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or more than a decade, commercial PC platforms have been shipping with a 
standards-based embedded security subsystem on the motherboard known as 
the Trusted Platform Module, or TPM. TPMs have been used in a wide variety 

of applications, but some issues have hampered large-scale adoption. During the last 
8 years, the Trusted Computing Group has been working on revising the specification to 
increase its flexibility, manageability, and utility. This article presents TPM use cases and 
explains the motivation for the major changes made to improve the TPM specification.

Trusted Platform Module Evolution

Justin D. Osborn and David C. Challener

The TCG’s architecture for hardware-based security 
was motivated by increasingly sophisticated malware 
attacks in the late 1990s. Then—and still today—the 
most popular way to defend against network attack on 
the PC client is through antivirus software. The fun-
damental flaw with a software-only defense approach 
is that software cannot effectively verify itself. Malware 
that gains execution on a computer at the same privilege 
level as the antivirus software can simply disable the pro-
gram to conceal its existence. Malware had also become 
more sophisticated by targeting firmware and bootloader 
code, which is rarely verified by antivirus software. To 
securely verify software configuration, a computing plat-
form needs a place to record and verify the state of soft-
ware that is outside of the system memory space. In the 
computer security world, the concept of a hardware secu-
rity monitor that verifies software in main memory has 
been around for decades. For the TCG, however, it was 

INTRODUCTION
The Trusted Platform Module (TPM) is a crypto-

graphic coprocessor chip that has been included on 
most enterprise-class PC and laptop motherboards pro-
duced in the past decade. The specification for TPMs is 
produced by the Trusted Computing Group (TCG), an 
industry consortium. TPM chips are produced by a vari-
ety of vendors including Infineon, Broadcom, Atmel, 
STMicroelectronics, and Nuvoton. PC manufacturers 
shipping TPM-enabled PCs include Dell, Lenovo, HP, 
Toshiba, and Fujitsu. The current specification ver-
sion is TPM 1.2,1 but the TPM 2.0 specification has 
been released to the public for comment.2 Microsoft 
has announced that all systems submitting to the Win-
dows Certification Program after 1 January 2015 will be 
required to have TPM 2.0.3 TPMs have been used in a 
wide variety of applications from secure military plat-
forms,4 to secure industrial control systems,5 to secure 
electronic voting systems.6
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important to design a hardware module that increased 
the cost of a PC by $1 or less to allow for widespread 
adoption. Thus, the TPM was designed as a passive chip 
(it responds only to commands from platform software) 
that helps platform software to verify itself, as well as a 
general-purpose cryptographic module.

The TPM specification was written to be platform 
independent, with the idea that additional specifica-
tions would be written to govern implementation on 
specific platforms. Although the PC is the most popu-
lar platform on which TPMs are widely deployed, the 
TCG has working groups for mobile,7 embedded,8 and 
virtualized platforms.9 On the PC, the TPM is usu-
ally implemented as a discrete integrated circuit in a 
28-pin thin-shrink small-outline package (illustrated 
in Fig. 1). It is attached to the Low Pin Count bus. It 
can be integrated into other chips on the motherboard 
(e.g., the Broadcom TPM is part of a security chip that 
includes a fingerprint scanner and smartcard reader10). 
Firmware and operating system software interact with 
the TPM by accessing memory-mapped registers, 
which the main PC chipset converts into bus com-
mands. Because TPM commands are somewhat com-
plicated, the TCG Software Stack (TSS) was created 
to make interfacing easier for programmers.11 Applica-
tions wishing to use TSS services link in a library that 
provides a simplified application programming inter-
face. The TSS translates these high-level application 
programming interface calls into the equivalent TPM 
commands and sends them to the device driver, which 
transmits them to the chip.

The TPM contains two important functional com-
ponents—a cryptographic engine that can perform 
encryption, digital signatures, and hashing, and a spe-
cial register set called Platform Configuration Regis-

ters (PCRs). These registers 
store a representation of the 
state of software on the plat-
form through a process we will 
describe later. The TPM 1.2 
specification is limited to RSA 
encryption and SHA-1 hash-
ing, but the TPM 2.0 specifica-
tion has been written to allow 
for flexibility in encryption 
algorithms. The cryptographic 
engine can be combined with 
PCRs for some very interest-
ing use cases that we will also 
describe later. In addition, the 
TPM contains a small amount 
of nonvolatile random access 
memory (NVRAM), which 
can be used to store keys or 
data. Software can also use 
the TPM to create monotoni-

cally increasing counters (counters that only increase 
and cannot be reset until power is reset). All of these 
items (keys, encrypted data, NVRAM, and counters) are 
known as “objects” in TCG parlance.

Because of limited storage space, the TPM does not 
normally store keys permanently. Rather, it contains a 
Storage Root Key that is stored persistently. When soft-
ware requests that a key be created, the TPM generates 
a new RSA key, concatenates it with a value known 
only to the TPM called the “proof,” adds any authori-
zation information, and then encrypts these data with 
the public portion of the Storage Root Key, returning 
an encrypted “blob” to the requesting program. The 
program is responsible for storing the blob. When soft-
ware wants to use the key, it sends a key load command 
along with the key blob. The TPM decrypts the key 
with the Storage Root Key, checks that the proof value 
is its own, checks that the supplied password matches, 
and loads the key into TPM memory. Software can then 
specify this loaded key in an encryption or digital sig-
nature command. Subsequent key creation requests may 
specify this loaded key as the “parent” key, allowing for 
key hierarchies.

TPM BACKGROUND AND USE CASES
In this section, we describe some terms and use cases 

that are commonly used in TCG architecture.

Platform Configuration Registers
PCRs are special registers within the TPM. They 

are the size of a hash value (20 bytes for SHA-1, used 
in TPM 1.2). They cannot be set directly. Instead, soft-
ware sends an extension command to the TPM specify-

Figure 1. A TPM 1.2 chip.
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ing a PCR number and a hash 
value. The TPM sets the new 
PCR value to the hash of the 
old PCR value concatenated 
with the input hash value. 
Because the hash function is 
assumed to be a one-to-one 
function, PCRs represent a 
unique sequence of extension 
operations.

Measured Boot
Measured Boot is a pro-

cess by which preboot soft-
ware (firmware and operating 
system bootloaders) uses the 
TPM to verify that nothing has 
changed in the preboot envi-
ronment. Ideally, on a trusted 
platform, all software is “mea-
sured” (that is, hashed) before 
it is executed. Measured Boot 
is a critical part of the TCG 
architecture and foundational 
to the other use cases. The 
core idea is that starting from 
power-on, each piece of code 
that is executed measures the 
next piece of code and extends 
a PCR before executing it. The 
specification describes the PCR number that should be 
used for each piece of software in the boot process. The 
first piece of code that executes (either the BIOS boot 
block or the entire BIOS chip) should be completely 
write-protected, guaranteeing that nobody can spoof 
this sequence of measurements with the known “good” 
values. If implemented correctly, this means that the 
PCRs contain a cryptographically unique representation 
of the state of software on the system. Measured Boot is 
different than “Secure Boot”12 introduced by Microsoft 
in Windows 8 where the firmware simply verifies a sig-
nature of the bootloader before executing it. Measured 
Boot is a much more comprehensive security measure 
than Microsoft’s Secure Boot.

Sealed Storage
Once the PCR values are properly configured, soft-

ware can then “seal” keys or data to specific states of 
the platform. This means creating keys that can be used 
only when the software is in a “good” state, or encrypt-
ing data that can be decrypted only in a good state. For 
instance, Microsoft’s BitLocker disk encryption prod-
uct seals its encryption key to the TPM13 and links it 
to PCRs, so the disk cannot be decrypted if malware 

changes the bootloader or firmware. Another applica-
tion is single sign-on, where a TPM key is used by soft-
ware to access all enterprise services but can be used 
only when the platform is in a specific state.

Network Attestation
Attestation is the process by which a platform can 

cryptographically prove to another platform that it is 
in a particular state. It does this by creating a special 
kind of key called an identity key that can be used only 
for this process. The network server creates a crypto-
graphic nonce—a random value used to prevent replay 
attacks—and sends the nonce to the client. Software on 
the client creates a TPM “quote” request, sending the 
nonce to the TPM and specifying an identity key. The 
TPM hashes the PCR values along with the nonce and 
signs the hash. The client software sends this quote to 
the server, which can verify the platform configuration 
with the public portion of the identity key. See Fig. 2 
for an illustration of this process. TPM-enabled net-
work attestation can provide hardware-based assurance 
that only platforms owned by the enterprise are allowed 
access to the network and that the software on these 
platforms has not been modified.
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Figure 2. TPM-enabled network attestation concept showing notional requests and responses.
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TPM 2.0—TOWARD UBIQUITOUS TRUSTED 
COMPUTING

Although the TPM 1.1b and 1.2 specifications created 
the foundation for the use cases described, a number of 
roadblocks occurred that hampered adoption by indus-
try. These included ambiguities in the specification, rig-
idness in the policy regarding how keys are used, tight 
coupling to specific cryptographic algorithms, and issues 
related to control of the TPM by platform software.

Algorithm Agility
Ideally, a flexible cryptographic module would handle 

both symmetric and asymmetric encryption algorithms. 
Symmetric encryption refers to algorithms where the 
same key is used for encryption and decryption. Asym-
metric encryption (or public key cryptography) refers to 
algorithms that use a public and private key pair. To send 
an encrypted message, the sender encrypts the message 
with the receiver’s public key—this ensures that only 
the receiver (who knows the private key) can decrypt it. 
Public key systems can also be used for digital signatures. 
The message sender can sign the message with his or 
her private key, and the receiver can use the public key 
to verify that the message originated with that person.

As noted earlier, TPM 1.2 and earlier versions were 
restricted to using the RSA algorithm for encryption and 
the SHA-1 algorithm for cryptographic hashing. Using 
symmetric encryption (such as DES or AES algorithms) 
would have greatly simplified the TPM 1.2 specification. 
However, at the time it was being developed, exporters 
of symmetric cryptographic chips were subject to record-
keeping requirements under U.S. law. Because it would 
be prohibitively difficult for computer manufacturers to 
meet these requirements, the decision was made to use 
only RSA. RSA is an asymmetric algorithm that is pri-
marily designed to encrypt very small messages. RSA is 
normally used to exchange symmetric encryption keys, 
which are then used to encrypt larger streams of data. 
Constraining the TPM to encrypt data and keys with 
RSA keys required some serious design shortcuts.

The algorithms themselves have also weakened over 
time as more cryptanalytic attacks have been published. 
In 2009, a 768-bit RSA key was factored,14 and there 
is disagreement in the cryptographic community over 
the strength of 2048-bit RSA used in TPM 1.2. Recent 
attacks have surfaced on the SHA-1 algorithm, which 
was designed to have 80-bit collision resistance (that is, 
requiring at least 280 evaluations of the hash function 
to discover two messages with the same hash value). 
In 2005, an attack was discovered that weakened it to 
69 bits.15 Current estimates are around 61.5 bits.16 In 
2005, the National Institute of Standards and Technol-
ogy started work to phase out use of SHA-1 in favor of 
the SHA-2 family and began working on a new algo-

rithm to be called SHA-3. Simultaneously, the TPM 
specification committee began working on the next ver-
sion of the TPM specification, which eventually became 
TPM 2.0.

The key structure of TPM 1.2 did not allow simply 
replacing the SHA-1 algorithm with SHA-256. The 
additional 12 bytes in SHA-256 made the resultant 
data structure too large to encrypt in one step with an 
RSA key. Truncating the SHA-256 hash to 160 bits 
would make the data fit the structure but would weaken 
the strength of the hash. Ultimately it was decided to 
change the key structure entirely.

In the TPM 1.2 specification, a 2048-bit RSA key 
encrypted another key by using a trick. An RSA pri-
vate key consists of two large prime numbers. The public 
key is the product of those numbers. Only one of the 
prime numbers is required to recover the other prime 
number if the product of the two primes is also known. 
Therefore, a parent key is only used to encrypt one of 
the prime numbers of a child key, and when the child 
key is loaded into the TPM, both the child’s first prime 
number (encrypted with the parent key) and the public 
key are loaded into the chip. The TPM then uses the 
parent key to decrypt the child’s first prime number and 
then divides the result into the public key to obtain the 
other. This has the effect of reducing the amount of data 
that needs to be encrypted and obviates the need for the 
TPM to contain a symmetric algorithm. However, it is 
also slow.

In TPM 2.0, keys are generally stored symmetrically 
encrypted, with the key used to encrypt them itself 
encrypted with a parent key called a key encryption 
key, or KEK. See Fig. 3 for an illustration. This two-
step process adds very little execution time overhead to 
the TPM 1.2 method, because symmetric encryption is 
much faster than asymmetric encryption. It also allows 
for the data structures encrypted to be much larger than 
before when only an asymmetric method was used. This 
change also allows any combination of algorithms to be 
used in the specification regardless of the key sizes they 
individually could encrypt. As a result, the specification 
abstracted the algorithms supported to an algorithm ID 
table, which is referenced by the specification but is not 
part of it.

Currently, the algorithm ID table lists a variety of 
public/private key algorithms, symmetric algorithms, 
hash algorithms, key derivation functions, cryptographic 
modes, and signing schemes, including National Insti-
tute of Standards and Technology–certified algorithms. 
The algorithm ID table is independent of the specifica-
tion and can be added to without changing the specifi-
cation at all by simply allocating a number to represent a 
new algorithm addition.

Independent of the specification, platform-specific 
specifications delivered by the TCG will provide man-
dated sets of algorithms that will be implemented in 
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various physical TPMs. This will ensure interoperability 
among the various implementations. These are likely 
to include 1024-bit and 2048-bit RSA, 256-bit elliptic 
curve cryptography, SHA-1, SHA-256, and 128-bit AES 
in the first implementations. RSA and SHA-1 will be 
used for backward compatibility.

TPM 2.0 will also probably include a suite of Chi-
nese commercial cryptographic algorithms (SM2 elliptic 
curve cryptography, SM3 hash, and SMS4 symmetric 
cipher). Western encryption algorithms are illegal in 
China, and Chinese-developed algorithms are man-
dated for commercial products. China developed its own 
version of the TPM 1.2 specification (called the Trusted 
Cryptography Module) based on these algorithms but 
only published a partial specification for the software 
application programming interface.17 PC manufactur-
ers such as Dell and Lenovo use the Chinese module on 
their TPM-enabled systems when selling in China. To 
have these algorithms included in the TPM 2.0 specifi-
cation, the Chinese had to publish their algorithms. The 
algorithms were included in the first publicly released 
TPM 2.0 draft specification, but debate is still ongoing 
within TCG as to their inclusion in the final version. A 
similar situation exists with Russia. TPMs are banned 

in Russia, but there is no Russian 
equivalent. Russia’s commercial 
crypto algorithms have been pub-
lished; however, their standards do 
not specify certain critical param-
eters (presumably for the purpose 
of keeping the knowledge of the 
most secure parameters limited to 
government). Multiple implemen-
tations of the same algorithm have 
prevented TCG from standard-
izing, so Russian algorithms will 
probably be left out of TPM 2.0 for 
the foreseeable future.

The implementation of algo-
rithm agility has inherent prob-
lems that had to be solved in the 
specification. If more than one 
algorithm is used in an implemen-
tation (as is expected), then it is 
clear that some algorithms will be 
stronger than others. It is unlikely 
that someone will want to encrypt 
a key with nominal strength of 
120 bits with a key with nominal 
strength of 80 bits. Similarly, one 
would want to use hash algorithms 
with strength at least as strong as 
the key whose integrity they are 
protecting. However, there is not 
necessarily agreement as to the 
strength of algorithms. There-

fore, when a public key is created, a suite of algorithms 
is selected by the creator—asymmetric, symmetric, 
and hash algorithms, etc. The hash algorithm selected 
will be used for calculations of the name of the key, for 
integrity calculations of things it encrypts or signs, and 
for authorization calculations. Mixing and matching of 
algorithms at this level is not allowed.

Because the creator of a key gets to select the parent 
of the key being created, it is possible for the creator to 
pick a key with less strength than the key being created. 
However, to make this a deliberate choice, the specifi-
cation is designed to make it easy for a user to deter-
mine the strength of all of the keys in a key chain that 
terminates at the TPM. It is possible to get proof from 
the TPM of that list of key ancestors.

Additionally, although a primary key created under 
a TPM can be of any strength selected by the creator, 
any storage key underneath a key encryption key has 
to follow a rule: If the key cannot be independently 
duplicated or moved to a different TPM, it must have 
exactly the same algorithm set as its parent. Keys that 
cannot be used as key encryption keys are called leaf 
keys, and they can have any set of algorithms selected 
by the creator.
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Figure 3. Asymmetric key structure for TPM 1.2 (top) and TPM 2.0 (bottom).
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Enhanced Authorization
In TPM 1.2, authorization (the process by which soft-

ware proves to the TPM that it is allowed to use a key, 
counter, or NVRAM object) is very limited in scope. 
The only way to restrict access is by passwords (repre-
sented as SHA-1 hashes) and PCR values. To use a key, 
software will have to prove knowledge of the password 
hash as part of the command. It is also possible to seal 
a key to specific PCR values so that the key cannot be 
used unless the password is known and the PCRs are in 
the chosen state.

This means that TPM 1.2 authorization is fairly inflex-
ible. When multiple users share a platform, it makes it 
difficult to share TPM keys and data. Users often have 
their own sets of keys, because they individually know 
their passwords. This also makes system administration 
difficult because users must physically enter their pass-
words to authorize usage of their keys.

Enhanced Authorization (EA) in TPM 2.0 greatly 
expands the methods by which key and data use can be 
authorized, and the policy has become much more flex-
ible. In TPM 1.2, software would prove it had knowledge 
of the password in an authorization session. A single 
command would be sent to the TPM before the com-
mand requiring authorization to start the session. One 
of the parameters to the command was a hashed message 
authentication code that included the password hash 
along with other values so that the TPM could verify 
knowledge of the password.

EA extends these authorization sessions into policy 
sessions, which allow multiple authorization methods 
to be combined by Boolean logic. For instance, let’s 
say one wants to have a key that is accessible by both 
Alice and Bob and they have individual passwords. 
A policy can be created that says, “Authorize access 
if and only if Password(Alice) or Password(Bob).” Or 
say one wanted to create multifactor authentication 
for both users but allow either user to access the key. 
A policy can be created that says, “Authorize access if 
and only if ((Password(Alice) and SmartCard(Alice)) 
or (Password(Bob) and SmartCard(Bob)).” The way this 
works is that software will create the policy and then 
specify the hash of that policy when creating the key 
or data. The TPM does not need to know the details of 
the policy—the hash is sufficient. Later, when software 
wants to use the key, it will start an authorization ses-
sion and send one command to the TPM for each token 
in the policy equation. The TPM will verify that the 
policy specified in that sequence of commands is satis-
fied and also verify that the hash of the policy command 
sequence is the same as the policy hash specified at cre-
ation time.

Not only does EA create a flexible policy language, 
it also adds more possible authorization methods. Pre-
viously, one was limited to passwords and PCR values. 
Now the authorization methods include the following:

• Passwords—similar to TPM 1.2

• PCR values—same as TPM 1.2, but the addition 
of Boolean logic means multiple PCR states can 
be used

• TPM counter or NVRAM value—require that these 
items have a particular value

• Physical presence— require that a user be physically 
present at the PC

• Commands—require that the object can only be 
used with a given set of commands

• Digital signature from a public key—this allows 
smartcards such as Common Access Cards to be 
used for authorization

Management for some things is much easier to do with 
simple passwords than with complex policies, and so the 
design allows for each object to have a simple password 
associated with it, a policy, or both. If both are present, 
the creator of the object can split roles between the two, 
so that (for example) a simple password may be used 
for signing with a key, but administrative tasks such as 
creating a certificate for the key or creating a backup 
of the key may require an IT administrator’s smartcard 
authorization.

Compilable Specification
In the TPM 1.2 specification, behavior of the TPM 

when responding to a given function is written in pseudo-
code. Although this is more specific than a natural lan-
guage description, it still leaves a lot of wiggle room for 
interpretation. Many issues arose over the years when 
vendors implemented slightly different versions of the 
same command. Some vendors chose to fix these issues 
with firmware updates to the TPM, but other TPMs 
cannot be updated (their code is permanently burned in 
at the factory). To avoid similar problems, the TPM 2.0 
specification is written in C. This should truly standard-
ize TPM behavior across vendor implementations.

The specification was designed in four parts:
• Part 1 is an introduction, but it also contains specif-

ics of how sessions are set up with the TPM and used 
to authenticate the use of a TPM or TPM entity.

• Part 2 is a list of variables, structures, and constants 
used in the specification.

• Part 3 is a list of the commands that a TPM can 
execute. Those commands include a brief descrip-
tion in English of what they do, together with code 
that implements them.

• Part 4 consists of subroutines used by Part 3. 
Throughout the specification are special symbols, 
called decorations, that help special software extract 
code from the specification.
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The symbols used in any part of the specification 
are listed at the beginning of each part. For example, 
when an ampersand is used in front of a variable, it 
means that the variable requires authorization via an 
authorization session when the command is executed. 
If there are multiple variables preceded with an amper-
sand, then there will be multiple authorization sessions 
in the command.

These types of special symbols, called decorations, 
are used by special software created by Microsoft that 
can extract the code from the specification and create 
a compilable reference TPM. Unfortunately, this special 
software is not freely available, although the resultant 
code has been provided by Microsoft to TCG members 
to use in verifying member’s implementations. These 
decorations make the specification more precise but also 
require the reader to learn a special set of symbols to 
make perfect sense of the specification.

A compilable specification will be a huge leap for-
ward for TPM. Clearly, this will reduce implementation 
differences between vendors. Research may be done to 
mathematically prove the correctness of parts of the 
specification now that it is written in a more formal lan-
guage. Another major benefit is that a software emulator 
will always be available for TPM 2.0 without additional 
development. This will be useful for both virtualized 
platforms as well as resource-constrained platforms. For 
cost, space, or power-saving reasons it may not be fea-
sible to field a discrete TPM chip. However, a compilable 
specification means that a platform designer can field a 
software TPM in a protected mode or virtualized mode 
of the main CPU.

Activation and Multiple Ownership
Without question, the biggest hindrance to wide-

spread adoption of TPM 1.2 is that PC vendors ship 
machines with the TPM turned off by default. To acti-
vate the TPM, users must go into their firmware settings, 
find the appropriate menu, and choose to enable it. The 
off-by-default decision was made early on in response to 
outcries by the computer security community. At the 
time, opinions were expressed that TPM was simply a 
move by industry to enforce digital rights management 
and force people to use certain software packages. Some 
prominent researchers supported this position, which 
strengthened the argument against use of TPMs.18 TCG 
therefore recommended that the TPM be off by default 
and that the user be required to manually activate it via 
firmware menus. Because most users never touch their 
firmware settings, this means that most TPMs have 
never been turned on.

Even if the TPM is activated, the platform firmware 
cannot do much with it. In TPM 1.2, once activated, 
the TPM starts out unowned, and the first person to 
establish an owner password via a specific command 

becomes the owner. The TCG decided early on that 
postboot applications would have to handle this pro-
cess, cutting the firmware developers out of the picture 
because they must assume an unowned TPM. In the 
unowned state, a limited set of commands is available. 
Keys cannot be created or loaded, so the PCR state 
cannot be securely checked. With TPM 1.2, the firm-
ware is unable to verify the boot state. Instead, the firm-
ware is capable of hashing code and extending PCRs, 
and it is up to the operating system or applications to 
check them for Measured Boot.

TPM 2.0 fixes these problems by ensuring that the 
TPM is on by default and by creating a platform entity, 
ensuring that platform firmware has full access to TPM 
resources. Firmware will be able to create keys, encrypt 
data, and securely check PCR values. This means that 
simultaneously the platform user and platform firmware 
are “owners” of the TPM and can make use of its fea-
tures. Firmware developers can use all the capabilities 
of the TPM to secure the preboot environment, in the 
same way that operating systems can use the TPM to 
protect their operation today.

CONCLUSION
The TPM 2.0 specification is a substantial improve-

ment in sophistication over the TPM 1.2 design. It 
allows for algorithm agility, which should prevent early 
obsolescence. By additionally unifying and extending its 
authentication mechanisms via EA, it has simultane-
ously made the TPM more manageable, flexible, easier 
to program, and more useful. By making the specifica-
tion compilable, it has become less prone to ambiguity 
and is itself a software reference implementation. By 
making TPMs activated by default, the vision of ubiqui-
tous trusted computing may become reality.
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