
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)460

INTRODUCTION
An explosion of innovation and investment in the

early 1980s and 1990s propelled the United States from
a country where computers were arcane devices with no
impact on most people to a country where computers
are vital to our lifestyle, our critical infrastructure, and
even our national security. Although the reliability of
computing increased dramatically over this period, secu-
rity actually decreased as functionality and connectivity
grew. Today, the frequency and nature of cyber attacks

prompt a well-founded concern that our way of life and
national security are at risk.

Most cyber attacks are enabled by exploitable soft-
ware flaws. Some believe that the risk is created by care-
less software developers who leave numerous, accidental
flaws. Others are more concerned that offshore outsourc-
ing of software development is leaving us vulnerable to
malicious code implanted by foreign adversaries. The
primary threat, however, is neither offshore development

n the 21st century, cyberspace has emerged as the foundation for a new way
of life and a new approach to warfighting. As a logical domain not subject to

the laws of physics and with a complexity greater than its human creators can
understand, this foundation is shaky at best. We are in the early stages of conquer-
ing this man-made space, as humanity has conquered the sea, air, and outer-space
domains in previous centuries. Over the coming decades, researchers will discover the
scientific underpinnings and engineering disciplines that will allow us to build confidently
on the cyberspace foundation, with no more concern for its reliability and security than
we have for brick-and-mortar structures. Researchers at APL are part of that bold
endeavor. This issue of the Johns Hopkins APL Technical Digest describes their use of
formal methods, software analysis, new languages, new hardware, and new protocols to
derive the principles and define the techniques that will allow even greater value to be
derived from the use of cyberspace, without the current possibility of catastrophic loss.

Trustworthy Computing: Making Cyberspace
Safe—Guest Editor’s Introduction

Susan C. Lee

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 461

Imagine that we have a system, A, whose operation is
monitored and assessed by another system, B. If B does
not flag any incorrect operation by A, can we trust that
A is operating correctly? Yes, but only if we trust that B
is operating correctly. To determine whether B is operat-
ing correctly, we need a third system, C, to monitor and
assess B’s operation. Then, if C flags no incorrect opera-
tion of B, we can trust that A is operating correctly—but
only if we trust that C is operating correctly. Inevitably,
there will be at least one trusted system in every trust-
worthy computing system. In logic, this would be called
an axiom. In trustworthy computing, it is called “the
root of trust.” From it, we can construct what is called a
“chain of trust.” In our thought experiment, the chain of
trust is C→B→A.

Building a chain of trust is not quite as simple as
building a series of assessments. If B is to reliably assess
the operation of A, then A can have no means of influ-
encing the operation of B. If it does, then there exists a
possibility that A can cause B to fail to detect A’s mis-
behavior. This is the flaw in many of today’s security
products that was described previously—that is, these
products can be influenced by, and sometimes depend on,
the very systems they are monitoring. This allows them
to be bypassed or subverted, defeating their purpose.
The property of “separation,” as it is called in trustwor-
thy computing, is as important to building a trustworthy
computing system as the correctness of the root of trust.

A chain of trust can operate at many levels. For
example, A, B, and C could be executing programs,
with A providing functionality and B and C providing
security. Or A could be an executing program, B could
be a suite of test vectors, and C could be the human
who devised the test vectors. Here, the root of trust is a
human who we trust to devise a complete and compre-
hensive test. Separation in the latter case may be pro-
vided by independent verification and validation, where
the test vectors are not created by the same person who
wrote the code.

The goal of trustworthy computing research is to
create the principles, architectures, tools, and techniques
required to build a trustworthy computing system.

STATIC ANALYSIS
Human constructions in the physical world are con-

strained by the laws of physics. Human constructions in
cyberspace are not. Certainly, the hardware portions of
a computing system are subject to the laws of electro-
magnetics and the electrical properties of materials, but
the operation of computing hardware is driven by the
arrangement of these materials—an arrangement that
in today’s chip-manufacturing world is controlled by
software. Field-programmable gate arrays (FPGAs) and
application-specific integrated circuits are designed by
writing a program in some special programming lan-

nor careless software developers. The primary threat is
our current lack of technical capability for building and
understanding complex software systems. Today’s tech-
nology cannot reliability pinpoint exploitable flaws or
implanted malicious code hidden in millions of lines of
functional code.

As the threat from cyber attacks grew, so did the
demand for security products such as firewalls, intru-
sion-detection systems, virus checkers, and particularly
at the Department of Defense, “cross-domain solutions”
that allow networks at different security levels to be con-
nected safely. Security products are add-ons to the prod-
ucts we use to supply functionality, such as web browsing,
e-mail, and document creation. Security products are
intended to enforce what the security community calls
a “security policy”—that is, a definition of the actions
that the computing system should and should not do.
These actions range from downloading web pages from
known malicious sites to allowing all comers to connect
to the enterprise network.

All of these security products share a common flaw,
however; they are all large, complex computing systems
themselves, executing in the same space as potentially
malicious software (malware). Moreover, many of them
depend on services provided by other software (such as
commercial operating systems) that are known to be
exploitable. It is common for cyber attacks to disable
security products without any visible, outward sign of
tampering. Use of these vulnerable security products
induces users to trust their vulnerable applications; how-
ever, security cannot be built out of a conglomeration of
insecure systems.

Rather than add to the list of vulnerable security
products, a small group of APL security researchers
chose to focus on the fundamental, underlying issue:
how can we build trustworthy computing systems? What
combination of hardware, software, and firmware can
we trust to enforce a system’s security policy? This issue
of the Johns Hopkins APL Technical Digest discusses the
avenues of research and approaches to creating trustwor-
thy computing that are being explored at APL.

TRUST
In the context of computer security, trust may be best

described as blind faith; that is, we have an expectation
of correct operation without having any evidence of
correctness. A “trusted system” is a system whose failure
allows a security policy to be broken, but there is no way
of detecting its misbehavior. In this sense, most com-
puting systems in use today are trusted systems. Clearly,
a system can be trusted, yet untrustworthy. To make a
system trustworthy, we need some basis for confidence,
some assured evidence of correct operation.

The difficulty inherent in obtaining such evidence
can be best understood through a thought experiment.

S. C. LEE

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)462

ship will hold for all inputs, for all times. In principle, no
amount of testing can establish the validity of that claim,
and in practice, even large amounts of testing have been
found wanting. In “Applying Mathematical Logic to
Create Zero-Defect Software,” Kouskoulas and Kazan-
zides describe how they applied a new formal method to
proving an algorithm that handled concurrency. In his
first attempt, it could not be proven, thus identifying a
logical flaw in the algorithm. The way his proof failed
suggested an approach to fixing the algorithm, which
was implemented and subsequently proven correct.

Hybrid cyber–physical systems also present chal-
lenges to FM. Specifically, a cyber system that operates
at discrete time steps must correctly follow and control a
physical system that operates continuously. The physical
system obeys the laws of physics, and its behavior can
often be described by a set of equations. A cyber system
can only sense the system state and apply controls to
change it at discrete intervals. To prove that the cyber
system will correctly control the physical system, again
for all inputs and all times, a formal method must be
able to describe the continuous operation of the physical
system and express the (desired) relationship between it
and the cyber system. In “Formal Methods for Robotic
System Control Software,” Kouskoulas et al. describe
the application of another recent development in FM
to prove a crucial aspect of the control mechanism in
a medical system where an error could literally be fatal.

Although either of the errors discovered in these
two articles could cause the underlying program to mal-
function, there is no reason to believe they are “exploit-
able,” that is, that they can be caused to occur by the
intervention of an adversary. At APL, researchers are
experimenting with using FM to find exploitable errors,
usually called vulnerabilities. The technique begins
with the undesirable behavior (e.g., load and execute
arbitrary malware) and analyzes the program to deter-
mine whether, and—if so—under what circumstances,
its logic allows the undesirable behavior to occur. Like
other FM, this technique suffers from scaling problems.
Current research involves implementing it on a cloud in
order to increase the size and complexity of code that
can be addressed.

INFORMAL ANALYSIS
FM are the only approach to proof of correctness, but

their application is severely limited by scale and com-
plexity at the current time. On the other hand, many
good analysis tools are available that will find and
expose a significant number of errors in software. These
are often far easier to use, and will handle much larger
programs than FM, although at the expense of an abso-
lute guarantee. Use of these tools increases confidence
that the end product will operate correctly. They can
uncover errors in software before testing and, if speci-

guage called a hardware description language. This pro-
gram is interpreted by a computer driving the machinery
that creates the specified chips. The chips themselves
can be thought of as the designer’s program carved in
silicon. There is little loss of generality then to claim
that proving the correctness of a computing system is
equivalent to proving the correctness of software, an
entity that is not subject to the laws of physics.

Despite its independence from physical constraints,
the operation of software is not without limits. In
cyberspace, logic takes the place of physics. No matter
how unexpected or odd the behavior of software seems,
we can be sure that it is obeying the laws of logic.
Although few programmers think they are composing
elaborate theorems that can, in principle, be proven to
describe some specified behavior, this is what programs
are. Formal Methods (FM) are the collection of logical
constructs and tools that allow us to prove the theo-
rems we write as programs. Today, the state of the art in
FM does not allow most programs to be proven correct.
In fact, most commonly used programming languages
are not amenable to applying logic to prove properties
about the programs, and the programs are far too large
and complex.

To address scalability, FM are applied to small, but
critical, portions of a program that can be cast in a form
amenable to transformation through the application of
valid rules of logic. These potions of the program can be
proven (or disproven) to function correctly for all pos-
sible inputs. Proving correctness for essential operations
can greatly increase confidence in the entire program.
The first article, by Pendergrass, “Verification of Stack
Manipulation in the Scalable Configurable Instrument
Processor,” illustrates this approach. Here, FM are used
to prove that the VHSIC Hardware Description Lan-
guage specification for an FPGA implementation of the
Scalable Configurable Instrument Processor (SCIP) cor-
rectly handles stack operation in all cases. The SCIP is
designed to execute programs written in a specific pro-
gramming language that performs the majority of logical
and arithmetical operations using the stack; thus, cor-
rectly handling stack manipulation is essential to allow
programs to perform correctly on the SCIP.

In addition to scaling limitations, FM can suffer
from limitations in expressiveness. “Expressiveness” is
the ability of a particular formal method to express, or
describe, certain aspects of a program’s operation. Until
recently, existing FM did not express the properties of
concurrency or physical–cyber interfaces well. The dif-
ficulties in applying FM to these two common aspects
of modern programs can be easily appreciated. To prove
correctness of concurrent operation, the formal method
must include some means of expressing the temporal
relationship between two (or more) programs operating
simultaneously and independently. The rules of logic
must be capable of proving that some correct relation-

TRUSTWORTHY COMPUTING AT APL: GUEST EDITOR’S INTRODUCTION

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 463

menting this approach is generally known as “LKIM,”
which stands for Linux Kernel Integrity Measurer, its
first application; however, the approach is general and
has been implemented for other operating systems.

Today, extracting the specification of possible behav-
ior from code requires a considerable degree of manual
analysis. Even so, the technique has been applied to sev-
eral different operating systems and is currently in ser-
vice protecting some APL servers. If the initial step of
extracting the specification could be more highly auto-
mated, the number and variety of applications would
grow. In their article, “Ensuring the Integrity of Run-
ning Java Programs,” Thober et al. describe a program-
ming language that supports that automation. Although
the widespread adoption of new programming languages
is not assured, a language like the one Thober et al.
describe could be used by security-aware developers of
highly sensitive software components.

The LKIM approach captures periodic snapshots
of memory on which to perform assessment. It can
reveal that something unwanted has occurred between
snapshots, but it cannot say what occurred, or when it
occurred, to a granularity finer than the snapshot inter-
val. In their article, “Analysis of Virtual Machine Record
and Replay for Trustworthy Computing,” Grizzard and
Gardner describe a framework for capturing the behavior
of an executing program at the instruction level. This
recording of behavior is faithful enough to be “played
back” and precisely reproduce the execution that took
place. Such a capability can be used to apply a wide vari-
ety of assessment techniques to the program’s behavior.
It could be used retrospectively in a traditional computer
forensics application to determine when, and more impor-
tantly, exactly how a computer was exploited, revealing
the vulnerability. The playback would also reveal exactly
what damage the malware did. Although the ability to
do such precise forensics is a step forward, the more excit-
ing notion is to play back an execution stream in paral-
lel with, and only slightly lagging, the original program.
Time-consuming diagnostics that would introduce unac-
ceptable latency and delay in the original program can
be applied to the playback, with the playback catching
up with the original during relative lulls in activity. This
capability allows for the possibility of detecting and pre-
venting exploits in near real time. Eventually, research
could lead to a capability for diagnosing and repairing
the vulnerability in near real time and then restarting
the original program before the exploit.

Separation
The dynamic analysis systems that are described

in this issue of the Digest are all subject to malicious
interference unless they can be assured separation from
the objects of their analysis (the vulnerable programs).
Fortunately, commercial producers of computing hard-

fications and designs are created in a formal language,
before coding. It is well known that the earlier in the life
cycle a flaw is detected, the easier and cheaper it is to fix.

Because APL delivers software—either on its own or
embedded in systems—to our sponsors, the Asymmetric
Operations Department (AOD) established the Soft-
ware Analysis Research and Applications Laboratory
(SARA Lab) in late FY2012. This facility is envisioned
as a place where software and hardware developers
across APL can bring requirements, designs, or code for
analysis. By doing so, developers gain insights into their
products that they would not have had otherwise, and
AOD researchers experiment and learn the capabilities
and limitations of commercial and research software
analysis tools. In “Theory and Practice of Mechanized
Software Analysis,” Pendergrass et al. describe the future
envisioned for the SARA Lab, the tools that are avail-
able for use in the SARA Lab today, and some early suc-
cesses resulting from its use.

DYNAMIC ANALYSIS
So far, only static methods for establishing correctness

have been discussed. Going back to the original thought
experiment, B and C could be programs assessing the
correct behavior of program A as it executes (that is,
performing “dynamic analysis”). Some security products,
such as intrusion-detection systems, continuously moni-
tor the behavior of network traffic or host behavior in
real time. Even when these security products are safely
separated from the objects of their assessment, they have
limited utility. They are based on precise descriptions of
how known malware acts (so-called signatures), heuristic
descriptions of how malware acts, or models of normal
behavior built through observation of the executing
software during a period when behavior is (presumably)
good. Products using signatures fail to detect new mal-
ware; further, in practice, even known exploits can be
slightly modified to escape detection. Because both heu-
ristics and models are an imprecise description of behav-
ior, they must increase their tolerance (threshold) for
abnormal behavior, lowering their probability of detec-
tion to avoid generating a large number of false alarms.

In contrast, Pendergrass and McGill’s article, “LKIM:
The Linux Kernel Integrity Measurer,” describes an
approach that extracts a precise specification of possible
behavior from a program’s code. A program’s code gov-
erns how the program structures and evolves memory as
it executes. By examining memory periodically during
execution, we can detect when its state is not consistent
with the code that should be executing; these deviations
always indicate that something is amiss—most often the
presence of malware. Because the assessment is based on
the logic of the desired code, it will reliably reveal the
presence of malware, even previously unknown malware,
with a very low rate of false alarm. The system imple-

S. C. LEE

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)464

Trusted Platform Module,” describes the impediments
to implementing a TPM-like capability on mobile plat-
forms and how they might be overcome to create a speci-
fication for a TPM for mobile devices.

CONCLUSION
The first steps toward taming cyberspace, and plac-

ing it under the control of its developers and users, are
being made right now. Advances in software analysis,
particularly FM, are needed to replicate the physics-
based model used in physical space. Precise models of
normal behavior, derived from the functional code itself,
are needed to reliably distinguish between good and
malicious behavior in executing code. Strong separation
techniques are needed to ensure that security products
are safe from malicious interference from the objects
of their observation and control. APL researchers are
making some of the initial steps toward meeting each
of these goals. Although not widely known or supported
across the community, it is research in these areas that
will ultimately make cyberspace safe for further develop-
ment and use.

ware and software recognize the need to give developers
mechanisms that they can use to provide this hardware-
assured separation for roots of trust. At the beginning
of this century, major manufacturers, such as Intel and
Microsoft, formed a consortium call the Trusted Com-
puting Group (TCG) to create specifications for sepa-
ration support that can be implemented by processor
manufacturers and used by software developers of sensi-
tive applications. Their foundational specification is of
the Trusted Platform Module (TPM), a separate crypto-
graphic processor and memory that allows establishment
of a software root of trust. Today, a TPM has been imple-
mented in nearly all commercial processors and shipped
with new products. If your computer is less than 5 years
old, it almost certainly contains a TPM.

APL participates on TCG working groups and has
contributed significantly to the specification of the
TPM. In “Trusted Platform Module Evolution,” Osborn
and Challener provide background on the TCG and
the TPM and describe the newest TPM specification.
McGill participates on a new working group for extend-
ing the TPM specification to mobile devices. Her article,
“Trusted Mobile Devices: Requirements for a Mobile

As Chief Scientist of the Asymmetric Operations Department, Susan C. Lee is currently employed developing system
concepts, technology roadmaps, and sponsor engagement strategies in a domain broadly described as Asymmetric Opera-
tions, comprising cyber operations and special operations for national security and homeland protection. Her domain
knowledge includes intelligence, information operations, radar propagation, spacecraft development and operation, and
biomedical devices. The foundation of her technical skills comes from interactive and real-time software development.
She holds several patents, including those for a neural network-based intrusion detection system and a mission impact-
based network defense system. Her e-mail address is sue.lee@jhuapl.edu.

 The Author

The Johns Hopkins APL Technical Digest can be accessed electronically at www.jhuapl.edu/techdigest.

	Trustworthy Computing: Making Cyberspace Safe—Guest Editor’s Introduction
	Susan C. Lee
	INTRODUCTION
	TRUST
	STATIC ANALYSIS
	INFORMAL ANALYSIS
	DYNAMIC ANALYSIS
	Separation

	CONCLUSION
	 The Author

