Current S&T Priorities and the Future of DoD S&T,

Department of Defense, Washington, DC (29 Oct 2013), http://
www.acq.osd.mil/chieftechnologist/publications/docs/Current_ST_
priorities_and_the_Future_of_DOD_ST.pdf.

 2Office of the Under Secretary of Defense for Acquisition, Technol-
ogy, and Logistics, Report of the Joint Defense Science Board Intelligence
Science Board Task Force on Integrating Sensor-Collected Intelligence,
Defense Science Board, Washington, DC (Nov 2008).

 3Dunaway, D., “Creating Integrated Warfighting Capabilities,”
Proceedings Magazine 139/8/1,326 (2103).

 4Joint Operational Access Concept (JOAC), version 1.0, Joint Chiefs of
Staff, Washington, DC (Jan 2012).

 5United States Joint Forces Command, Commander’s Handbook for
Persistent Surveillance, version 1.0, Joint Warfighting Center, Joint
Doctrine Support Division, Suffolk, VA (20 Jun 2011).

 6Joint Publication 3-60 (JP 3-60), Joint Targeting, Joint Chiefs of Staff,
Washington, DC (31 Jan 2013).

 7Newman, A. J., and Mitzel, G. E., “Upstream Data Fusion: History,
Technical Overview, and Applications to Critical Challenges,” Johns
Hopkins APL Tech. Dig. 31(3), 215–233 (2013).

the PiL were auto-generated and compiled in minutes.
Changes to the SM can be rapidly transferred to both
emulations for verification testing.

As a third example, consider the netted ISR network
PoC PhP shown in Fig. 21. In this case, physical hardware
has been connected to nodes in the previously discussed
VP. Operational hardware hosting operational software
can execute in real time. Communication traffic is gen-
erated by the PhP, exchanged between the VP nodes, and
processed by the destination PhP nodes. In this manner,
the hardware-in-the-loop enables verification of node
application, networking, and communication services
while retaining a low-cost-of-change environment for
the location, ranges, and wired and wireless link effects.
Link latency, quality of service, and throughput can rap-
idly and easily be manipulated to quantify performance
sensitivities of an operational scenario.

Integrated Validation Environment
The SE IDE PhP can be extended to field demonstra-

tions (for example, consider the UAV). The netted ISR
PoC PhP can be deployed on a constellation of airborne
platforms and demonstrated under actual operational
conditions to validate the concept. A similar test stimu-
lus used in the SM can be applied to the field demon-
stration hardware, and responses can be measured and
compared to the simulated responses in the SM.

CONCLUSION
The APL MBSE IDE has been introduced and

applied to the anti-access/area-denial netted ISR case
and a growing list of other SE projects. The IDE infra-

520202020102

M
at

ur
ity

MBSE capability

Ad hoc MBSE
document
centric

Well-de�ned
MBSE

Institutionalized
MBSE across
academia/
industry

Reduced cycle times Design optimization across broad trade space
Cross domain effects-based analysis

System of systems
interoperability

Extending maturity and capability

Distributed and secure model repositories
crossing multiple domains

De�ned MBSE theory, ontology, and formalisms

Emerging MBSE standards

Matured MBSE methods and metrics,
integrated system/HW/SW models

Architecture model integrated with
simulation, analysis, and visualization

• Planning and support
• Research
• Standards development
• Processes, practices, and methods
• Tools and technology enhancements
• Outreach, training, and education

Refer to activities in
the following areas:

Figure 22. INCOSE MBSE methodology maturity. (Reprinted with permission from Ref. 19, © INCOSE.)

http://www.jhuapl.edu/techdigest
http://www.acq.osd.mil/chieftechnologist/publications/docs/Current_ST_priorities_and_the_Future_of_DOD_ST.pdf
http://www.acq.osd.mil/chieftechnologist/publications/docs/Current_ST_priorities_and_the_Future_of_DOD_ST.pdf
http://www.acq.osd.mil/chieftechnologist/publications/docs/Current_ST_priorities_and_the_Future_of_DOD_ST.pdf

K. D. Brown et al.

Johns Hopkins APL Technical Digest, Volume 33, Number 1 (2015), www.jhuapl.edu/techdigest36

15Open Group, Technical Standard for Future Airborne Capability Envi-
ronment (FACETM), Edition 2.0 (Feb 2013), http://www.opengroup.
org/face/tech-standard-2.

16U.S. Department of Defense, “Waveform Specification JTRS Soft-
ware Waveform,” Tactical Targeting Networking Technology (TTNT),
Draft Revision 4.0 (Jul 2005).

17Object Management Group, “Documents Associated With SysML
Version 1.2,” http://www.omg.org/spec/SysML/1.2/.

18Object Management Group, “Index of /spec/UML/2.3/Superstructure,”
http://www.omg.org/spec/UML/2.3/Superstructure/.

19Friedenthal, S., Griego, R., and Sampson, M., “INCOSE Model
Based Systems Engineering (MBSE) Initiative,” in Proc. INCOSE
2007 Symp., San Diego, CA, p. 17 (2007), https://www.incose.org/
enchantment/docs/07Docs/07Jul_4MBSEroadmap.pdf.

20Hause, M., Stuart, A., Richards, D., and Holt, J. “Testing Safety Criti-
cal Systems with SysML/UML,” in Proc. 15th IEEE Intl. Conf. on Engi-
neering of Complex Computer Systems, Oxford, UK, pp. 325–330 (2010).

21National Defense Industrial Association (NDIA) Systems Engi-
neering Division M&S Committee, “Final Report of the Model
Based Engineering (MBE) Subcommittee,” NDIA, Arlington, VA
(10 Feb 2011).

 8Newman, A. J., and DeSena, J., “Closed-Loop Collaborative Intel-
ligence, Surveillance, and Reconnaissance Resource Management,”
Johns Hopkins APL Tech. Dig. 31(3), 183–214 (2013).

 9Connor, T., and Wong, H., “Emergent Properties,” The Stanford
Encyclopedia of Philosophy, Spring 2012 Ed., E. N. Zalta (ed.), last
modified February 12, 2012, http://plato.stanford.edu/entries/
properties-emergent/.

10Alberts, D. S., and Hayes, R. E., Understanding Command and Control,
Command and Control Research Program Publication Series, Wash-
ington, DC (2006).

11U.S. Navy Information Dominance Roadmap, 2013–2028, U.S. Navy,
Washington, DC (Mar 2013).

12Seymour, J. S., and O’Driscoll M. J., “APL Applied Systems Engineer-
ing: Guest Editors’ Introduction,” Johns Hopkins APL Tech. Dig. 29(4),
306–309 (2011).

13Valinoto, T., “Application of MBSE Theory in a World of Practical
Deadlines and Deliverables: Lessons Learned,” in Proc. MBSE Symp.:
INCOSE Chesapeake Chapter and JHU/APL (29 Mar 2014).

14Defense Advanced Research Projects Agency (DARPA), DARPA-
BAA-14-02, “Communications in Contested Environments (C2E),”
Solicitation Number DARPA-BAA-14-02 (Jan 2014).

THE AUTHORS

K. Dewayne Brown is a communications systems engineer and Supervisor of the Resilient Tactical Communications
Section in APL’s Asymmetric Operations Sector. He provided MBSE expertise for the ADI C2E and netted ISR projects.
Mary Beth A. Chipkevich is a Principal Professional Staff member in the Force Projection Sector and Program Manager
for Unmanned Systems and Autonomous Technologies in the Precision Strike Mission Area. Robert J. Bamberger is a
member of APL’s Principal Professional Staff and Supervisor of the Autonomy Section in the Research and Exploratory
Development Department. He was the Technical Lead for the Defense Advanced Research Projects Agency’s Airborne
Dominance Initiative (ADI) Communications in a Contested Environment (C2E) project. Tam-Thanh C. Huang is a
member of APL’s Senior Professional Staff and is a communications engineer with extensive experience in software-
defined radio design and implementation of various military waveforms. Mark A. Matties is a member of APL’s Senior
Professional Staff in the Communication and Networking Systems Group and Supervisor of the Advanced Software
Defined Networking Section. He currently researches the security and advanced applications of software-defined
networking to provide secure, resilient networks. James D. Reeves is a member of APL’s Senior Professional Staff and
is a systems, network, and information systems security engineer for advanced technologies in the Aerospace Systems
Analysis Group of the Precision Strike Mission Area. He was the Lead Systems Engineer for the netted ISR project.
Christopher A. Rouff is a member of APL’s Senior Professional Staff in the Communication and Networking Systems
Group. He is a computer scientist doing research in automatic code generation from system models to quickly produce
simulations and prototypes of new system concepts. The ADI and netted ISR teams can be contacted through the
Program Manager, Mary Beth Chipkevich. Her e-mail address is mary.beth.chipkevich@jhuapl.edu.

http://www.jhuapl.edu/techdigest
http://www.opengroup.org/face/tech-standard-2
http://www.opengroup.org/face/tech-standard-2
http://www.omg.org/spec/SysML/1.2/
http://www.omg.org/spec/UML/2.3/Superstructure
https://www.incose.org/enchantment/docs/07Docs/07Jul_4MBSEroadmap.pdf
https://www.incose.org/enchantment/docs/07Docs/07Jul_4MBSEroadmap.pdf
http://plato.stanford.edu/entries/properties-emergent/
http://plato.stanford.edu/entries/properties-emergent/
mailto:mary.beth.chipkevich@jhuapl.edu

	Model-Based Design for Affordability of a Netted Intelligence, Surveillance, and Reconnaissance Concept
	K. Dewayne Brown, Mary Beth A. Chipkevich, Robert J. Bamberger, Tam-Thanh C. Huang, Mark A. Matties, James D. Reeves, and Christopher A. Rouff
	ABSTRACT
	INTRODUCTION
	BACKGROUND
	MOTIVATION
	THE ISR CASE: THE CHALLENGE
	THE ISR CASE: NETTED ISR CONCEPT
	Netted ISR Reference Architecture
	Case Study Approach: Netted ISR Model-Based Design for Affordability
	Results of Netted ISR Case Study
	APL SE Process
	INCOSE MBSE
	MBSE IDE
	AN APL-Branded MBSE Methodology
	IDE Framework
	Hardware and Software Reference Architecture
	Concept Exploration
	Concept Validation
	Reference Architecture SysML Rapid Prototyping
	Integrated Validation Environment

	CONCLUSION
	REFERENCES
	THE AUTHORS
	Figures and Tables
	Table 1. APL SE Process.
	Figure 1. Battlespace complexity and affordability.
	Figure 2. A maritime interdiction scenario.
	Figure 3. Anti-access/area-denial maritime dynamic targeting scenario.
	Figure 4. Netted ISR reference architecture.
	Figure 5. APL SE process.
	Figure 6. INCOSE MBSE methodology.
	Figure 7. Integrated development environment.
	Figure 8. APL MBSE methodology.
	Figure 10. APL IDE framework.
	Figure 9. APL MBSE methodology flow.
	Figure 11. APL IDE notional user interface.
	Figure 12. APL master reference architecture.
	Figure 13. TTNT Simulink physical layer modulation virtual prototype.
	Figure 14. Netted ISR maritime interdiction scenario virtual prototype.
	Figure 15. Rapid prototype auto-generation processing.
	Figure 17. Hardware/software-in-the-loop (SiL) V&V TB.
	Figure 16. PhPs by automatic code generation.
	Figure 18. Communication V&V TB.
	Figure 19. TTNT physical layer modulation SiL.
	Figure 20. TTNT physical layer modulation PiL.
	Figure 21. Netted ISR physical layer prototype.
	Figure 22. INCOSE MBSE methodology maturity.

