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his article describes a formal approach to the specification and verif ication 
of a microprocessor design and presents a case study of applying this tech-

nique to the Scalable Configurable Instrument Processor. These activities 
greatly increase confidence that the microprocessor correctly implements its intended 
functionality. In addition, the formal specification of the processor’s functionality pro-
vides the basis for future work verifying the correctness of software.
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state. For example, the push operation of most proces-
sors is understood to append data to the top of the stack, 
which in the nominal case it does, but there are many 
exceptional cases in which a push operation may cause 
an error or some other behavior for which the program-
mer must account. For a program to be correct, it must 
be impossible for such exceptional states to arise during 
the execution of the program, or the programmer must 
have correctly predicted and handled all contingen-
cies. Many techniques, such as testing or manual code 
analysis, exist for gaining confidence that a program is 
correct. Unlike most of these techniques, formal verifi-
cation requires that the programmer explicitly state all 
assumptions made in the code and that all possible cases 
be handled. Hence, formal verification gives the greatest 
assurance of program correctness but requires a precise 
and rigorous definition of the computing hardware.

This article describes our experience formally speci-
fying and verifying aspects of the design of the Scal-
able Configurable Instrument Processor (SCIP), a 
lightweight, low-power processor designed for use in 

INTRODUCTION
Hardware specification and verification serve two 

major goals: increasing confidence that hardware is 
correct and facilitating verification of software at the 
instruction-set level. Errors in hardware design can lead 
to serious problems when software exercises some flaw 
in the hardware. When the Pentium processor imple-
mented division in a way that deviated from the IEEE-
754 specification,1 it was a serious bug because it could 
cause correctly implemented software to fail unexpect-
edly. The discovery of this bug and the resulting expense 
to Intel motivated Advanced Micro Devices, Inc. 
(AMD) to use formal verification to ensure that their 
implementation was correct.

Although hardware errors are of great concern, system 
failures caused by software errors are far more common. 
The overwhelming majority of software crashes and 
security vulnerabilities stem from differences between 
the assumptions made by software programmers and 
the actual guarantees provided by the computing hard-
ware. Programmers frequently have only an imprecise 
understanding of how instructions affect the computer’s 
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spacecraft may lead to unpredictable software behavior. 
This may mean the loss or silent corruption of impor-
tant scientific data, reducing the benefit of the costly 
satellite. Although the SCIP is typically implemented 
by using a FPGA, no APL-developed spacecraft to date 
has included the ability to modify the FPGA program-
ming after launch, so there would be no way to correct a 
hardware defect in an operational system. Even software 
workarounds are difficult to deploy because of the lim-
ited communications channel between the satellite and 
software authors. The high cost of failure motivates both 
rigorous specification of the SCIP’s expected behavior 
and the need for high confidence in its correct imple-
mentation. Formal verification is the only approach 
capable of meeting these goals.

The SCIP’s simplicity also makes the processor an 
attractive target for formal verification. The processor 
performs no pipelining, out-of-order execution, or other 
optimizations that may complicate instruction effects. 
The entire implementation is roughly 5000 lines of 
VHDL code, was written by a single designer, and uses 
a small, consistent set of idioms and VHDL features. A 
possible area of future work is using the formal instruc-
tion set specification as a verification tool for a more 
advanced revision of the SCIP that may include features 
such as pipelining.

Verification Tools
The choice of a verification tool is an important first 

step in formal verification. We chose ACL2, a theorem 
prover developed at the University of Texas that is based 
on the LISP programming language. Verification tools 
can be roughly divided into model checkers, which use 
exhaustive state space exploration to automatically prove 
or refute logical assertions describing either expected 
or forbidden sequences of program states, and theorem 
provers/proof assistants, which rely on axiomatic reason-
ing to produce proofs by applying logical inference rules.

Model checkers are popular in hardware design 
circles and can be used to demonstrate the absence of 
particular faults in a system (e.g., that certain events 
always occur in a particular order). Model checkers 
are well suited to hardware design because, like HDLs, 
their modeling languages tend to be designed around 
the concept of interacting state machines executing in 
parallel. The most common criticism of model checkers 
is that they are susceptible to a state explosion problem 
on large models. Although modern model checkers may 
scale well enough to handle the SCIP, they are still not 
particularly well suited to the development of axiomatic 
specifications, a key goal of this effort.

In contrast, theorem provers like ACL2 are designed 
from the ground up to support reasoning in terms of 
pre- and postconditions of sequences. This makes them 
a natural fit for our goals. Unfortunately, the linear rea-

satellite-borne scientific instruments. The theorems we 
state provide the first steps toward the definition of the 
semantics of each instruction that would enable formal 
verification of software written for the SCIP. Because we 
prove that the design of the processor satisfies the theo-
rems, software developers may be confident that these 
definitions correspond to the actual behavior imple-
mented by the processor.

Formal verification requires three components: a 
model of the system to be verified, a specification of the 
system’s intended behavior, and a proof that the model 
implements the specification. We chose to model the 
SCIP at the hardware description language (HDL) level. 
This allows our proofs to address the logical correct-
ness of the SCIP design but prevents us from proving 
lower-level properties such as that the processor layout 
satisfies timing requirements. To model the SCIP’s HDL 
design, we developed a framework in our chosen proof 
tool, ACL2 (or A Computational Logic for Applicative 
Common Lisp), for representing the VHSIC Hardware 
Description Language (VHDL), and then we translated 
the SCIP’s VHDL code to this framework. We specified 
the intended behavior of the SCIP as theorems defin-
ing the pre- and postconditions of instructions involving 
push and pop operations and used ACL2’s automated 
theorem prover to develop proofs that our model satis-
fied these theorems. Although our theorems specify 
only part of the expected behavior of the SCIP, they 
demonstrate the feasibility of our approach and increase 
confidence in critical functionality of the processor. 
The proofs of our theorems rely on numerous lemmas 
defining basic properties of modular bitwise arithmetic 
and significant results for every major functional unit of 
the SCIP. Future work may expand our specification by 
proving additional theorems defining the behavior of 
the SCIP for other operations.

MOTIVATION

Why Choose the SCIP?
The SCIP is a stack-based microprocessor with 16-bit 

instructions and a configurable 16- or 32-bit data path. 
It was designed at APL to be a simple, lightweight, low-
power processor suitable for implementation using a 
field-programmable gate array (FPGA). The SCIP uses 
a densely packed instruction set that allows for compact 
program code, a critical feature for embedded software 
expected to run in low-memory environments. The SCIP 
has been used in several APL-developed instruments 
on active missions including Juno2 and the Van Allen 
Probes (formerly the Radiation Belt Storm Probes).3

We chose the SCIP as a test case for verification 
because of its use in satellites, as well as the simplic-
ity of the processor’s design. A bug or unexpected fea-
ture in the processor while it is deployed as part of a 
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the result of evaluating the other elements in the list. 
Thus, the S-expression (+ 1 (* 4 5)) evaluates to 21 by 
first evaluating (* 4 5) to produce 20 and then evalu-
ating (+ 1 20). To enable automated reasoning, ACL2 
imposes several restrictions on its input language: all 
functions must provably terminate, statements may not 
modify program state, and functions cannot be passed as 
arguments to other functions.

To ensure termination, ACL2 requires that all func-
tions either be nonrecursive or recur with a strictly 
decreasing measure function. For example, ACL2 can 
automatically prove that a recursive function terminates 
if the function operates on a list that is shortened at 
each recursive call site. All recursive functions we used 
to model the SCIP followed this pattern, and thus ACL2 
was easily able to prove termination.

ACL2 functions must always be pure functions from 
their inputs to their outputs. In most programming lan-
guages, variables represent a box in which a value can be 
stored; at any time, the value in the box may be retrieved 
or replaced with a different value. In ACL2, as in mathe-
matics, a variable is a name given to an unknown value. 
As a result, there is no assignment statement and hence 
no ability for a program to modify external state. This 
guarantees that the rewriting system can consider func-
tion invocations without concern for the order or con-
text in which they are called. In particular, it implies 
that it is safe to replace the invocation of a function with 
the function’s body. We avoid side effects by writing our 
models as functions from the complete current state of 
a hardware unit to the complete next state (including 
unchanged values).

Higher-order functions (i.e., functions that accept 
functions as arguments or return functions) are a promi-
nent and popular feature of most LISP-like languages. 
Unfortunately, to allow for greater automation of theo-
rem proving, ACL2 does not support higher-order func-
tions. This restriction makes it difficult or impossible to 
generalize interfaces in ways common to LISP; functions 
such as mapcar, which applies a function to each ele-
ment of a list, are not expressible in ACL2.

ACL2 supports LISP-style macros, which allow the 
programmer to introduce new syntactic forms and con-
trol the order of term evaluation. Some applications 
of higher-order functions can be simulated by using 
macros. Our framework for modeling VHDL in ACL2 
relies heavily on macros to allow a nearly line-for-line 
translation without exposing the difficulty of mapping 
between the differing semantics of the two languages.

Proofs in ACL2
Theorems in ACL2 are introduced using the top-

level defthm event form. Theorems are given as 
S-expressions with an implicit universal quantification 
over all free variables. ACL2 attempts to prove a theo-

soning used by most theorem provers is not ideally suited 
to the parallelism of HDLs. Our solution to this is to 
show that, although the VHDL processes may execute in 
parallel, their effects are independent, and thus they can 
be treated as independent functions. We chose ACL2 
over other axiomatic proof systems such as Coq or Isa-
belle because of the abundance of literature focused on 
the topic of using ACL2 for hardware description verifi-
cation. There is a significant body of work representing 
HDLs in ACL2 that served as a starting point for our 
own embedding of VHDL.

RELATED WORK
ACL2 and its predecessor, Nqthm, have a long history 

of use in hardware design verification. Probably the best-
known example is the verification of the kernel of the 
AMD floating point division algorithm by Moore et al.4 
This work focused on proving that the algorithm cor-
rectly implemented floating point division as defined in 
the IEEE floating point standard. It did not attempt to 
verify the HDL specification of the algorithm.

Hunt and Brock5 introduce an HDL with seman-
tics formally defined in ACL2 and use it to specify and 
verify the design of the FM9001 processor. Their HDL 
can be mechanically translated into a preexisting HDL 
for synthesis.

Georgelin et al.6 describe a system for modeling VHDL 
in ACL2 that uses macros to provide syntactic constructs 
similar to the original VHDL. We build on their work by 
introducing a more faithful model of VHDL types and 
support for hierarchically nested components.

ACL2
ACL2 is both a LISP-like language and an automated 

term rewriting theorem prover.7 ACL2 was principally 
developed by Matt Kaufmann and J. Strother Moore as 
the successor to Nqthm and the Boyer–Moore theorem 
prover.8 ACL2 is an attractive tool for hardware design 
verification because of its high level of automation, 
familiar syntax, history of application in the field, and 
active user community.

Programming in ACL2
ACL2’s input language is a LISP dialect, which makes 

it straightforward for anyone with a LISP background 
to write simple functions in ACL2. Like LISP, ACL2’s 
syntax is based on S-expressions. An S-expression is 
either a symbol such as foo or a list of S-expressions 
enclosed in parentheses such as (foo bar baz). Sym-
bols evaluate to some value determined by the current 
environment (notably, symbols that are numbers, such 
as 12, always evaluate to themselves). Lists are evaluated 
by applying the function named by the first element to 
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evenp-bitlist-append of Example 2 states that if 
the first element of a bitlist is zero, then appending any 
other bitlist to it will yield a result representing an even 
number. Because the proof of this theorem relies both on 
facts about list appending in general and on facts that are 
unique to bitlists, ACL2 is unable to prove it as written.

The first theorem of Example 2, append-car, states 
that the first element of the value returned by the append 
function is the same as the first element of its first argu-
ment (the function car returns the first element of a 
list). The second theorem, evenp-bitlist-to-int, 
states that if the first element of a bitlist is zero, then 
the numerical interpretation of the bitlist is even. The 
final theorem, evenp-bitlist-append, states that 
if the first element of a bitlist is zero and another bitlist 
is appended to it, then the result will represent an even 
number. This is true because, by the first theorem, we 
know that the first element of the resulting bitlist will be 
zero, and by the second theorem, we know that the inte-
ger interpretation of a bitlist starting with zero is even. 
Unfortunately, applying the first theorem requires that 
ACL2 rewrite the call (bitlist-append b2 b1) 
with its definition (append b1 b2), which no longer 
matches the statements of bitlist-append-thm or 
evenp-bitlist-to-int. This prevents ACL2 from 
automatically proving the theorem as stated. The actual 
theorems also require hypotheses that all variables have 
appropriate types; however, even with these hypotheses, 
the theorem cannot be proved because of ACL2’s rewrit-
ing strategy.

The solution to this problem is to carefully control 
the set of rules that ACL2 will use to prove new theo-
rems, called the “current theory.” One approach is to 
carefully introduce rules that pattern match on function 
bodies to reassemble the original invocation.9 The key 
to this approach is strategically enabling and disabling 
theorems during subproofs. We found this approach 
somewhat contrary to the goal of automated proof find-
ing and instead focused on a strategy of disciplined 
abstraction levels.

Rather than allow ACL2 to “simplify” instances of 
bitlist-append to append, we explicitly lift the 
needed theorems and disable the definition of bitlist-
append. Thus, to solve the problem of Example 2, we 
would define a lifted version of append-car called 
bitlist-append-car, which states essentially the 
same theorem in terms of bitlist-append. This 
approach requires a fair amount of additional boiler-
plate code for lifting “obvious” theorems but prevents 
excessive case splitting and reduces the prover’s reliance 
on explicit hints. In the Data Types section, we discuss 
another benefit of this approach: because of the strict 
layering, we were able to replace the underlying data 
model of our framework without requiring significant 
changes to the model of the SCIP.

rem by applying a series of rewrite rules to transform the 
theorem into something that is trivially true. Example 1 
is a common form of an ACL2 theorem. If given such an 
event, ACL2 would attempt to use the definitions of h1, 
h2, f, and g and any other currently active theorems 
or definitions to show that for any choice of x, y, and 
z satisfying both (h1 x y z) and (h2 x y z), 
(f x y z) is equal to (g x y z). If successful, ACL2 
introduces a new rewrite rule, which it may use in future 
proofs to replace (f x y z) with (g x y z). Every 
theorem and function introduced in ACL2 affects the 
way ACL2 attempts to prove future theorems.

The key to effective use of ACL2 is understanding 
how the proof engine decides which rules to use under 
which circumstances. A common stumbling block is 
ACL2’s difficulty in moving between levels of abstrac-
tion: once ACL2 expands the definition of a term, any 
theorem that refers to the term by name can no longer 
be applied (because the term’s name has been replaced 
by its body).

Example 2 demonstrates this problem. Our model makes 
heavy use of lists of bits, called bitlists, such as (1 0 0) or 
(0 0 1). The function bitlist-append uses ACL2’s 
built-in append function to append two bitlists—for 
example, (bitlist-append ’(0 0 1) ’(1 0 1)) 
evaluates to (0 0 1 1 0 1). The function bitlist-
to-int converts bitlists to integers, with the bits 
interpreted from least to most significant—for exam-
ple, (bitlist-to-int ’(0 0 1)) evaluates to 
4, (bitlist-to-int ’(1 0 1)) evaluates to 5, 
and (0 0 1 1 0 1) evaluates to 44. The theorem 

Example 1.  A common structure for ACL2 defthm events: 
given hypotheses (h1 x y z) and (h2 x y z), the form 
(f x y z) can be replaced by (g x y z)

Example 2.  The last theorem, evenp-bitlist-append, 
follows directly from the previous two, but applying append-
car requires unfolding the definition of bitlist-
append, which prevents ACL2 from applying the theorem  
evenp-bitlist-to-int
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the core data types used by the SCIP model. This change 
was straightforward because of the syntactic abstrac-
tions we used to build the model initially. Because of 
time constraints, we were unable to develop an auto-
mated translation tool targeting our modeling system. 
Instead we relied on a manual translation of the SCIP’s 
source code; proof of the theorems stated in the Prov-
ing Correctness section required translation of roughly 
4000 lines of the SCIP’s VHDL design. The major entity 
that was not translated was the SCIP’s arithmetic/logi-
cal unit because it was not relevant to the theorems.

Our modeling system uses three top-level macros, 
defentity, defprocess, and defarchitecture, 
for describing VHDL entities, processes, and architec-
tures, respectively. Example 3 illustrates the use of these 
macros to represent VHDL code. There is some diver-
gence between the ACL2 macro-based syntax and the 
original VHDL; most notably, internal signals and com-
ponents are described in the defentity block, and 
processes are defined at the top level and then explicitly 
listed in the defarchitecture block.

Entities
In VHDL, entities represent the interface to architec-

tural components in terms of input and output ports. In 
ACL2, the defentity macro introduces the functions 

MODELING ARCHITECTURE
The first component of formal verification is a model 

of the system to be verified in the language of the veri-
fication tool. Because our proofs are developed on the 
basis of this model and not the original VHDL source 
code, any confidence gained by performing formal veri-
fication is limited by the model’s fidelity and accuracy. 
To represent the SCIP’s design in ACL2’s LISP dialect, 
we build on the work of Georgelin et al.6 We use ACL2/
LISP macros to provide a syntactic layer that is nearly 
comparable, line for line, to the original VHDL source 
code. These macros expand to ACL2 functions that 
implement the VHDL behavior and theorems that guar-
antee the validity of the model.

Our modeling system has two main goals:

1.	 To enable either automated or manual translation of 
VHDL code to ACL2

2.	 To allow for independent auditing to ensure that the 
VHDL model and the ACL2 model for a particular 
system correspond

To support these goals, we focused on providing VHDL-
like syntactic constructs in ACL2. This approach 
allowed us to incrementally improve the faithfulness of 
the modeling system’s semantics without breaking the 
existing translation of the SCIP’s design. In the Data 
Types section, we describe our motivations for altering 

Example 3.  A side-by-side comparison of VHDL (on the left) and its ACL2 equivalent (on the right) using our defentity,  
defprocess, and defarchitecture macros



J. A.  PENDERGRASS

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)470

local variables; this allows free variables in the body of a 
defprocess to be resolved as port/signal names as in 
VHDL. To guarantee that the body depends only on the 
input ports and signals of the entity and updates only 
output ports and signals, defprocess uses the macros 
introduced by defentity for introducing port preser-
vation and independence theorems.

VHDL processes may be either combinatorial or 
sequential. A combinatorial process defines its outputs 
as an arithmetic or logical combination of its inputs. 
Sequential processes are more like functions in a tra-
ditional programming language; they consist of a series 
of statements that are executed one after another and 
may make use of intermediate state by assigning values 
to local variables. Our framework supports only combi-
natorial processes because these map well onto ACL2’s 
notion of variables and because the SCIP does not make 
use of sequential processes. Although our framework 
could directly support sequential processes, it has no 
way to represent the interleaving of sequential actions 
and hence would force sequencing of process executions. 
This would cast into doubt the correctness of proofs for 
sequential processes that make temporary updates to 
shared input-output signals.

Architectures
VHDL architectures follow a syntactic construct 

that groups the internal signals, subcomponents, con-
current statements, and processes of an entity into a 
complete description of the component’s behavior. The  
defarchitecture macro is intended to indi-
cate a similar grouping of functional units. The  
defarchitecture block in Example  3 defines a 
step function that is the composition of the two pro-
cesses and a single step of the component child.  
Defarchitecture also introduces theorems that 
show that the final state is independent of the order in 
which processes are composed. This is an important the-
orem because VHDL processes are evaluated in parallel, 
while our framework evaluates the processes sequentially. 
Because our framework supports only combinatorial pro-
cesses, proving that the result of a step is independent 
of the order in which the processes are evaluated suf-
fices to show that their parallel execution is equivalent 
to the chosen serialization. If our framework supported 
sequential processes, a more detailed theorem showing 
all possible interleavings of processes would be needed.

Data Types
Initially our VHDL models used ACL2 numeric types 

for vectors of VHDL logical values and a symbolic repre-
sentation for the SCIP’s compound instructions to sim-
plify decoding logic. This approach made it easy for us to 
model the SCIP using the defentity, defprocess, 

and theorems necessary for instantiating and reasoning 
about entities in ACL2. In particular, defentity uses 
defstructure10 to introduce a type predicate for the 
new entity and accessors and mutators for the inputs, 
outputs, signals, and components listed.

In Example 3, defentity is used to introduce an 
entity called myent, with input ports in1 and in2, 
output ports out1 and out2, a signal sig1, and a sub-
component child. The defentity macro will intro-
duce a number of functions including a state predicate: 
myent-state-p, accessors such as myent-in1, and 
mutators such as myent-set-in1.

Unlike in VHDL, the internal signals and sub-
components of an entity must be listed as arguments 
to defentity. To simulate VHDL’s latching behav-
ior, each internal signal of the entity corresponds 
to two distinct fields of the structure generated by  
defentity; the first field has the same name as the 
signal and contains the initial signal value, the second 
field is named by appending a “+” character to the signal 
name and is assigned the computed next value for the 
signal. The defentity macro introduces a function  
entity-update-state, which is used to update the 
signal fields.

As in VHDL, the component definition must include 
a mapping between the input and outputs of the child 
and the signals of the parent entity. This mapping is 
used by defentity to generate an update function 
for the child component, which uses copy-in-copy-out 
semantics to provide the child’s inputs, step the child, 
and map the outputs into the parent’s state.

Additionally, defentity introduces macros for 
generating theorems that specify which ports are 
read or written by a form. These macros are used by  
defprocess and defarchitecture to ensure that 
processes depend only on input ports and the input half 
of internal signals, and write only to output ports and 
the output half of internal signals. Because the SCIP 
does not use input-output ports, our macro system does 
not currently support them.

Processes
A VHDL process describes how the values of the 

input ports and internal signals of an entity are com-
bined to compute the values of output ports and to 
update internal signals. Processes correspond roughly to 
functions in a traditional programming language, and 
thus we use ACL2 functions to model VHDL processes.

The defprocess form in Example  3 generates a 
function called myent-proc1. This function applies 
the body of the defprocess form to an argument rep-
resenting the state of a myent instance. The process is 
used in the defarchitecture block later to define 
the single-step behavior of the myent entity.

For convenience, the input ports and signals values 
on the input state are bound to appropriately named 
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data type from numeric values, which prevented us 
from using typing rules for any port or signal that could 
contain either instructions or data. This was the most 
significant challenge we faced with our original typing 
model; as the complexity and scope of our proofs grew, 
it became impossible to maintain consistency without 
the ability to coerce a number into an instruction. In 
our new model, the necessary bit slicing logic is simple, 
and so we use the faithful representation of instructions 
as bit vectors.

Most of the modifications required to switch our 
model of the SCIP to this new data model were auto-
mated search-and-replace operations. The new data 
model represents VHDL’s std-logic type directly in ACL2 
and VHDL’s vector types as ACL2 lists beginning with 
the least significant bit. The representation of vectors 
of std-logic types is similar to the bitlists described in 
the Proofs in ACL2 section. This implementation allows 
us to use structural recursion and existing list manipu-
lation primitives such as car, cdr, append, etc., to 
implement the common bit slicing operations of VHDL. 
We implemented conversion functions int-to-std-
logic-list and std-logic-list-to-int for 
converting between non-negative ACL2 integers and 
std-logic lists. We also implemented basic arithmetic 
and logical operations such as incrementing, decrement-
ing, and, or, not, and logical shifts on fixed-length lists 
of std-logic values. We proved that these operations have 
the expected algebraic properties and correspond with 
operations on non-negative integers (modulo 2 to the 
length of the list). In keeping with our policy of disci-
plined level separation, the SCIP model relies only on 
these theorems and not directly on the implementation 
of the data types.

STACK DESIGN IN THE SCIP
The SCIP maintains two internal stacks: a parameter 

stack (pstack) used to provide operands for instruc-
tions and store results and a return stack (rstack) used 
to store the return address of call instructions. Because 
many instructions rely on or manipulate these stacks, 
the major proofs presented in the Proving Correctness 
section focus on showing that the VHDL implementa-
tion of the SCIP conforms to the abstract properties of 
a stack in normal operation and behaves predictably in 
exceptional situations (such as underflow or overflow).

The pstack and rstack are implemented as 16- 
element arrays of word-size registers (pregfile and 
rregfile, respectively) combined with two 4-bit 
index registers (ptopi and poveri for the pstack 
and rtopi and roveri for the rstack) indicating 
the index of the top element contained in the array 
and the overflow point (bottom element). Note that 
this scheme naturally forms a ring because increment-
ing the index registers will wrap around from the last 

and defarchitecture macros described but made 
the correctness theorems more difficult to prove. We 
encountered three main problems that led us to reimple-
ment our underlying data model by using lists of logi-
cal values. We briefly describe these challenges before 
describing our new approach in greater detail.

VHDL’s standard logic type includes nine different 
values: U (uninitialized), X (strong drive, undefined 
value), 0, 1, Z (high impedance), W (weak drive, unde-
fined value), L (weak drive, logically 0), H (weak drive, 
logically 1), and - (don’t care), whereas ACL2 integers 
may represent only (sequences of) zeros and ones. This 
was rarely significant, as the SCIP’s design tends to rely 
solely on the logical interpretation of values. However, 
the inability to faithfully represent “undefined” and 
“uninitialized” meant that our theorems were valid only 
for well-defined inputs, which is not necessarily a rea-
sonable assumption.

The length of a VHDL vector is fixed by its declara-
tion, whereas ACL2 integers are unbounded. This led 
to the need to explicitly coerce any computed value by 
using the modulus function. The implementation of 
modulus in ACL2 is not particularly transparent and is 
difficult for a beginning user to manipulate in theorems. 
We learned later that a more powerful set of theorems 
for working with modular arithmetic is included in the 
ACL2 distribution, but by that time we had completed 
our reimplementation.

A related challenge is that ACL2 integers are poorly 
suited to bit slicing operations common in VHDL. As 
we discuss further in the Stack Design in the SCIP sec-
tion, the instruction set of the SCIP uses a packed bit 
field to specify several primitive operations in each 
instruction word. Figure 1 shows an example instruction 
that performs an addition of ptop and pnext, pushes 
the result on top of the pstack, and performs a return.

Initially we modeled instructions as lists of symbols 
describing each operation performed. This avoided 
complex bit slicing logic for decoding. For example, 
the instruction in Fig.  1 was represented as the list 
(alu a+b next push return). This made decod-
ing trivial but meant that instructions were a different 

Basic ALU instruction,
operands are ptop and pnext

AdditionIgnoredPop return stack
after execution

Push result on top
of operand stack

1011 1 01 010 00 0010

Figure 1.  The SCIP instruction to add the top two elements of 
the pstack, push the result on top of the pstack, and perform 
a return. ALU, arithmetic logic unit.
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instruction set’s correctness on a per- 
instruction basis would be infeasible. 
Instead, we focused on specifying and 
verifying the effects of primitive oper-
ations, such as stack manipulations, 
with the intent to later verify that the 
cumulative effect of an instruction is 
consistent with the composition of the 
effects of its component operations.

PROVING CORRECTNESS
Although our long-term goal is for 

a complete verification of the instruc-
tion set semantics of the SCIP, in this 
article we focus on proving that the 
SCIP’s implementation of push and 
pop operations is equivalent to apply-
ing the cons and cdr (prepend 
and tail) operations on the param-
eter stack represented as a list. These 

theorems rigorously define the abstract semantics of the 
relevant instructions and could be used in future efforts 
to prove the correctness of software targeting the SCIP. 
We separate the problem into two cases: verifying that 
stack updates are performed correctly when no overflow 
or underflow occurs and verifying that overflow and 
underflow conditions are correctly handled.

Standard Operation
We must show that, at the beginning of the clock 

cycle after an instruction specifying a push operation, the 
stack contains the element pushed, followed by the ele-
ments of the previous stack. Similarly, for pop operations, 
the new stack must be the old stack with the top element 
removed. The exact statement of the theorem proved for 
the case of push operation is shown in Example 4. Note 
that this theorem is concerned only with the portion of 
the pstack contained in the register file and does not 
describe the updates to the ptop and pnext registers.

This theorem shows that, after the execution of a 
push operation, the pstack is defined by the cons of 
the new element onto the original pstack. The theo-
rem for pop operations, scip-pop-pstack-cdr (not 
shown), is analogous with the new pstack defined 
by the cdr of the original. Figure  3 shows pictorially 
how the new value of ptopi is computed; solid lines 
represent control flow and originate from diamonds, 
which represent conditionals or guards, while dashed 
lines represent data flow and originate from rectangles, 
which show each data update. From Fig. 3, the need for 
at least three internal steps is clear: the first step sets 
the ptopi_plus1 and ptopi_minus1 signals of 
the pstack (pstack[ptopi_plus1] and pstack 
[ptopi_minus1], respectively), the second step 

(15th) element of the array to the first (0th) element. 
In addition to these arrays, the SCIP includes dedicated 
registers to hold the top two elements of the pstack 
(ptop and pnext) and the top element of the rstack 
(rtop). Figure 2 shows conceptually how the pstack 
is constructed from these registers.

The SCIP can also be configured to store additional 
elements from the stacks in main memory by setting the 
stack-enabled (stackenb) bit in the processor control 
register (pcr). If this bit is set, then overflow or under-
flow of the on-processor stack registers will cause the 
SCIP to enter a special overflow (resp. underflow) 
mode for two clock cycles while a stack element is writ-
ten to (resp.  read from) main memory. While 
in this special mode, the SCIP does not execute user 
instructions.

Another important feature of the SCIP design is 
that the instruction set consists of a small number of 
instruction classes, each of which is really a packed bit-
field structure specifying a number of different primitive 
operations and options. For example, the instruction 
in Fig.  1 includes an arithmetic operation, a pstack 
operation (push), and a bit indicating that the top of 
the rstack should be popped into the PC to perform a 
return. All arithmetic and logical operations take ptop 
as their first operand, but the second operand may come 
from an immediate value, a register, or pnext. Simi-
larly, the result of an operation may be placed on the 
pstack or in a register.

This expressiveness leads to a multiplicative explo-
sion in instruction set size: rather than having one return 
operation, four stack operations, and four arithmetic oper-
ations, the SCIP has 32 return+stack+arithmetic opera-
tions. In total, the SCIP has 18 different instruction forms 
totaling more than 9000 unique opcodes. To verify the 

0
1

2

3

4

5

6
78

9

10

11

12

13

14
15

15

14

13

12

11

10

9

ptopi
ptop

pnext

pregfile

poveri

ptop

pnext

0

Figure 2.  The pstack is assembled from the ptop register, the pnext register, and the 
elements of the pregfile starting at ptopi and counting down (mod 16) to poveri.
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ensure that the processor is mid clock cycle, not operating 
on stretched cycles, and will not reset its state on the next 
clock rise. This is essentially the normal operating state of 
the processor. The next two hypotheses indicate that the 
current instruction includes the stack operation in ques-
tion (push or pop). The predicate std-logic-
defined-list-p is a type predicate to guarantee that 
all the bits of the ptopi and poveri registers have well-
defined logical values (i.e., are neither X nor U). The two 
hypotheses (integerp n) and (>= n 3) are used to 
force the SCIP to step enough times for the pstack logic 
to update ptopi_n. The scip-pop-pstack-cdr 
theorem has an extra hypothesis to disallow the case in 

which the ptopi and poveri 
registers are equal; in this case, 
the stack is considered empty, 
and thus the new stack after the 
pop operation cannot be defined 
in terms of the original. In con-
trast, scip-push-pstack-
cons can handle this case 
because pushing onto an empty 
stack yields a stack of one 
element.

We proved a third theorem 
showing that the pstack 
register file is unchanged if 
the current instruction is not 
a stack operation or specifies 
either a no-op or swap opera-
tion. This theorem is simpler 
than the other two but is other
wise analogous.

Handling Overflow and 
Underflow

If a push operation would 
cause the ptopi register to 

updates the ptopi_next(pstack[ptopi_next]) 
signal of the pstack, and the third step updates the 
processor’s ptopi_n signal.

The hypotheses of our theorems provide guarantees 
about the state of the processor analogous to the guards 
shown in the diamonds of Fig. 3. The compound predi-
cate scip-pstack-inputs-ready-p guarantees 
that the other inputs to this computation, state, ir, 
and ptopi, are held constant until the next clock rise. 
The next three hypotheses,

(not (equal (scip-reset st) 1))
(not (rising-edge (scip-clk)) st)

(equal (scip-stretch st) 0),

Example 4.  Statement of the principal correctness theorem for the pstack push operation

pstack[ptopi_next]
ptopi

pstack[ptopi_next]
pstack[ptopi_plus1]

ptopi_n
pstack[ptopi_next]

pstack[ptopi_minus1]
 (ptopi - 1) mod 16

pstack[ptopi_plus1]
 (ptopi + 1) mod 16

ptopi   ptopi_n

rising_edge(clk)^
reset = 0

ST_SWAP V
ST_NOP

state = T_EXEC ^
instrready = 1 ^

instr_class_stack(ir)

stackop(ir)
no

ST_PUSH ST_POP

pstack[ptopi_next]
pstack[ptopi_minus1]

yes

Figure 3.  The control and data flow used to calculate the value for ptopi at the next clock cycle.
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advance to the value of the poveri register, the SCIP 
suspends execution of the user program for two clock 
cycles, during which it stores the element of the stack 
pointed to by poveri to main memory on the basis of 
the value of the psp register, and increments poveri. 
Analogously, if a pop operation causes the ptopi reg-
ister to decrease to poveri + 1, the processor will 
insert cycles to read an element of the stack from main 
memory. We have not yet completed a model of main 
memory, and thus we cannot show that the correct data 
are fetched. We have shown that the processor correctly 
identifies the overflow or underflow, enters the desired 
state, writes the correct values to the output ports for 
reading and writing data from/to main memory, and 
updates the psp register appropriately.

These proofs are more complex than the proofs of 
normal operation because they must describe behav-
ior spanning four clock cycles: the cycle during which 
overflow/underflow is detected, two repair cycles, and 
the beginning of the next cycle of normal execution. 
One of the most complex operations of this procedure 
is calculating the new value of the psp register. In the 
case of overflow, the first repair cycle is used to compute 
the new psp value by placing its high 15 bits on bbus, 
using the arithmetic logic unit (ALU) to decrement this 
value, writing this value onto the wbus, and setting 
the high bits of the psp_n signal to the low 15 bits of 
the wbus padded with a 0, and finally setting psp to 
psp_n on the next rising clock edge. Figure 4 illustrates 
this process.

The result is that the psp register is decreased by 2 
(modulo 216) before the overflowed value is stored in 
memory at the address referenced by psp. The underflow 
case is essentially the inverse operation and is performed 
during the second repair cycle so that the read request is 
issued before the update to psp. The symmetry is neces-
sary to ensure that overflowed data are fetched properly 

during the next underflow event. Further, because the 
read request is issued during the first underflow repair 
cycle, the data are available when normal execution is 
resumed after the second repair cycle. Note that if psp is 
even (word aligned), the overflow procedure is a subtrac-
tion by 2, which is the desired effect. However, if psp is 
odd, it will subtract 3 before storing the overflowed value. 
The only way for psp to take on an odd value is via 
direct manipulation by a user program. If the user stores 
an odd value to psp, the overflow/underflow protocol 
will still function properly because the first overflow will 
fix psp to an even value, and the result of underflow 
after an explicit update to psp without an intervening 
overflow cannot be meaningfully defined anyway.

CONCLUSION
The SCIP has been used in numerous APL-devel-

oped flight instruments and will be used for several in 
the future. Its simplicity makes it an attractive target 
for verification efforts, and its utility makes it a key 
APL technology. Seen as a single component, the SCIP 
may seem like a curiosity—a processor employing an 
unusual processor architecture without pipelining or 
other advanced processor optimizations. But in reality, 
it resides comfortably at the center of a layered system 
that allows APL flight instruments to provide a critical 
contribution to APL and the wider space community. 
The SCIP provides a foundation for the execution of 
a multitasking real-time operating system,11 which in 
turn provides a foundation for a reusable commanding 
and telemetry management library,12 which in turn pro-
vides a foundation for the development of instrument-
specific software routines, allowing APL-developed 
instruments to leverage a significant amount of heritage 
design from one instrument to the next.13 Each layer of 
this architecture relies on the correctness of the layers 
below to function properly. Formal proof of the cor-
rectness of lower layers provides ripple benefits, as the 
assumptions made by each subsequent layer can then 
be verified with respect to the guarantees proved by the 
lower layer.

In this article, we have described our experience 
precisely specifying one aspect of the SCIP’s behavior: 
parameter stack manipulation. We have described the 
framework we developed for representing the SCIP’s 
VHDL design in the language of ACL2 and highlighted 
the more significant theorems we proved. The theorems 
we proved showing the exact state transitions caused 
by stack manipulation instructions are the first steps 
toward a complete verification of the SCIP’s implemen-
tation and formalization of its instruction set. Develop-
ers would rely on the guarantees provided by these and 
other analogous theorems when developing or verifying 
critical software targeting the SCIP, such as the operat-
ing system, compiler, libraries, and application software.

bbus     0 & psp(15 downto 1)

aluout   (bbus - 1)

rising_edge(clk)

wbus     aluout

psp_n     wbus(14 downto 0)&0

psp     psp_n

Figure 4.  During the first overflow cycle, the new psp is com-
puted by subtracting 2 from the original value.
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Developing and verifying a complete specification 
for even a small processor like the SCIP is a significant 
undertaking. However, much of the challenge comes in 
modeling the system in a form amenable to specifica-
tion and proof. Once this groundwork is laid, the major 
obstacles stem from the need to understand exactly 
what the specification should be, and the discovery that 
elements of the models may be inconsistent with the 
true implementation. Given the breadth of the lemmas 
required to prove the properties presented here, future 
proofs of the correctness of the SCIP’s design should 
follow naturally.
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