
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)536

or more than a decade, commercial PC platforms have been shipping with a
standards-based embedded security subsystem on the motherboard known as
the Trusted Platform Module, or TPM. TPMs have been used in a wide variety

of applications, but some issues have hampered large-scale adoption. During the last
8 years, the Trusted Computing Group has been working on revising the specification to
increase its flexibility, manageability, and utility. This article presents TPM use cases and
explains the motivation for the major changes made to improve the TPM specification.

Trusted Platform Module Evolution

Justin D. Osborn and David C. Challener

The TCG’s architecture for hardware-based security
was motivated by increasingly sophisticated malware
attacks in the late 1990s. Then—and still today—the
most popular way to defend against network attack on
the PC client is through antivirus software. The fun-
damental flaw with a software-only defense approach
is that software cannot effectively verify itself. Malware
that gains execution on a computer at the same privilege
level as the antivirus software can simply disable the pro-
gram to conceal its existence. Malware had also become
more sophisticated by targeting firmware and bootloader
code, which is rarely verified by antivirus software. To
securely verify software configuration, a computing plat-
form needs a place to record and verify the state of soft-
ware that is outside of the system memory space. In the
computer security world, the concept of a hardware secu-
rity monitor that verifies software in main memory has
been around for decades. For the TCG, however, it was

INTRODUCTION
The Trusted Platform Module (TPM) is a crypto-

graphic coprocessor chip that has been included on
most enterprise-class PC and laptop motherboards pro-
duced in the past decade. The specification for TPMs is
produced by the Trusted Computing Group (TCG), an
industry consortium. TPM chips are produced by a vari-
ety of vendors including Infineon, Broadcom, Atmel,
STMicroelectronics, and Nuvoton. PC manufacturers
shipping TPM-enabled PCs include Dell, Lenovo, HP,
Toshiba, and Fujitsu. The current specification ver-
sion is TPM 1.2,1 but the TPM 2.0 specification has
been released to the public for comment.2 Microsoft
has announced that all systems submitting to the Win-
dows Certification Program after 1 January 2015 will be
required to have TPM 2.0.3 TPMs have been used in a
wide variety of applications from secure military plat-
forms,4 to secure industrial control systems,5 to secure
electronic voting systems.6

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 537

important to design a hardware module that increased
the cost of a PC by $1 or less to allow for widespread
adoption. Thus, the TPM was designed as a passive chip
(it responds only to commands from platform software)
that helps platform software to verify itself, as well as a
general-purpose cryptographic module.

The TPM specification was written to be platform
independent, with the idea that additional specifica-
tions would be written to govern implementation on
specific platforms. Although the PC is the most popu-
lar platform on which TPMs are widely deployed, the
TCG has working groups for mobile,7 embedded,8 and
virtualized platforms.9 On the PC, the TPM is usu-
ally implemented as a discrete integrated circuit in a
28-pin thin-shrink small-outline package (illustrated
in Fig. 1). It is attached to the Low Pin Count bus. It
can be integrated into other chips on the motherboard
(e.g., the Broadcom TPM is part of a security chip that
includes a fingerprint scanner and smartcard reader10).
Firmware and operating system software interact with
the TPM by accessing memory-mapped registers,
which the main PC chipset converts into bus com-
mands. Because TPM commands are somewhat com-
plicated, the TCG Software Stack (TSS) was created
to make interfacing easier for programmers.11 Applica-
tions wishing to use TSS services link in a library that
provides a simplified application programming inter-
face. The TSS translates these high-level application
programming interface calls into the equivalent TPM
commands and sends them to the device driver, which
transmits them to the chip.

The TPM contains two important functional com-
ponents—a cryptographic engine that can perform
encryption, digital signatures, and hashing, and a spe-
cial register set called Platform Configuration Regis-

ters (PCRs). These registers
store a representation of the
state of software on the plat-
form through a process we will
describe later. The TPM 1.2
specification is limited to RSA
encryption and SHA-1 hash-
ing, but the TPM 2.0 specifica-
tion has been written to allow
for flexibility in encryption
algorithms. The cryptographic
engine can be combined with
PCRs for some very interest-
ing use cases that we will also
describe later. In addition, the
TPM contains a small amount
of nonvolatile random access
memory (NVRAM), which
can be used to store keys or
data. Software can also use
the TPM to create monotoni-

cally increasing counters (counters that only increase
and cannot be reset until power is reset). All of these
items (keys, encrypted data, NVRAM, and counters) are
known as “objects” in TCG parlance.

Because of limited storage space, the TPM does not
normally store keys permanently. Rather, it contains a
Storage Root Key that is stored persistently. When soft-
ware requests that a key be created, the TPM generates
a new RSA key, concatenates it with a value known
only to the TPM called the “proof,” adds any authori-
zation information, and then encrypts these data with
the public portion of the Storage Root Key, returning
an encrypted “blob” to the requesting program. The
program is responsible for storing the blob. When soft-
ware wants to use the key, it sends a key load command
along with the key blob. The TPM decrypts the key
with the Storage Root Key, checks that the proof value
is its own, checks that the supplied password matches,
and loads the key into TPM memory. Software can then
specify this loaded key in an encryption or digital sig-
nature command. Subsequent key creation requests may
specify this loaded key as the “parent” key, allowing for
key hierarchies.

TPM BACKGROUND AND USE CASES
In this section, we describe some terms and use cases

that are commonly used in TCG architecture.

Platform Configuration Registers
PCRs are special registers within the TPM. They

are the size of a hash value (20 bytes for SHA-1, used
in TPM 1.2). They cannot be set directly. Instead, soft-
ware sends an extension command to the TPM specify-

Figure 1. A TPM 1.2 chip.

J. D. OSBORN AND D. C. CHALLENER

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)538

ing a PCR number and a hash
value. The TPM sets the new
PCR value to the hash of the
old PCR value concatenated
with the input hash value.
Because the hash function is
assumed to be a one-to-one
function, PCRs represent a
unique sequence of extension
operations.

Measured Boot
Measured Boot is a pro-

cess by which preboot soft-
ware (firmware and operating
system bootloaders) uses the
TPM to verify that nothing has
changed in the preboot envi-
ronment. Ideally, on a trusted
platform, all software is “mea-
sured” (that is, hashed) before
it is executed. Measured Boot
is a critical part of the TCG
architecture and foundational
to the other use cases. The
core idea is that starting from
power-on, each piece of code
that is executed measures the
next piece of code and extends
a PCR before executing it. The
specification describes the PCR number that should be
used for each piece of software in the boot process. The
first piece of code that executes (either the BIOS boot
block or the entire BIOS chip) should be completely
write-protected, guaranteeing that nobody can spoof
this sequence of measurements with the known “good”
values. If implemented correctly, this means that the
PCRs contain a cryptographically unique representation
of the state of software on the system. Measured Boot is
different than “Secure Boot”12 introduced by Microsoft
in Windows 8 where the firmware simply verifies a sig-
nature of the bootloader before executing it. Measured
Boot is a much more comprehensive security measure
than Microsoft’s Secure Boot.

Sealed Storage
Once the PCR values are properly configured, soft-

ware can then “seal” keys or data to specific states of
the platform. This means creating keys that can be used
only when the software is in a “good” state, or encrypt-
ing data that can be decrypted only in a good state. For
instance, Microsoft’s BitLocker disk encryption prod-
uct seals its encryption key to the TPM13 and links it
to PCRs, so the disk cannot be decrypted if malware

changes the bootloader or firmware. Another applica-
tion is single sign-on, where a TPM key is used by soft-
ware to access all enterprise services but can be used
only when the platform is in a specific state.

Network Attestation
Attestation is the process by which a platform can

cryptographically prove to another platform that it is
in a particular state. It does this by creating a special
kind of key called an identity key that can be used only
for this process. The network server creates a crypto-
graphic nonce—a random value used to prevent replay
attacks—and sends the nonce to the client. Software on
the client creates a TPM “quote” request, sending the
nonce to the TPM and specifying an identity key. The
TPM hashes the PCR values along with the nonce and
signs the hash. The client software sends this quote to
the server, which can verify the platform configuration
with the public portion of the identity key. See Fig. 2
for an illustration of this process. TPM-enabled net-
work attestation can provide hardware-based assurance
that only platforms owned by the enterprise are allowed
access to the network and that the software on these
platforms has not been modified.

)

Network authentication
application

TPM

Network authentication
 client

Client
laptop

Network authentication
server

Quote request
random nonce

PCR quote
signature (nonce and

PCR values)

Request to access network

Attestation request
random nonce

Attestation response
quote

Access decision
granted/denied

Figure 2. TPM-enabled network attestation concept showing notional requests and responses.

TRUSTED PLATFORM MODULE EVOLUTION

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 539

TPM 2.0—TOWARD UBIQUITOUS TRUSTED
COMPUTING

Although the TPM 1.1b and 1.2 specifications created
the foundation for the use cases described, a number of
roadblocks occurred that hampered adoption by indus-
try. These included ambiguities in the specification, rig-
idness in the policy regarding how keys are used, tight
coupling to specific cryptographic algorithms, and issues
related to control of the TPM by platform software.

Algorithm Agility
Ideally, a flexible cryptographic module would handle

both symmetric and asymmetric encryption algorithms.
Symmetric encryption refers to algorithms where the
same key is used for encryption and decryption. Asym-
metric encryption (or public key cryptography) refers to
algorithms that use a public and private key pair. To send
an encrypted message, the sender encrypts the message
with the receiver’s public key—this ensures that only
the receiver (who knows the private key) can decrypt it.
Public key systems can also be used for digital signatures.
The message sender can sign the message with his or
her private key, and the receiver can use the public key
to verify that the message originated with that person.

As noted earlier, TPM 1.2 and earlier versions were
restricted to using the RSA algorithm for encryption and
the SHA-1 algorithm for cryptographic hashing. Using
symmetric encryption (such as DES or AES algorithms)
would have greatly simplified the TPM 1.2 specification.
However, at the time it was being developed, exporters
of symmetric cryptographic chips were subject to record-
keeping requirements under U.S. law. Because it would
be prohibitively difficult for computer manufacturers to
meet these requirements, the decision was made to use
only RSA. RSA is an asymmetric algorithm that is pri-
marily designed to encrypt very small messages. RSA is
normally used to exchange symmetric encryption keys,
which are then used to encrypt larger streams of data.
Constraining the TPM to encrypt data and keys with
RSA keys required some serious design shortcuts.

The algorithms themselves have also weakened over
time as more cryptanalytic attacks have been published.
In 2009, a 768-bit RSA key was factored,14 and there
is disagreement in the cryptographic community over
the strength of 2048-bit RSA used in TPM 1.2. Recent
attacks have surfaced on the SHA-1 algorithm, which
was designed to have 80-bit collision resistance (that is,
requiring at least 280 evaluations of the hash function
to discover two messages with the same hash value).
In 2005, an attack was discovered that weakened it to
69 bits.15 Current estimates are around 61.5 bits.16 In
2005, the National Institute of Standards and Technol-
ogy started work to phase out use of SHA-1 in favor of
the SHA-2 family and began working on a new algo-

rithm to be called SHA-3. Simultaneously, the TPM
specification committee began working on the next ver-
sion of the TPM specification, which eventually became
TPM 2.0.

The key structure of TPM 1.2 did not allow simply
replacing the SHA-1 algorithm with SHA-256. The
additional 12 bytes in SHA-256 made the resultant
data structure too large to encrypt in one step with an
RSA key. Truncating the SHA-256 hash to 160 bits
would make the data fit the structure but would weaken
the strength of the hash. Ultimately it was decided to
change the key structure entirely.

In the TPM 1.2 specification, a 2048-bit RSA key
encrypted another key by using a trick. An RSA pri-
vate key consists of two large prime numbers. The public
key is the product of those numbers. Only one of the
prime numbers is required to recover the other prime
number if the product of the two primes is also known.
Therefore, a parent key is only used to encrypt one of
the prime numbers of a child key, and when the child
key is loaded into the TPM, both the child’s first prime
number (encrypted with the parent key) and the public
key are loaded into the chip. The TPM then uses the
parent key to decrypt the child’s first prime number and
then divides the result into the public key to obtain the
other. This has the effect of reducing the amount of data
that needs to be encrypted and obviates the need for the
TPM to contain a symmetric algorithm. However, it is
also slow.

In TPM 2.0, keys are generally stored symmetrically
encrypted, with the key used to encrypt them itself
encrypted with a parent key called a key encryption
key, or KEK. See Fig. 3 for an illustration. This two-
step process adds very little execution time overhead to
the TPM 1.2 method, because symmetric encryption is
much faster than asymmetric encryption. It also allows
for the data structures encrypted to be much larger than
before when only an asymmetric method was used. This
change also allows any combination of algorithms to be
used in the specification regardless of the key sizes they
individually could encrypt. As a result, the specification
abstracted the algorithms supported to an algorithm ID
table, which is referenced by the specification but is not
part of it.

Currently, the algorithm ID table lists a variety of
public/private key algorithms, symmetric algorithms,
hash algorithms, key derivation functions, cryptographic
modes, and signing schemes, including National Insti-
tute of Standards and Technology–certified algorithms.
The algorithm ID table is independent of the specifica-
tion and can be added to without changing the specifi-
cation at all by simply allocating a number to represent a
new algorithm addition.

Independent of the specification, platform-specific
specifications delivered by the TCG will provide man-
dated sets of algorithms that will be implemented in

J. D. OSBORN AND D. C. CHALLENER

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)540

various physical TPMs. This will ensure interoperability
among the various implementations. These are likely
to include 1024-bit and 2048-bit RSA, 256-bit elliptic
curve cryptography, SHA-1, SHA-256, and 128-bit AES
in the first implementations. RSA and SHA-1 will be
used for backward compatibility.

TPM 2.0 will also probably include a suite of Chi-
nese commercial cryptographic algorithms (SM2 elliptic
curve cryptography, SM3 hash, and SMS4 symmetric
cipher). Western encryption algorithms are illegal in
China, and Chinese-developed algorithms are man-
dated for commercial products. China developed its own
version of the TPM 1.2 specification (called the Trusted
Cryptography Module) based on these algorithms but
only published a partial specification for the software
application programming interface.17 PC manufactur-
ers such as Dell and Lenovo use the Chinese module on
their TPM-enabled systems when selling in China. To
have these algorithms included in the TPM 2.0 specifi-
cation, the Chinese had to publish their algorithms. The
algorithms were included in the first publicly released
TPM 2.0 draft specification, but debate is still ongoing
within TCG as to their inclusion in the final version. A
similar situation exists with Russia. TPMs are banned

in Russia, but there is no Russian
equivalent. Russia’s commercial
crypto algorithms have been pub-
lished; however, their standards do
not specify certain critical param-
eters (presumably for the purpose
of keeping the knowledge of the
most secure parameters limited to
government). Multiple implemen-
tations of the same algorithm have
prevented TCG from standard-
izing, so Russian algorithms will
probably be left out of TPM 2.0 for
the foreseeable future.

The implementation of algo-
rithm agility has inherent prob-
lems that had to be solved in the
specification. If more than one
algorithm is used in an implemen-
tation (as is expected), then it is
clear that some algorithms will be
stronger than others. It is unlikely
that someone will want to encrypt
a key with nominal strength of
120 bits with a key with nominal
strength of 80 bits. Similarly, one
would want to use hash algorithms
with strength at least as strong as
the key whose integrity they are
protecting. However, there is not
necessarily agreement as to the
strength of algorithms. There-

fore, when a public key is created, a suite of algorithms
is selected by the creator—asymmetric, symmetric,
and hash algorithms, etc. The hash algorithm selected
will be used for calculations of the name of the key, for
integrity calculations of things it encrypts or signs, and
for authorization calculations. Mixing and matching of
algorithms at this level is not allowed.

Because the creator of a key gets to select the parent
of the key being created, it is possible for the creator to
pick a key with less strength than the key being created.
However, to make this a deliberate choice, the specifi-
cation is designed to make it easy for a user to deter-
mine the strength of all of the keys in a key chain that
terminates at the TPM. It is possible to get proof from
the TPM of that list of key ancestors.

Additionally, although a primary key created under
a TPM can be of any strength selected by the creator,
any storage key underneath a key encryption key has
to follow a rule: If the key cannot be independently
duplicated or moved to a different TPM, it must have
exactly the same algorithm set as its parent. Keys that
cannot be used as key encryption keys are called leaf
keys, and they can have any set of algorithms selected
by the creator.

Private key Hash of
public data

Authorization data
(password hash)

Data encrypted with parent key

Symmetric key
Hash of data

encrypted with
symmetric key

Key and algorithm
parameters for
symmetric key

Private key
Authorization data
(hash of password

and policy)

Data encrypted with symmetric key

Data encrypted with parent key

Key and algorithm
parameters for
asymmetric key

Public key
Authorization

policy
(can include PCRs)

Key and algorithm
parameters for
asymmetric key

Public data

Public key PCR values
Key and algorithm

parameters/
authorized uses

Public data

Figure 3. Asymmetric key structure for TPM 1.2 (top) and TPM 2.0 (bottom).

TRUSTED PLATFORM MODULE EVOLUTION

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 541

Enhanced Authorization
In TPM 1.2, authorization (the process by which soft-

ware proves to the TPM that it is allowed to use a key,
counter, or NVRAM object) is very limited in scope.
The only way to restrict access is by passwords (repre-
sented as SHA-1 hashes) and PCR values. To use a key,
software will have to prove knowledge of the password
hash as part of the command. It is also possible to seal
a key to specific PCR values so that the key cannot be
used unless the password is known and the PCRs are in
the chosen state.

This means that TPM 1.2 authorization is fairly inflex-
ible. When multiple users share a platform, it makes it
difficult to share TPM keys and data. Users often have
their own sets of keys, because they individually know
their passwords. This also makes system administration
difficult because users must physically enter their pass-
words to authorize usage of their keys.

Enhanced Authorization (EA) in TPM 2.0 greatly
expands the methods by which key and data use can be
authorized, and the policy has become much more flex-
ible. In TPM 1.2, software would prove it had knowledge
of the password in an authorization session. A single
command would be sent to the TPM before the com-
mand requiring authorization to start the session. One
of the parameters to the command was a hashed message
authentication code that included the password hash
along with other values so that the TPM could verify
knowledge of the password.

EA extends these authorization sessions into policy
sessions, which allow multiple authorization methods
to be combined by Boolean logic. For instance, let’s
say one wants to have a key that is accessible by both
Alice and Bob and they have individual passwords.
A policy can be created that says, “Authorize access
if and only if Password(Alice) or Password(Bob).” Or
say one wanted to create multifactor authentication
for both users but allow either user to access the key.
A policy can be created that says, “Authorize access if
and only if ((Password(Alice) and SmartCard(Alice))
or (Password(Bob) and SmartCard(Bob)).” The way this
works is that software will create the policy and then
specify the hash of that policy when creating the key
or data. The TPM does not need to know the details of
the policy—the hash is sufficient. Later, when software
wants to use the key, it will start an authorization ses-
sion and send one command to the TPM for each token
in the policy equation. The TPM will verify that the
policy specified in that sequence of commands is satis-
fied and also verify that the hash of the policy command
sequence is the same as the policy hash specified at cre-
ation time.

Not only does EA create a flexible policy language,
it also adds more possible authorization methods. Pre-
viously, one was limited to passwords and PCR values.
Now the authorization methods include the following:

• Passwords—similar to TPM 1.2

• PCR values—same as TPM 1.2, but the addition
of Boolean logic means multiple PCR states can
be used

• TPM counter or NVRAM value—require that these
items have a particular value

• Physical presence— require that a user be physically
present at the PC

• Commands—require that the object can only be
used with a given set of commands

• Digital signature from a public key—this allows
smartcards such as Common Access Cards to be
used for authorization

Management for some things is much easier to do with
simple passwords than with complex policies, and so the
design allows for each object to have a simple password
associated with it, a policy, or both. If both are present,
the creator of the object can split roles between the two,
so that (for example) a simple password may be used
for signing with a key, but administrative tasks such as
creating a certificate for the key or creating a backup
of the key may require an IT administrator’s smartcard
authorization.

Compilable Specification
In the TPM 1.2 specification, behavior of the TPM

when responding to a given function is written in pseudo-
code. Although this is more specific than a natural lan-
guage description, it still leaves a lot of wiggle room for
interpretation. Many issues arose over the years when
vendors implemented slightly different versions of the
same command. Some vendors chose to fix these issues
with firmware updates to the TPM, but other TPMs
cannot be updated (their code is permanently burned in
at the factory). To avoid similar problems, the TPM 2.0
specification is written in C. This should truly standard-
ize TPM behavior across vendor implementations.

The specification was designed in four parts:
• Part 1 is an introduction, but it also contains specif-

ics of how sessions are set up with the TPM and used
to authenticate the use of a TPM or TPM entity.

• Part 2 is a list of variables, structures, and constants
used in the specification.

• Part 3 is a list of the commands that a TPM can
execute. Those commands include a brief descrip-
tion in English of what they do, together with code
that implements them.

• Part 4 consists of subroutines used by Part 3.
Throughout the specification are special symbols,
called decorations, that help special software extract
code from the specification.

J. D. OSBORN AND D. C. CHALLENER

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)542

The symbols used in any part of the specification
are listed at the beginning of each part. For example,
when an ampersand is used in front of a variable, it
means that the variable requires authorization via an
authorization session when the command is executed.
If there are multiple variables preceded with an amper-
sand, then there will be multiple authorization sessions
in the command.

These types of special symbols, called decorations,
are used by special software created by Microsoft that
can extract the code from the specification and create
a compilable reference TPM. Unfortunately, this special
software is not freely available, although the resultant
code has been provided by Microsoft to TCG members
to use in verifying member’s implementations. These
decorations make the specification more precise but also
require the reader to learn a special set of symbols to
make perfect sense of the specification.

A compilable specification will be a huge leap for-
ward for TPM. Clearly, this will reduce implementation
differences between vendors. Research may be done to
mathematically prove the correctness of parts of the
specification now that it is written in a more formal lan-
guage. Another major benefit is that a software emulator
will always be available for TPM 2.0 without additional
development. This will be useful for both virtualized
platforms as well as resource-constrained platforms. For
cost, space, or power-saving reasons it may not be fea-
sible to field a discrete TPM chip. However, a compilable
specification means that a platform designer can field a
software TPM in a protected mode or virtualized mode
of the main CPU.

Activation and Multiple Ownership
Without question, the biggest hindrance to wide-

spread adoption of TPM 1.2 is that PC vendors ship
machines with the TPM turned off by default. To acti-
vate the TPM, users must go into their firmware settings,
find the appropriate menu, and choose to enable it. The
off-by-default decision was made early on in response to
outcries by the computer security community. At the
time, opinions were expressed that TPM was simply a
move by industry to enforce digital rights management
and force people to use certain software packages. Some
prominent researchers supported this position, which
strengthened the argument against use of TPMs.18 TCG
therefore recommended that the TPM be off by default
and that the user be required to manually activate it via
firmware menus. Because most users never touch their
firmware settings, this means that most TPMs have
never been turned on.

Even if the TPM is activated, the platform firmware
cannot do much with it. In TPM 1.2, once activated,
the TPM starts out unowned, and the first person to
establish an owner password via a specific command

becomes the owner. The TCG decided early on that
postboot applications would have to handle this pro-
cess, cutting the firmware developers out of the picture
because they must assume an unowned TPM. In the
unowned state, a limited set of commands is available.
Keys cannot be created or loaded, so the PCR state
cannot be securely checked. With TPM 1.2, the firm-
ware is unable to verify the boot state. Instead, the firm-
ware is capable of hashing code and extending PCRs,
and it is up to the operating system or applications to
check them for Measured Boot.

TPM 2.0 fixes these problems by ensuring that the
TPM is on by default and by creating a platform entity,
ensuring that platform firmware has full access to TPM
resources. Firmware will be able to create keys, encrypt
data, and securely check PCR values. This means that
simultaneously the platform user and platform firmware
are “owners” of the TPM and can make use of its fea-
tures. Firmware developers can use all the capabilities
of the TPM to secure the preboot environment, in the
same way that operating systems can use the TPM to
protect their operation today.

CONCLUSION
The TPM 2.0 specification is a substantial improve-

ment in sophistication over the TPM 1.2 design. It
allows for algorithm agility, which should prevent early
obsolescence. By additionally unifying and extending its
authentication mechanisms via EA, it has simultane-
ously made the TPM more manageable, flexible, easier
to program, and more useful. By making the specifica-
tion compilable, it has become less prone to ambiguity
and is itself a software reference implementation. By
making TPMs activated by default, the vision of ubiqui-
tous trusted computing may become reality.

REFERENCES

 1Trusted Computing Group, TPM Main Specification, http://www.
trustedcomputinggroup.org/resources/tpm_main_specification.

 2Trusted Computing Group, TPM Library Specification, http://www.
trustedcomputinggroup.org/resources/tpm_library_specification.

 3Microsoft Corporation, Windows Certification Program: Hardware
Certification Taxonomy & Requirements - Devices, http://download.
microsoft.com/download/F/1/C/F1C62227-2D6A-4915-9EF2-0BDAE-
0F323BD/windows8-1-hardware-cert-requirements-device.pdf
(accessed 27 Aug 2013).

 4National Security Agency, HAP Technology Overview, http://www.
nsa.gov/ia/programs/h_a_p/overview/index.shtml (accessed 27 Aug
2013).

 5Trusted Computing Group, Byres Security Demonstrates Industrial
Control System (SCADA), http://www.trustedcomputinggroup.org/
resources/byres_security_demonstrates_industrial_control_system_
scada (accessed 27 Aug 2013).

 6Fink, R. A., Sherman, A. T., and Carback, R., “TPM Meets DRE:
Reducing the Trust Base for Electronic Voting using Trusted Platform
Modules,” IEEE Trans. Inf. Forensic. Secur. 4(4), 628–637 (2009).

 7Trusted Computing Group, Mobile Working Group, http://www.trust-
edcomputinggroup.org/developers/mobile (accessed 27 Aug 2013).

http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_library_specification
http://www.trustedcomputinggroup.org/resources/tpm_library_specification
http://download.microsoft.com/download/F/1/C/F1C62227-2D6A-4915-9EF2-0BDAE0F323BD/windows8-1-hardware-cert-requirements-device.pdf
http://download.microsoft.com/download/F/1/C/F1C62227-2D6A-4915-9EF2-0BDAE0F323BD/windows8-1-hardware-cert-requirements-device.pdf
http://download.microsoft.com/download/F/1/C/F1C62227-2D6A-4915-9EF2-0BDAE0F323BD/windows8-1-hardware-cert-requirements-device.pdf
http://www.nsa.gov/ia/programs/h_a_p/overview/index.shtml
http://www.nsa.gov/ia/programs/h_a_p/overview/index.shtml
http://www.trustedcomputinggroup.org/resources/byres_security_demonstrates_industrial_control_system_scada
http://www.trustedcomputinggroup.org/resources/byres_security_demonstrates_industrial_control_system_scada
http://www.trustedcomputinggroup.org/resources/byres_security_demonstrates_industrial_control_system_scada
http://www.trustedcomputinggroup.org/developers/mobile
http://www.trustedcomputinggroup.org/developers/mobile

TRUSTED PLATFORM MODULE EVOLUTION

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 543

14Kleinjung, T., Aoki, K., Franke, J., Lenstra, A. K., Thomé, E., et al.,
“Factorization of a 768-Bit RSA Modulus,” in Proc. 30th Annual Conf.
on Advances in Cryptology (CRYPTO 2010), Santa Barbara, CA, pp.
333–350 (2010).

15Wang, X., Yin, Y. L., and Yu, H., “Finding Collisions in the Full SHA-
1,” in Proc. 25th Annual International Cryptology Conf. (CRYPTO
2005), Santa Barbara, CA, pp. 17–36 (2005).

16Stevens, M., “New Collision Attacks on SHA-1 Based on Optimal
Joint Local-Collision Analysis,” in Proc. 32nd Annual International
Conf. on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT 2013), Athens, Greece, pp. 245–261 (2013).

17Challener, D. C., and Osborn, J. D., The Trusted Cryptography Module:
An Analysis of China’s Homegrown Trusted Computing, AISD Report
AI-09-124, JHU/APL, Laurel, MD (Aug 2009).

18Anderson, R., ‘Trusted Computing’ Frequently Asked Questions, http://
www.cl.cam.ac.uk/~rja14/tcpa-faq.html (accessed 27 Aug 2013).

 8Trusted Computing Group, Embedded Systems Working Group, http://
www.trustedcomputinggroup.org/developers/embedded_systems
(accessed 27 Aug 2013).

 9Trusted Computing Group, Virtualized Platform Working Group,
http://www.trustedcomputinggroup.org/developers/virtualized_plat-
form (accessed 27 Aug 2013).

10Broadcom Corporation, BCM5882: Secure Applications Processor,
http://www.broadcom.com/products/Security/PC-Client-Security/
BCM5882 (accessed 27 Aug 2013).

11Trusted Computing Group, TCG Software Stack Specification, http://
www.trustedcomputinggroup.org/resources/tcg_software_stack_tss_
specification.

12Microsoft Corporation, Secure Boot Overview, http://technet.micro-
soft.com/en-us/library/hh824987.aspx (accessed 27 Aug 2013).

13Microsoft Corporation, BitLocker Drive Encryption Overview, http://
technet.microsoft.com/en-us/library/cc732774.aspx (accessed 27 Aug
2013).

The Johns Hopkins APL Technical Digest can be accessed electronically at www.jhuapl.edu/techdigest.

Justin D. “Ozzie” Osborn is a software reverse-engineer in APL’s Asymmetric Operations Department and a member of
the Senior Professional Staff. He has worked on several projects developing TPM software and performing vulnerability
analysis of TPM solutions. David C. Challener is an applied mathematician and Senior Professional Staff member in
the Asymmetric Operations Department. While at IBM, Dave worked on the design of the IBM PC embedded security
subsystem and the first TPM chip. Dr. Challener coauthored the book A Practical Guide to Trusted Computing on program-
ming with the TSS. He has been active in the TCG, serving on the Board of Directors, chairing the TSS Workgroup,
and participating in the Technical Committee, Virtualization Workgroup, and Storage Workgroup. He currently cochairs
the TPM Working Group. For further information on the work reported here, contact Justin Osborn. His e-mail address
is justin.osborn@jhuapl.edu.

 The Authors

http://www.cl.cam.ac.uk/~rja14/tcpa-faq.html
http://www.cl.cam.ac.uk/~rja14/tcpa-faq.html
http://www.trustedcomputinggroup.org/developers/embedded_systems
http://www.trustedcomputinggroup.org/developers/embedded_systems
http://www.trustedcomputinggroup.org/developers/virtualized_platform
http://www.trustedcomputinggroup.org/developers/virtualized_platform
http://www.broadcom.com/products/Security/PC-Client-Security/BCM5882
http://www.broadcom.com/products/Security/PC-Client-Security/BCM5882
http://www.trustedcomputinggroup.org/resources/tcg_software_stack_tss_specification
http://www.trustedcomputinggroup.org/resources/tcg_software_stack_tss_specification
http://www.trustedcomputinggroup.org/resources/tcg_software_stack_tss_specification
http://technet.microsoft.com/en-us/library/hh824987.aspx
http://technet.microsoft.com/en-us/library/hh824987.aspx
http://technet.microsoft.com/en-us/library/cc732774.aspx
http://technet.microsoft.com/en-us/library/cc732774.aspx
www.jhuapl.edu/techdigest
mailto:justin.osborn@jhuapl.edu

	Trusted Platform Module Evolution
	Justin D. Osborn and David C. Challener
	INTRODUCTION
	TPM BACKGROUND AND USE CASES
	Platform Configuration Registers
	Measured Boot
	Sealed Storage
	Network Attestation

	TPM 2.0—TOWARD UBIQUITOUS TRUSTED COMPUTING
	Algorithm Agility
	Enhanced Authorization
	Compilable Specification
	Activation and Multiple Ownership

	CONCLUSION
	REFERENCES
	The Authors
	Figures
	Figure 1. A TPM 1.2 chip.
	Figure 2. TPM-enabled network attestation concept showing notional requests and responses.
	Figure 3. Asymmetric key structure for TPM 1.2 and TPM 2.0.

