
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 465

his article describes a formal approach to the specification and verif ication
of a microprocessor design and presents a case study of applying this tech-

nique to the Scalable Configurable Instrument Processor. These activities
greatly increase confidence that the microprocessor correctly implements its intended
functionality. In addition, the formal specification of the processor’s functionality pro-
vides the basis for future work verifying the correctness of software.

Verification of Stack Manipulation in the
Scalable Configurable Instrument Processor

J. Aaron Pendergrass

state. For example, the push operation of most proces-
sors is understood to append data to the top of the stack,
which in the nominal case it does, but there are many
exceptional cases in which a push operation may cause
an error or some other behavior for which the program-
mer must account. For a program to be correct, it must
be impossible for such exceptional states to arise during
the execution of the program, or the programmer must
have correctly predicted and handled all contingen-
cies. Many techniques, such as testing or manual code
analysis, exist for gaining confidence that a program is
correct. Unlike most of these techniques, formal verifi-
cation requires that the programmer explicitly state all
assumptions made in the code and that all possible cases
be handled. Hence, formal verification gives the greatest
assurance of program correctness but requires a precise
and rigorous definition of the computing hardware.

This article describes our experience formally speci-
fying and verifying aspects of the design of the Scal-
able Configurable Instrument Processor (SCIP), a
lightweight, low-power processor designed for use in

INTRODUCTION
Hardware specification and verification serve two

major goals: increasing confidence that hardware is
correct and facilitating verification of software at the
instruction-set level. Errors in hardware design can lead
to serious problems when software exercises some flaw
in the hardware. When the Pentium processor imple-
mented division in a way that deviated from the IEEE-
754 specification,1 it was a serious bug because it could
cause correctly implemented software to fail unexpect-
edly. The discovery of this bug and the resulting expense
to Intel motivated Advanced Micro Devices, Inc.
(AMD) to use formal verification to ensure that their
implementation was correct.

Although hardware errors are of great concern, system
failures caused by software errors are far more common.
The overwhelming majority of software crashes and
security vulnerabilities stem from differences between
the assumptions made by software programmers and
the actual guarantees provided by the computing hard-
ware. Programmers frequently have only an imprecise
understanding of how instructions affect the computer’s

J. A.  PENDERGRASS

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)466

spacecraft may lead to unpredictable software behavior.
This may mean the loss or silent corruption of impor-
tant scientific data, reducing the benefit of the costly
satellite. Although the SCIP is typically implemented
by using a FPGA, no APL-developed spacecraft to date
has included the ability to modify the FPGA program-
ming after launch, so there would be no way to correct a
hardware defect in an operational system. Even software
workarounds are difficult to deploy because of the lim-
ited communications channel between the satellite and
software authors. The high cost of failure motivates both
rigorous specification of the SCIP’s expected behavior
and the need for high confidence in its correct imple-
mentation. Formal verification is the only approach
capable of meeting these goals.

The SCIP’s simplicity also makes the processor an
attractive target for formal verification. The processor
performs no pipelining, out-of-order execution, or other
optimizations that may complicate instruction effects.
The entire implementation is roughly 5000 lines of
VHDL code, was written by a single designer, and uses
a small, consistent set of idioms and VHDL features. A
possible area of future work is using the formal instruc-
tion set specification as a verification tool for a more
advanced revision of the SCIP that may include features
such as pipelining.

Verification Tools
The choice of a verification tool is an important first

step in formal verification. We chose ACL2, a theorem
prover developed at the University of Texas that is based
on the LISP programming language. Verification tools
can be roughly divided into model checkers, which use
exhaustive state space exploration to automatically prove
or refute logical assertions describing either expected
or forbidden sequences of program states, and theorem
provers/proof assistants, which rely on axiomatic reason-
ing to produce proofs by applying logical inference rules.

Model checkers are popular in hardware design
circles and can be used to demonstrate the absence of
particular faults in a system (e.g., that certain events
always occur in a particular order). Model checkers
are well suited to hardware design because, like HDLs,
their modeling languages tend to be designed around
the concept of interacting state machines executing in
parallel. The most common criticism of model checkers
is that they are susceptible to a state explosion problem
on large models. Although modern model checkers may
scale well enough to handle the SCIP, they are still not
particularly well suited to the development of axiomatic
specifications, a key goal of this effort.

In contrast, theorem provers like ACL2 are designed
from the ground up to support reasoning in terms of
pre- and postconditions of sequences. This makes them
a natural fit for our goals. Unfortunately, the linear rea-

satellite-borne scientific instruments. The theorems we
state provide the first steps toward the definition of the
semantics of each instruction that would enable formal
verification of software written for the SCIP. Because we
prove that the design of the processor satisfies the theo-
rems, software developers may be confident that these
definitions correspond to the actual behavior imple-
mented by the processor.

Formal verification requires three components: a
model of the system to be verified, a specification of the
system’s intended behavior, and a proof that the model
implements the specification. We chose to model the
SCIP at the hardware description language (HDL) level.
This allows our proofs to address the logical correct-
ness of the SCIP design but prevents us from proving
lower-level properties such as that the processor layout
satisfies timing requirements. To model the SCIP’s HDL
design, we developed a framework in our chosen proof
tool, ACL2 (or A Computational Logic for Applicative
Common Lisp), for representing the VHSIC Hardware
Description Language (VHDL), and then we translated
the SCIP’s VHDL code to this framework. We specified
the intended behavior of the SCIP as theorems defin-
ing the pre- and postconditions of instructions involving
push and pop operations and used ACL2’s automated
theorem prover to develop proofs that our model satis-
fied these theorems. Although our theorems specify
only part of the expected behavior of the SCIP, they
demonstrate the feasibility of our approach and increase
confidence in critical functionality of the processor.
The proofs of our theorems rely on numerous lemmas
defining basic properties of modular bitwise arithmetic
and significant results for every major functional unit of
the SCIP. Future work may expand our specification by
proving additional theorems defining the behavior of
the SCIP for other operations.

MOTIVATION

Why Choose the SCIP?
The SCIP is a stack-based microprocessor with 16-bit

instructions and a configurable 16- or 32-bit data path.
It was designed at APL to be a simple, lightweight, low-
power processor suitable for implementation using a
field-programmable gate array (FPGA). The SCIP uses
a densely packed instruction set that allows for compact
program code, a critical feature for embedded software
expected to run in low-memory environments. The SCIP
has been used in several APL-developed instruments
on active missions including Juno2 and the Van Allen
Probes (formerly the Radiation Belt Storm Probes).3

We chose the SCIP as a test case for verification
because of its use in satellites, as well as the simplic-
ity of the processor’s design. A bug or unexpected fea-
ture in the processor while it is deployed as part of a

VERIFICATION OF STACK MANIPULATION IN THE SCIP

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 467

the result of evaluating the other elements in the list.
Thus, the S-expression (+ 1 (* 4 5)) evaluates to 21 by
first evaluating (* 4 5) to produce 20 and then evalu-
ating (+ 1 20). To enable automated reasoning, ACL2
imposes several restrictions on its input language: all
functions must provably terminate, statements may not
modify program state, and functions cannot be passed as
arguments to other functions.

To ensure termination, ACL2 requires that all func-
tions either be nonrecursive or recur with a strictly
decreasing measure function. For example, ACL2 can
automatically prove that a recursive function terminates
if the function operates on a list that is shortened at
each recursive call site. All recursive functions we used
to model the SCIP followed this pattern, and thus ACL2
was easily able to prove termination.

ACL2 functions must always be pure functions from
their inputs to their outputs. In most programming lan-
guages, variables represent a box in which a value can be
stored; at any time, the value in the box may be retrieved
or replaced with a different value. In ACL2, as in mathe-
matics, a variable is a name given to an unknown value.
As a result, there is no assignment statement and hence
no ability for a program to modify external state. This
guarantees that the rewriting system can consider func-
tion invocations without concern for the order or con-
text in which they are called. In particular, it implies
that it is safe to replace the invocation of a function with
the function’s body. We avoid side effects by writing our
models as functions from the complete current state of
a hardware unit to the complete next state (including
unchanged values).

Higher-order functions (i.e., functions that accept
functions as arguments or return functions) are a promi-
nent and popular feature of most LISP-like languages.
Unfortunately, to allow for greater automation of theo-
rem proving, ACL2 does not support higher-order func-
tions. This restriction makes it difficult or impossible to
generalize interfaces in ways common to LISP; functions
such as mapcar, which applies a function to each ele-
ment of a list, are not expressible in ACL2.

ACL2 supports LISP-style macros, which allow the
programmer to introduce new syntactic forms and con-
trol the order of term evaluation. Some applications
of higher-order functions can be simulated by using
macros. Our framework for modeling VHDL in ACL2
relies heavily on macros to allow a nearly line-for-line
translation without exposing the difficulty of mapping
between the differing semantics of the two languages.

Proofs in ACL2
Theorems in ACL2 are introduced using the top-

level defthm event form. Theorems are given as
S-expressions with an implicit universal quantification
over all free variables. ACL2 attempts to prove a theo-

soning used by most theorem provers is not ideally suited
to the parallelism of HDLs. Our solution to this is to
show that, although the VHDL processes may execute in
parallel, their effects are independent, and thus they can
be treated as independent functions. We chose ACL2
over other axiomatic proof systems such as Coq or Isa-
belle because of the abundance of literature focused on
the topic of using ACL2 for hardware description verifi-
cation. There is a significant body of work representing
HDLs in ACL2 that served as a starting point for our
own embedding of VHDL.

RELATED WORK
ACL2 and its predecessor, Nqthm, have a long history

of use in hardware design verification. Probably the best-
known example is the verification of the kernel of the
AMD floating point division algorithm by Moore et al.4
This work focused on proving that the algorithm cor-
rectly implemented floating point division as defined in
the IEEE floating point standard. It did not attempt to
verify the HDL specification of the algorithm.

Hunt and Brock5 introduce an HDL with seman-
tics formally defined in ACL2 and use it to specify and
verify the design of the FM9001 processor. Their HDL
can be mechanically translated into a preexisting HDL
for synthesis.

Georgelin et al.6 describe a system for modeling VHDL
in ACL2 that uses macros to provide syntactic constructs
similar to the original VHDL. We build on their work by
introducing a more faithful model of VHDL types and
support for hierarchically nested components.

ACL2
ACL2 is both a LISP-like language and an automated

term rewriting theorem prover.7 ACL2 was principally
developed by Matt Kaufmann and J. Strother Moore as
the successor to Nqthm and the Boyer–Moore theorem
prover.8 ACL2 is an attractive tool for hardware design
verification because of its high level of automation,
familiar syntax, history of application in the field, and
active user community.

Programming in ACL2
ACL2’s input language is a LISP dialect, which makes

it straightforward for anyone with a LISP background
to write simple functions in ACL2. Like LISP, ACL2’s
syntax is based on S-expressions. An S-expression is
either a symbol such as foo or a list of S-expressions
enclosed in parentheses such as (foo bar baz). Sym-
bols evaluate to some value determined by the current
environment (notably, symbols that are numbers, such
as 12, always evaluate to themselves). Lists are evaluated
by applying the function named by the first element to

J. A.  PENDERGRASS

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)468

evenp-bitlist-append of Example 2 states that if
the first element of a bitlist is zero, then appending any
other bitlist to it will yield a result representing an even
number. Because the proof of this theorem relies both on
facts about list appending in general and on facts that are
unique to bitlists, ACL2 is unable to prove it as written.

The first theorem of Example 2, append-car, states
that the first element of the value returned by the append
function is the same as the first element of its first argu-
ment (the function car returns the first element of a
list). The second theorem, evenp-bitlist-to-int,
states that if the first element of a bitlist is zero, then
the numerical interpretation of the bitlist is even. The
final theorem, evenp-bitlist-append, states that
if the first element of a bitlist is zero and another bitlist
is appended to it, then the result will represent an even
number. This is true because, by the first theorem, we
know that the first element of the resulting bitlist will be
zero, and by the second theorem, we know that the inte-
ger interpretation of a bitlist starting with zero is even.
Unfortunately, applying the first theorem requires that
ACL2 rewrite the call (bitlist-append b2 b1)
with its definition (append b1 b2), which no longer
matches the statements of bitlist-append-thm or
evenp-bitlist-to-int. This prevents ACL2 from
automatically proving the theorem as stated. The actual
theorems also require hypotheses that all variables have
appropriate types; however, even with these hypotheses,
the theorem cannot be proved because of ACL2’s rewrit-
ing strategy.

The solution to this problem is to carefully control
the set of rules that ACL2 will use to prove new theo-
rems, called the “current theory.” One approach is to
carefully introduce rules that pattern match on function
bodies to reassemble the original invocation.9 The key
to this approach is strategically enabling and disabling
theorems during subproofs. We found this approach
somewhat contrary to the goal of automated proof find-
ing and instead focused on a strategy of disciplined
abstraction levels.

Rather than allow ACL2 to “simplify” instances of
bitlist-append to append, we explicitly lift the
needed theorems and disable the definition of bitlist-
append. Thus, to solve the problem of Example 2, we
would define a lifted version of append-car called
bitlist-append-car, which states essentially the
same theorem in terms of bitlist-append. This
approach requires a fair amount of additional boiler-
plate code for lifting “obvious” theorems but prevents
excessive case splitting and reduces the prover’s reliance
on explicit hints. In the Data Types section, we discuss
another benefit of this approach: because of the strict
layering, we were able to replace the underlying data
model of our framework without requiring significant
changes to the model of the SCIP.

rem by applying a series of rewrite rules to transform the
theorem into something that is trivially true. Example 1
is a common form of an ACL2 theorem. If given such an
event, ACL2 would attempt to use the definitions of h1,
h2, f, and g and any other currently active theorems
or definitions to show that for any choice of x, y, and
z satisfying both (h1 x y z) and (h2 x y z),
(f x y z) is equal to (g x y z). If successful, ACL2
introduces a new rewrite rule, which it may use in future
proofs to replace (f x y z) with (g x y z). Every
theorem and function introduced in ACL2 affects the
way ACL2 attempts to prove future theorems.

The key to effective use of ACL2 is understanding
how the proof engine decides which rules to use under
which circumstances. A common stumbling block is
ACL2’s difficulty in moving between levels of abstrac-
tion: once ACL2 expands the definition of a term, any
theorem that refers to the term by name can no longer
be applied (because the term’s name has been replaced
by its body).

Example 2 demonstrates this problem. Our model makes
heavy use of lists of bits, called bitlists, such as (1 0 0) or
(0 0 1). The function bitlist-append uses ACL2’s
built-in append function to append two bitlists—for
example, (bitlist-append ’(0 0 1) ’(1 0 1))
evaluates to (0 0 1 1 0 1). The function bitlist-
to-int converts bitlists to integers, with the bits
interpreted from least to most significant—for exam-
ple, (bitlist-to-int ’(0 0 1)) evaluates to
4, (bitlist-to-int ’(1 0 1)) evaluates to 5,
and (0 0 1 1 0 1) evaluates to 44. The theorem

Example 1.  A common structure for ACL2 defthm events:
given hypotheses (h1 x y z) and (h2 x y z), the form
(f x y z) can be replaced by (g x y z)

Example 2.  The last theorem, evenp-bitlist-append,
follows directly from the previous two, but applying append-
car requires unfolding the definition of bitlist-
append, which prevents ACL2 from applying the theorem
evenp-bitlist-to-int

VERIFICATION OF STACK MANIPULATION IN THE SCIP

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 469

the core data types used by the SCIP model. This change
was straightforward because of the syntactic abstrac-
tions we used to build the model initially. Because of
time constraints, we were unable to develop an auto-
mated translation tool targeting our modeling system.
Instead we relied on a manual translation of the SCIP’s
source code; proof of the theorems stated in the Prov-
ing Correctness section required translation of roughly
4000 lines of the SCIP’s VHDL design. The major entity
that was not translated was the SCIP’s arithmetic/logi-
cal unit because it was not relevant to the theorems.

Our modeling system uses three top-level macros,
defentity, defprocess, and defarchitecture,
for describing VHDL entities, processes, and architec-
tures, respectively. Example 3 illustrates the use of these
macros to represent VHDL code. There is some diver-
gence between the ACL2 macro-based syntax and the
original VHDL; most notably, internal signals and com-
ponents are described in the defentity block, and
processes are defined at the top level and then explicitly
listed in the defarchitecture block.

Entities
In VHDL, entities represent the interface to architec-

tural components in terms of input and output ports. In
ACL2, the defentity macro introduces the functions

MODELING ARCHITECTURE
The first component of formal verification is a model

of the system to be verified in the language of the veri-
fication tool. Because our proofs are developed on the
basis of this model and not the original VHDL source
code, any confidence gained by performing formal veri-
fication is limited by the model’s fidelity and accuracy.
To represent the SCIP’s design in ACL2’s LISP dialect,
we build on the work of Georgelin et al.6 We use ACL2/
LISP macros to provide a syntactic layer that is nearly
comparable, line for line, to the original VHDL source
code. These macros expand to ACL2 functions that
implement the VHDL behavior and theorems that guar-
antee the validity of the model.

Our modeling system has two main goals:

1.	 To enable either automated or manual translation of
VHDL code to ACL2

2.	 To allow for independent auditing to ensure that the
VHDL model and the ACL2 model for a particular
system correspond

To support these goals, we focused on providing VHDL-
like syntactic constructs in ACL2. This approach
allowed us to incrementally improve the faithfulness of
the modeling system’s semantics without breaking the
existing translation of the SCIP’s design. In the Data
Types section, we describe our motivations for altering

Example 3.  A side-by-side comparison of VHDL (on the left) and its ACL2 equivalent (on the right) using our defentity,
defprocess, and defarchitecture macros

J. A.  PENDERGRASS

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)470

local variables; this allows free variables in the body of a
defprocess to be resolved as port/signal names as in
VHDL. To guarantee that the body depends only on the
input ports and signals of the entity and updates only
output ports and signals, defprocess uses the macros
introduced by defentity for introducing port preser-
vation and independence theorems.

VHDL processes may be either combinatorial or
sequential. A combinatorial process defines its outputs
as an arithmetic or logical combination of its inputs.
Sequential processes are more like functions in a tra-
ditional programming language; they consist of a series
of statements that are executed one after another and
may make use of intermediate state by assigning values
to local variables. Our framework supports only combi-
natorial processes because these map well onto ACL2’s
notion of variables and because the SCIP does not make
use of sequential processes. Although our framework
could directly support sequential processes, it has no
way to represent the interleaving of sequential actions
and hence would force sequencing of process executions.
This would cast into doubt the correctness of proofs for
sequential processes that make temporary updates to
shared input-output signals.

Architectures
VHDL architectures follow a syntactic construct

that groups the internal signals, subcomponents, con-
current statements, and processes of an entity into a
complete description of the component’s behavior. The
defarchitecture macro is intended to indi-
cate a similar grouping of functional units. The
defarchitecture block in Example 3 defines a
step function that is the composition of the two pro-
cesses and a single step of the component child.
Defarchitecture also introduces theorems that
show that the final state is independent of the order in
which processes are composed. This is an important the-
orem because VHDL processes are evaluated in parallel,
while our framework evaluates the processes sequentially.
Because our framework supports only combinatorial pro-
cesses, proving that the result of a step is independent
of the order in which the processes are evaluated suf-
fices to show that their parallel execution is equivalent
to the chosen serialization. If our framework supported
sequential processes, a more detailed theorem showing
all possible interleavings of processes would be needed.

Data Types
Initially our VHDL models used ACL2 numeric types

for vectors of VHDL logical values and a symbolic repre-
sentation for the SCIP’s compound instructions to sim-
plify decoding logic. This approach made it easy for us to
model the SCIP using the defentity, defprocess,

and theorems necessary for instantiating and reasoning
about entities in ACL2. In particular, defentity uses
defstructure10 to introduce a type predicate for the
new entity and accessors and mutators for the inputs,
outputs, signals, and components listed.

In Example 3, defentity is used to introduce an
entity called myent, with input ports in1 and in2,
output ports out1 and out2, a signal sig1, and a sub-
component child. The defentity macro will intro-
duce a number of functions including a state predicate:
myent-state-p, accessors such as myent-in1, and
mutators such as myent-set-in1.

Unlike in VHDL, the internal signals and sub-
components of an entity must be listed as arguments
to defentity. To simulate VHDL’s latching behav-
ior, each internal signal of the entity corresponds
to two distinct fields of the structure generated by
defentity; the first field has the same name as the
signal and contains the initial signal value, the second
field is named by appending a “+” character to the signal
name and is assigned the computed next value for the
signal. The defentity macro introduces a function
entity-update-state, which is used to update the
signal fields.

As in VHDL, the component definition must include
a mapping between the input and outputs of the child
and the signals of the parent entity. This mapping is
used by defentity to generate an update function
for the child component, which uses copy-in-copy-out
semantics to provide the child’s inputs, step the child,
and map the outputs into the parent’s state.

Additionally, defentity introduces macros for
generating theorems that specify which ports are
read or written by a form. These macros are used by
defprocess and defarchitecture to ensure that
processes depend only on input ports and the input half
of internal signals, and write only to output ports and
the output half of internal signals. Because the SCIP
does not use input-output ports, our macro system does
not currently support them.

Processes
A VHDL process describes how the values of the

input ports and internal signals of an entity are com-
bined to compute the values of output ports and to
update internal signals. Processes correspond roughly to
functions in a traditional programming language, and
thus we use ACL2 functions to model VHDL processes.

The defprocess form in Example 3 generates a
function called myent-proc1. This function applies
the body of the defprocess form to an argument rep-
resenting the state of a myent instance. The process is
used in the defarchitecture block later to define
the single-step behavior of the myent entity.

For convenience, the input ports and signals values
on the input state are bound to appropriately named

VERIFICATION OF STACK MANIPULATION IN THE SCIP

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 471

data type from numeric values, which prevented us
from using typing rules for any port or signal that could
contain either instructions or data. This was the most
significant challenge we faced with our original typing
model; as the complexity and scope of our proofs grew,
it became impossible to maintain consistency without
the ability to coerce a number into an instruction. In
our new model, the necessary bit slicing logic is simple,
and so we use the faithful representation of instructions
as bit vectors.

Most of the modifications required to switch our
model of the SCIP to this new data model were auto-
mated search-and-replace operations. The new data
model represents VHDL’s std-logic type directly in ACL2
and VHDL’s vector types as ACL2 lists beginning with
the least significant bit. The representation of vectors
of std-logic types is similar to the bitlists described in
the Proofs in ACL2 section. This implementation allows
us to use structural recursion and existing list manipu-
lation primitives such as car, cdr, append, etc., to
implement the common bit slicing operations of VHDL.
We implemented conversion functions int-to-std-
logic-list and std-logic-list-to-int for
converting between non-negative ACL2 integers and
std-logic lists. We also implemented basic arithmetic
and logical operations such as incrementing, decrement-
ing, and, or, not, and logical shifts on fixed-length lists
of std-logic values. We proved that these operations have
the expected algebraic properties and correspond with
operations on non-negative integers (modulo 2 to the
length of the list). In keeping with our policy of disci-
plined level separation, the SCIP model relies only on
these theorems and not directly on the implementation
of the data types.

STACK DESIGN IN THE SCIP
The SCIP maintains two internal stacks: a parameter

stack (pstack) used to provide operands for instruc-
tions and store results and a return stack (rstack) used
to store the return address of call instructions. Because
many instructions rely on or manipulate these stacks,
the major proofs presented in the Proving Correctness
section focus on showing that the VHDL implementa-
tion of the SCIP conforms to the abstract properties of
a stack in normal operation and behaves predictably in
exceptional situations (such as underflow or overflow).

The pstack and rstack are implemented as 16-
element arrays of word-size registers (pregfile and
rregfile, respectively) combined with two 4-bit
index registers (ptopi and poveri for the pstack
and rtopi and roveri for the rstack) indicating
the index of the top element contained in the array
and the overflow point (bottom element). Note that
this scheme naturally forms a ring because increment-
ing the index registers will wrap around from the last

and defarchitecture macros described but made
the correctness theorems more difficult to prove. We
encountered three main problems that led us to reimple-
ment our underlying data model by using lists of logi-
cal values. We briefly describe these challenges before
describing our new approach in greater detail.

VHDL’s standard logic type includes nine different
values: U (uninitialized), X (strong drive, undefined
value), 0, 1, Z (high impedance), W (weak drive, unde-
fined value), L (weak drive, logically 0), H (weak drive,
logically 1), and - (don’t care), whereas ACL2 integers
may represent only (sequences of) zeros and ones. This
was rarely significant, as the SCIP’s design tends to rely
solely on the logical interpretation of values. However,
the inability to faithfully represent “undefined” and
“uninitialized” meant that our theorems were valid only
for well-defined inputs, which is not necessarily a rea-
sonable assumption.

The length of a VHDL vector is fixed by its declara-
tion, whereas ACL2 integers are unbounded. This led
to the need to explicitly coerce any computed value by
using the modulus function. The implementation of
modulus in ACL2 is not particularly transparent and is
difficult for a beginning user to manipulate in theorems.
We learned later that a more powerful set of theorems
for working with modular arithmetic is included in the
ACL2 distribution, but by that time we had completed
our reimplementation.

A related challenge is that ACL2 integers are poorly
suited to bit slicing operations common in VHDL. As
we discuss further in the Stack Design in the SCIP sec-
tion, the instruction set of the SCIP uses a packed bit
field to specify several primitive operations in each
instruction word. Figure 1 shows an example instruction
that performs an addition of ptop and pnext, pushes
the result on top of the pstack, and performs a return.

Initially we modeled instructions as lists of symbols
describing each operation performed. This avoided
complex bit slicing logic for decoding. For example,
the instruction in Fig. 1 was represented as the list
(alu a+b next push return). This made decod-
ing trivial but meant that instructions were a different

Basic ALU instruction,
operands are ptop and pnext

AdditionIgnoredPop return stack
after execution

Push result on top
of operand stack

1011 1 01 010 00 0010

Figure 1.  The SCIP instruction to add the top two elements of
the pstack, push the result on top of the pstack, and perform
a return. ALU, arithmetic logic unit.

J. A.  PENDERGRASS

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)472

instruction set’s correctness on a per-
instruction basis would be infeasible.
Instead, we focused on specifying and
verifying the effects of primitive oper-
ations, such as stack manipulations,
with the intent to later verify that the
cumulative effect of an instruction is
consistent with the composition of the
effects of its component operations.

PROVING CORRECTNESS
Although our long-term goal is for

a complete verification of the instruc-
tion set semantics of the SCIP, in this
article we focus on proving that the
SCIP’s implementation of push and
pop operations is equivalent to apply-
ing the cons and cdr (prepend
and tail) operations on the param-
eter stack represented as a list. These

theorems rigorously define the abstract semantics of the
relevant instructions and could be used in future efforts
to prove the correctness of software targeting the SCIP.
We separate the problem into two cases: verifying that
stack updates are performed correctly when no overflow
or underflow occurs and verifying that overflow and
underflow conditions are correctly handled.

Standard Operation
We must show that, at the beginning of the clock

cycle after an instruction specifying a push operation, the
stack contains the element pushed, followed by the ele-
ments of the previous stack. Similarly, for pop operations,
the new stack must be the old stack with the top element
removed. The exact statement of the theorem proved for
the case of push operation is shown in Example 4. Note
that this theorem is concerned only with the portion of
the pstack contained in the register file and does not
describe the updates to the ptop and pnext registers.

This theorem shows that, after the execution of a
push operation, the pstack is defined by the cons of
the new element onto the original pstack. The theo-
rem for pop operations, scip-pop-pstack-cdr (not
shown), is analogous with the new pstack defined
by the cdr of the original. Figure 3 shows pictorially
how the new value of ptopi is computed; solid lines
represent control flow and originate from diamonds,
which represent conditionals or guards, while dashed
lines represent data flow and originate from rectangles,
which show each data update. From Fig. 3, the need for
at least three internal steps is clear: the first step sets
the ptopi_plus1 and ptopi_minus1 signals of
the pstack (pstack[ptopi_plus1] and pstack
[ptopi_minus1], respectively), the second step

(15th) element of the array to the first (0th) element.
In addition to these arrays, the SCIP includes dedicated
registers to hold the top two elements of the pstack
(ptop and pnext) and the top element of the rstack
(rtop). Figure 2 shows conceptually how the pstack
is constructed from these registers.

The SCIP can also be configured to store additional
elements from the stacks in main memory by setting the
stack-enabled (stackenb) bit in the processor control
register (pcr). If this bit is set, then overflow or under-
flow of the on-processor stack registers will cause the
SCIP to enter a special overflow (resp. underflow)
mode for two clock cycles while a stack element is writ-
ten to (resp. read from) main memory. While
in this special mode, the SCIP does not execute user
instructions.

Another important feature of the SCIP design is
that the instruction set consists of a small number of
instruction classes, each of which is really a packed bit-
field structure specifying a number of different primitive
operations and options. For example, the instruction
in Fig. 1 includes an arithmetic operation, a pstack
operation (push), and a bit indicating that the top of
the rstack should be popped into the PC to perform a
return. All arithmetic and logical operations take ptop
as their first operand, but the second operand may come
from an immediate value, a register, or pnext. Simi-
larly, the result of an operation may be placed on the
pstack or in a register.

This expressiveness leads to a multiplicative explo-
sion in instruction set size: rather than having one return
operation, four stack operations, and four arithmetic oper-
ations, the SCIP has 32 return+stack+arithmetic opera-
tions. In total, the SCIP has 18 different instruction forms
totaling more than 9000 unique opcodes. To verify the

0
1

2

3

4

5

6
78

9

10

11

12

13

14
15

15

14

13

12

11

10

9

ptopi
ptop

pnext

pregfile

poveri

ptop

pnext

0

Figure 2.  The pstack is assembled from the ptop register, the pnext register, and the
elements of the pregfile starting at ptopi and counting down (mod 16) to poveri.

VERIFICATION OF STACK MANIPULATION IN THE SCIP

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 473

ensure that the processor is mid clock cycle, not operating
on stretched cycles, and will not reset its state on the next
clock rise. This is essentially the normal operating state of
the processor. The next two hypotheses indicate that the
current instruction includes the stack operation in ques-
tion (push or pop). The predicate std-logic-
defined-list-p is a type predicate to guarantee that
all the bits of the ptopi and poveri registers have well-
defined logical values (i.e., are neither X nor U). The two
hypotheses (integerp n) and (>= n 3) are used to
force the SCIP to step enough times for the pstack logic
to update ptopi_n. The scip-pop-pstack-cdr
theorem has an extra hypothesis to disallow the case in

which the ptopi and poveri
registers are equal; in this case,
the stack is considered empty,
and thus the new stack after the
pop operation cannot be defined
in terms of the original. In con-
trast, scip-push-pstack-
cons can handle this case
because pushing onto an empty
stack yields a stack of one
element.

We proved a third theorem
showing that the pstack
register file is unchanged if
the current instruction is not
a stack operation or specifies
either a no-op or swap opera-
tion. This theorem is simpler
than the other two but is other
wise analogous.

Handling Overflow and
Underflow

If a push operation would
cause the ptopi register to

updates the ptopi_next(pstack[ptopi_next])
signal of the pstack, and the third step updates the
processor’s ptopi_n signal.

The hypotheses of our theorems provide guarantees
about the state of the processor analogous to the guards
shown in the diamonds of Fig. 3. The compound predi-
cate scip-pstack-inputs-ready-p guarantees
that the other inputs to this computation, state, ir,
and ptopi, are held constant until the next clock rise.
The next three hypotheses,

(not (equal (scip-reset st) 1))
(not (rising-edge (scip-clk)) st)

(equal (scip-stretch st) 0),

Example 4.  Statement of the principal correctness theorem for the pstack push operation

pstack[ptopi_next]
ptopi

pstack[ptopi_next]
pstack[ptopi_plus1]

ptopi_n
pstack[ptopi_next]

pstack[ptopi_minus1]
 (ptopi - 1) mod 16

pstack[ptopi_plus1]
 (ptopi + 1) mod 16

ptopi ptopi_n

rising_edge(clk)^
reset = 0

ST_SWAP V
ST_NOP

state = T_EXEC ^
instrready = 1 ^

instr_class_stack(ir)

stackop(ir)
no

ST_PUSH ST_POP

pstack[ptopi_next]
pstack[ptopi_minus1]

yes

Figure 3.  The control and data flow used to calculate the value for ptopi at the next clock cycle.

J. A.  PENDERGRASS

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)474

advance to the value of the poveri register, the SCIP
suspends execution of the user program for two clock
cycles, during which it stores the element of the stack
pointed to by poveri to main memory on the basis of
the value of the psp register, and increments poveri.
Analogously, if a pop operation causes the ptopi reg-
ister to decrease to poveri + 1, the processor will
insert cycles to read an element of the stack from main
memory. We have not yet completed a model of main
memory, and thus we cannot show that the correct data
are fetched. We have shown that the processor correctly
identifies the overflow or underflow, enters the desired
state, writes the correct values to the output ports for
reading and writing data from/to main memory, and
updates the psp register appropriately.

These proofs are more complex than the proofs of
normal operation because they must describe behav-
ior spanning four clock cycles: the cycle during which
overflow/underflow is detected, two repair cycles, and
the beginning of the next cycle of normal execution.
One of the most complex operations of this procedure
is calculating the new value of the psp register. In the
case of overflow, the first repair cycle is used to compute
the new psp value by placing its high 15 bits on bbus,
using the arithmetic logic unit (ALU) to decrement this
value, writing this value onto the wbus, and setting
the high bits of the psp_n signal to the low 15 bits of
the wbus padded with a 0, and finally setting psp to
psp_n on the next rising clock edge. Figure 4 illustrates
this process.

The result is that the psp register is decreased by 2
(modulo 216) before the overflowed value is stored in
memory at the address referenced by psp. The underflow
case is essentially the inverse operation and is performed
during the second repair cycle so that the read request is
issued before the update to psp. The symmetry is neces-
sary to ensure that overflowed data are fetched properly

during the next underflow event. Further, because the
read request is issued during the first underflow repair
cycle, the data are available when normal execution is
resumed after the second repair cycle. Note that if psp is
even (word aligned), the overflow procedure is a subtrac-
tion by 2, which is the desired effect. However, if psp is
odd, it will subtract 3 before storing the overflowed value.
The only way for psp to take on an odd value is via
direct manipulation by a user program. If the user stores
an odd value to psp, the overflow/underflow protocol
will still function properly because the first overflow will
fix psp to an even value, and the result of underflow
after an explicit update to psp without an intervening
overflow cannot be meaningfully defined anyway.

CONCLUSION
The SCIP has been used in numerous APL-devel-

oped flight instruments and will be used for several in
the future. Its simplicity makes it an attractive target
for verification efforts, and its utility makes it a key
APL technology. Seen as a single component, the SCIP
may seem like a curiosity—a processor employing an
unusual processor architecture without pipelining or
other advanced processor optimizations. But in reality,
it resides comfortably at the center of a layered system
that allows APL flight instruments to provide a critical
contribution to APL and the wider space community.
The SCIP provides a foundation for the execution of
a multitasking real-time operating system,11 which in
turn provides a foundation for a reusable commanding
and telemetry management library,12 which in turn pro-
vides a foundation for the development of instrument-
specific software routines, allowing APL-developed
instruments to leverage a significant amount of heritage
design from one instrument to the next.13 Each layer of
this architecture relies on the correctness of the layers
below to function properly. Formal proof of the cor-
rectness of lower layers provides ripple benefits, as the
assumptions made by each subsequent layer can then
be verified with respect to the guarantees proved by the
lower layer.

In this article, we have described our experience
precisely specifying one aspect of the SCIP’s behavior:
parameter stack manipulation. We have described the
framework we developed for representing the SCIP’s
VHDL design in the language of ACL2 and highlighted
the more significant theorems we proved. The theorems
we proved showing the exact state transitions caused
by stack manipulation instructions are the first steps
toward a complete verification of the SCIP’s implemen-
tation and formalization of its instruction set. Develop-
ers would rely on the guarantees provided by these and
other analogous theorems when developing or verifying
critical software targeting the SCIP, such as the operat-
ing system, compiler, libraries, and application software.

bbus 0 & psp(15 downto 1)

aluout (bbus - 1)

rising_edge(clk)

wbus aluout

psp_n wbus(14 downto 0)&0

psp psp_n

Figure 4.  During the first overflow cycle, the new psp is com-
puted by subtracting 2 from the original value.

VERIFICATION OF STACK MANIPULATION IN THE SCIP

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 475

  3NASA’s Van Allen Probes website, http://www.nasa.gov/mission_
pages/rbsp/main/index.html (accessed 29 May 2013).

  4Moore, J. S., Lynch, T. W., and Kaufmann, M., “A Mechanically
Checked Proof of the AMD5K86 Floating-Point Division Algorithm,”
IEEE Trans. Comput. 47(9), 913–926 (1998).

  5Hunt, W. A., and Brock, B., “A Formal HDL and Its Use in the
FM9001 Verification,” Philos. Trans. Phys. Sci. Eng. 339(1652),
pp. 35–47 (1992).

  6Georgelin, P., Borrione, D., and Ostier, P., “A Framework for VHDL
Combining Theorem Proving and Symbolic Simulation,” in Proc.
ACL2 Workshop, Grenoble, France (2002).

  7Kaufmann, M., and Moore, J. S., “ACL2: An Industrial Strength Ver-
sion of Nqthm,” in Proc. 11th Annual Conf. on Computer Assurance
(COMPASS ‘96), Gaithersburg, MD, pp. 23–34 (1996).

  8Boyer, R. S., and Moore, J. S., A Computational Logic, Academic Press,
New York, 1979.

  9Young, B., “Reverse Abstraction in ACL2,” in Proc. Fifth Interna-
tional Workshop on the ACL2 Prover and Its Applications, Austin, TX
(2004).

10Brock, B., Defstructure for ACL2, technical report, University of
Texas at Austin, http://www.cs.utexas.edu/~moore/publications/
others/defstructure-brock.ps (1997).

11Hayes, J. R., Multitasking in FRISC3 Forth, Technical Memorandum
TCE-88-291, JHU/APL, Laurel, MD (1988).

12Hayes, J. R., MESSENGER Instrument Common Flight Software Speci-
fication, Technical Memorandum SRI-03-011, JHU/APL, Laurel, MD
(2003).

13Hayes, J. R., Instrument Software Reuse, Technical Memorandum SRI-
05-001, JHU/APL, Laurel, MD (2005).

Developing and verifying a complete specification
for even a small processor like the SCIP is a significant
undertaking. However, much of the challenge comes in
modeling the system in a form amenable to specifica-
tion and proof. Once this groundwork is laid, the major
obstacles stem from the need to understand exactly
what the specification should be, and the discovery that
elements of the models may be inconsistent with the
true implementation. Given the breadth of the lemmas
required to prove the properties presented here, future
proofs of the correctness of the SCIP’s design should
follow naturally.

ACKNOWLEDGMENTS: John Hayes and Andrew Harris pro-
vided valuable insights on the SCIP design for both the
execution of the described work and the writing of
this article.

REFERENCES
  1IEEE Computer Society, IEEE Standard for Floating-Point Arithme-

tic, IEEE Standard 754-2008, doi: 10.1109/IEEESTD.2008.4610935
(29 Aug 2008).

  2NASA’s Juno website, http://www.nasa.gov/mission_pages/juno/main/
index.html (accessed 29 May 2013).

J. Aaron Pendergrass is a member of the Senior Professional Staff in the Cyber Technology Branch of the Asymmetric
Operations Department. His work focuses on enhancing software assurance via formal methods for mechanized program
analysis, automating reverse engineering, and dynamic software integrity measurement. His e-mail address is aaron.
pendergrass@jhuapl.edu.

 The Author

The Johns Hopkins APL Technical Digest can be accessed electronically at www.jhuapl.edu/techdigest.

http://www.nasa.gov/mission_pages/rbsp/main/index.html
http://www.nasa.gov/mission_pages/rbsp/main/index.html
http://
http://
http://www.nasa.gov/mission_pages/juno/main/index.html
http://www.nasa.gov/mission_pages/juno/main/index.html
mailto:aaron.pendergrass@jhuapl.edu
mailto:aaron.pendergrass@jhuapl.edu
www.jhuapl.edu/techdigest

	Verification of Stack Manipulation in the Scalable Configurable Instrument Processor
	J. Aaron Pendergrass
	INTRODUCTION
	MOTIVATION
	Why Choose the SCIP?
	Verification Tools

	RELATED WORK
	ACL2
	Programming in ACL2
	Proofs in ACL2

	MODELING ARCHITECTURE
	Entities
	Processes
	Architectures
	Data Types

	STACK DESIGN IN THE SCIP
	PROVING CORRECTNESS
	Standard Operation
	Handling Overflow and Underflow

	CONCLUSION
	REFERENCES
	The Author
	Figures
	Example 1. A common structure for ACL2 defthm events.
	Example 2. The last theorem.
	Example 3. A side-by-side comparison of VHDL and its ACL2 equivalent.
	Example 4. Statement of the principal correctness theorem for the pstack push operation.
	Figure 1. The SCIP instruction.
	Figure 2. The pstack assembly.
	Figure 3. The control and data flow used to calculate the value for ptopi at the next clock cycle.
	Figure 4. During the first overflow cycle, the new psp is computed by subtracting 2 from the original value.

