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INTRODUCTION
An explosion of innovation and investment in the 

early 1980s and 1990s propelled the United States from 
a country where computers were arcane devices with no 
impact on most people to a country where computers 
are vital to our lifestyle, our critical infrastructure, and 
even our national security. Although the reliability of 
computing increased dramatically over this period, secu-
rity actually decreased as functionality and connectivity 
grew. Today, the frequency and nature of cyber attacks 

prompt a well-founded concern that our way of life and 
national security are at risk.

Most cyber attacks are enabled by exploitable soft-
ware flaws. Some believe that the risk is created by care-
less software developers who leave numerous, accidental 
flaws. Others are more concerned that offshore outsourc-
ing of software development is leaving us vulnerable to 
malicious code implanted by foreign adversaries. The 
primary threat, however, is neither offshore development 
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Imagine that we have a system, A, whose operation is 
monitored and assessed by another system, B. If B does 
not flag any incorrect operation by A, can we trust that 
A is operating correctly? Yes, but only if we trust that B 
is operating correctly. To determine whether B is operat-
ing correctly, we need a third system, C, to monitor and 
assess B’s operation. Then, if C flags no incorrect opera-
tion of B, we can trust that A is operating correctly—but 
only if we trust that C is operating correctly. Inevitably, 
there will be at least one trusted system in every trust-
worthy computing system. In logic, this would be called 
an axiom. In trustworthy computing, it is called “the 
root of trust.” From it, we can construct what is called a 
“chain of trust.” In our thought experiment, the chain of 
trust is C→B→A.

Building a chain of trust is not quite as simple as 
building a series of assessments. If B is to reliably assess 
the operation of A, then A can have no means of influ-
encing the operation of B. If it does, then there exists a 
possibility that A can cause B to fail to detect A’s mis-
behavior. This is the flaw in many of today’s security 
products that was described previously—that is, these 
products can be influenced by, and sometimes depend on, 
the very systems they are monitoring. This allows them 
to be bypassed or subverted, defeating their purpose. 
The property of “separation,” as it is called in trustwor-
thy computing, is as important to building a trustworthy 
computing system as the correctness of the root of trust.

A chain of trust can operate at many levels. For 
example, A, B, and C could be executing programs, 
with A providing functionality and B and C providing 
security. Or A could be an executing program, B could 
be a suite of test vectors, and C could be the human 
who devised the test vectors. Here, the root of trust is a 
human who we trust to devise a complete and compre-
hensive test. Separation in the latter case may be pro-
vided by independent verification and validation, where 
the test vectors are not created by the same person who 
wrote the code.

The goal of trustworthy computing research is to 
create the principles, architectures, tools, and techniques 
required to build a trustworthy computing system.

STATIC ANALYSIS
Human constructions in the physical world are con-

strained by the laws of physics. Human constructions in 
cyberspace are not. Certainly, the hardware portions of 
a computing system are subject to the laws of electro-
magnetics and the electrical properties of materials, but 
the operation of computing hardware is driven by the 
arrangement of these materials—an arrangement that 
in today’s chip-manufacturing world is controlled by 
software. Field-programmable gate arrays (FPGAs) and 
application-specific integrated circuits are designed by 
writing a program in some special programming lan-

nor careless software developers. The primary threat is 
our current lack of technical capability for building and 
understanding complex software systems. Today’s tech-
nology cannot reliability pinpoint exploitable flaws or 
implanted malicious code hidden in millions of lines of 
functional code.

As the threat from cyber attacks grew, so did the 
demand for security products such as firewalls, intru-
sion-detection systems, virus checkers, and particularly 
at the Department of Defense, “cross-domain solutions” 
that allow networks at different security levels to be con-
nected safely. Security products are add-ons to the prod-
ucts we use to supply functionality, such as web browsing, 
e-mail, and document creation. Security products are 
intended to enforce what the security community calls 
a “security policy”—that is, a definition of the actions 
that the computing system should and should not do. 
These actions range from downloading web pages from 
known malicious sites to allowing all comers to connect 
to the enterprise network.

All of these security products share a common flaw, 
however; they are all large, complex computing systems 
themselves, executing in the same space as potentially 
malicious software (malware). Moreover, many of them 
depend on services provided by other software (such as 
commercial operating systems) that are known to be 
exploitable. It is common for cyber attacks to disable 
security products without any visible, outward sign of 
tampering. Use of these vulnerable security products 
induces users to trust their vulnerable applications; how-
ever, security cannot be built out of a conglomeration of 
insecure systems.

Rather than add to the list of vulnerable security 
products, a small group of APL security researchers 
chose to focus on the fundamental, underlying issue: 
how can we build trustworthy computing systems? What 
combination of hardware, software, and firmware can 
we trust to enforce a system’s security policy? This issue 
of the Johns Hopkins APL Technical Digest discusses the 
avenues of research and approaches to creating trustwor-
thy computing that are being explored at APL.

TRUST
In the context of computer security, trust may be best 

described as blind faith; that is, we have an expectation 
of correct operation without having any evidence of 
correctness. A “trusted system” is a system whose failure 
allows a security policy to be broken, but there is no way 
of detecting its misbehavior. In this sense, most com-
puting systems in use today are trusted systems. Clearly, 
a system can be trusted, yet untrustworthy. To make a 
system trustworthy, we need some basis for confidence, 
some assured evidence of correct operation.

The difficulty inherent in obtaining such evidence 
can be best understood through a thought experiment. 
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ship will hold for all inputs, for all times. In principle, no 
amount of testing can establish the validity of that claim, 
and in practice, even large amounts of testing have been 
found wanting. In “Applying Mathematical Logic to 
Create Zero-Defect Software,” Kouskoulas and Kazan-
zides describe how they applied a new formal method to 
proving an algorithm that handled concurrency. In his 
first attempt, it could not be proven, thus identifying a 
logical flaw in the algorithm. The way his proof failed 
suggested an approach to fixing the algorithm, which 
was implemented and subsequently proven correct.

Hybrid cyber–physical systems also present chal-
lenges to FM. Specifically, a cyber system that operates 
at discrete time steps must correctly follow and control a 
physical system that operates continuously. The physical 
system obeys the laws of physics, and its behavior can 
often be described by a set of equations. A cyber system 
can only sense the system state and apply controls to 
change it at discrete intervals. To prove that the cyber 
system will correctly control the physical system, again 
for all inputs and all times, a formal method must be 
able to describe the continuous operation of the physical 
system and express the (desired) relationship between it 
and the cyber system. In “Formal Methods for Robotic 
System Control Software,” Kouskoulas et al. describe 
the application of another recent development in FM 
to prove a crucial aspect of the control mechanism in 
a medical system where an error could literally be fatal.

Although either of the errors discovered in these 
two articles could cause the underlying program to mal-
function, there is no reason to believe they are “exploit-
able,” that is, that they can be caused to occur by the 
intervention of an adversary. At APL, researchers are 
experimenting with using FM to find exploitable errors, 
usually called vulnerabilities. The technique begins 
with the undesirable behavior (e.g., load and execute 
arbitrary malware) and analyzes the program to deter-
mine whether, and—if so—under what circumstances, 
its logic allows the undesirable behavior to occur. Like 
other FM, this technique suffers from scaling problems. 
Current research involves implementing it on a cloud in 
order to increase the size and complexity of code that 
can be addressed.

INFORMAL ANALYSIS
FM are the only approach to proof of correctness, but 

their application is severely limited by scale and com-
plexity at the current time. On the other hand, many 
good analysis tools are available that will find and 
expose a significant number of errors in software. These 
are often far easier to use, and will handle much larger 
programs than FM, although at the expense of an abso-
lute guarantee. Use of these tools increases confidence 
that the end product will operate correctly. They can 
uncover errors in software before testing and, if speci-

guage called a hardware description language. This pro-
gram is interpreted by a computer driving the machinery 
that creates the specified chips. The chips themselves 
can be thought of as the designer’s program carved in 
silicon. There is little loss of generality then to claim 
that proving the correctness of a computing system is 
equivalent to proving the correctness of software, an 
entity that is not subject to the laws of physics.

Despite its independence from physical constraints, 
the operation of software is not without limits. In 
cyberspace, logic takes the place of physics. No matter 
how unexpected or odd the behavior of software seems, 
we can be sure that it is obeying the laws of logic. 
Although few programmers think they are composing 
elaborate theorems that can, in principle, be proven to 
describe some specified behavior, this is what programs 
are. Formal Methods (FM) are the collection of logical 
constructs and tools that allow us to prove the theo-
rems we write as programs. Today, the state of the art in 
FM does not allow most programs to be proven correct. 
In fact, most commonly used programming languages 
are not amenable to applying logic to prove properties 
about the programs, and the programs are far too large 
and complex.

To address scalability, FM are applied to small, but 
critical, portions of a program that can be cast in a form 
amenable to transformation through the application of 
valid rules of logic. These potions of the program can be 
proven (or disproven) to function correctly for all pos-
sible inputs. Proving correctness for essential operations 
can greatly increase confidence in the entire program. 
The first article, by Pendergrass, “Verification of Stack 
Manipulation in the Scalable Configurable Instrument 
Processor,” illustrates this approach. Here, FM are used 
to prove that the VHSIC Hardware Description Lan-
guage specification for an FPGA implementation of the 
Scalable Configurable Instrument Processor (SCIP) cor-
rectly handles stack operation in all cases. The SCIP is 
designed to execute programs written in a specific pro-
gramming language that performs the majority of logical 
and arithmetical operations using the stack; thus, cor-
rectly handling stack manipulation is essential to allow 
programs to perform correctly on the SCIP.

In addition to scaling limitations, FM can suffer 
from limitations in expressiveness. “Expressiveness” is 
the ability of a particular formal method to express, or 
describe, certain aspects of a program’s operation. Until 
recently, existing FM did not express the properties of 
concurrency or physical–cyber interfaces well. The dif-
ficulties in applying FM to these two common aspects 
of modern programs can be easily appreciated. To prove 
correctness of concurrent operation, the formal method 
must include some means of expressing the temporal 
relationship between two (or more) programs operating 
simultaneously and independently. The rules of logic 
must be capable of proving that some correct relation-



TRUSTWORTHY COMPUTING AT APL: GUEST EDITOR’S INTRODUCTION

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 463    

menting this approach is generally known as “LKIM,” 
which stands for Linux Kernel Integrity Measurer, its 
first application; however, the approach is general and 
has been implemented for other operating systems.

Today, extracting the specification of possible behav-
ior from code requires a considerable degree of manual 
analysis. Even so, the technique has been applied to sev-
eral different operating systems and is currently in ser-
vice protecting some APL servers. If the initial step of 
extracting the specification could be more highly auto-
mated, the number and variety of applications would 
grow. In their article, “Ensuring the Integrity of Run-
ning Java Programs,” Thober et al. describe a program-
ming language that supports that automation. Although 
the widespread adoption of new programming languages 
is not assured, a language like the one Thober et al. 
describe could be used by security-aware developers of 
highly sensitive software components.

The LKIM approach captures periodic snapshots 
of memory on which to perform assessment. It can 
reveal that something unwanted has occurred between 
snapshots, but it cannot say what occurred, or when it 
occurred, to a granularity finer than the snapshot inter-
val. In their article, “Analysis of Virtual Machine Record 
and Replay for Trustworthy Computing,” Grizzard and 
Gardner describe a framework for capturing the behavior 
of an executing program at the instruction level. This 
recording of behavior is faithful enough to be “played 
back” and precisely reproduce the execution that took 
place. Such a capability can be used to apply a wide vari-
ety of assessment techniques to the program’s behavior. 
It could be used retrospectively in a traditional computer 
forensics application to determine when, and more impor-
tantly, exactly how a computer was exploited, revealing 
the vulnerability. The playback would also reveal exactly 
what damage the malware did. Although the ability to 
do such precise forensics is a step forward, the more excit-
ing notion is to play back an execution stream in paral-
lel with, and only slightly lagging, the original program. 
Time-consuming diagnostics that would introduce unac-
ceptable latency and delay in the original program can 
be applied to the playback, with the playback catching 
up with the original during relative lulls in activity. This 
capability allows for the possibility of detecting and pre-
venting exploits in near real time. Eventually, research 
could lead to a capability for diagnosing and repairing 
the vulnerability in near real time and then restarting 
the original program before the exploit.

Separation
The dynamic analysis systems that are described 

in this issue of the Digest are all subject to malicious 
interference unless they can be assured separation from 
the objects of their analysis (the vulnerable programs). 
Fortunately, commercial producers of computing hard-

fications and designs are created in a formal language, 
before coding. It is well known that the earlier in the life 
cycle a flaw is detected, the easier and cheaper it is to fix.

Because APL delivers software—either on its own or 
embedded in systems—to our sponsors, the Asymmetric 
Operations Department (AOD) established the Soft-
ware Analysis Research and Applications Laboratory 
(SARA Lab) in late FY2012. This facility is envisioned 
as a place where software and hardware developers 
across APL can bring requirements, designs, or code for 
analysis. By doing so, developers gain insights into their 
products that they would not have had otherwise, and 
AOD researchers experiment and learn the capabilities 
and limitations of commercial and research software 
analysis tools. In “Theory and Practice of Mechanized 
Software Analysis,” Pendergrass et al. describe the future 
envisioned for the SARA Lab, the tools that are avail-
able for use in the SARA Lab today, and some early suc-
cesses resulting from its use.

DYNAMIC ANALYSIS
So far, only static methods for establishing correctness 

have been discussed. Going back to the original thought 
experiment, B and C could be programs assessing the 
correct behavior of program A as it executes (that is, 
performing “dynamic analysis”). Some security products, 
such as intrusion-detection systems, continuously moni-
tor the behavior of network traffic or host behavior in 
real time. Even when these security products are safely 
separated from the objects of their assessment, they have 
limited utility. They are based on precise descriptions of 
how known malware acts (so-called signatures), heuristic 
descriptions of how malware acts, or models of normal 
behavior built through observation of the executing 
software during a period when behavior is (presumably) 
good. Products using signatures fail to detect new mal-
ware; further, in practice, even known exploits can be 
slightly modified to escape detection. Because both heu-
ristics and models are an imprecise description of behav-
ior, they must increase their tolerance (threshold) for 
abnormal behavior, lowering their probability of detec-
tion to avoid generating a large number of false alarms.

In contrast, Pendergrass and McGill’s article, “LKIM: 
The Linux Kernel Integrity Measurer,” describes an 
approach that extracts a precise specification of possible 
behavior from a program’s code. A program’s code gov-
erns how the program structures and evolves memory as 
it executes. By examining memory periodically during 
execution, we can detect when its state is not consistent 
with the code that should be executing; these deviations 
always indicate that something is amiss—most often the 
presence of malware. Because the assessment is based on 
the logic of the desired code, it will reliably reveal the 
presence of malware, even previously unknown malware, 
with a very low rate of false alarm. The system imple-
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Trusted Platform Module,” describes the impediments 
to implementing a TPM-like capability on mobile plat-
forms and how they might be overcome to create a speci-
fication for a TPM for mobile devices.

CONCLUSION
The first steps toward taming cyberspace, and plac-

ing it under the control of its developers and users, are 
being made right now. Advances in software analysis, 
particularly FM, are needed to replicate the physics-
based model used in physical space. Precise models of 
normal behavior, derived from the functional code itself, 
are needed to reliably distinguish between good and 
malicious behavior in executing code. Strong separation 
techniques are needed to ensure that security products 
are safe from malicious interference from the objects 
of their observation and control. APL researchers are 
making some of the initial steps toward meeting each 
of these goals. Although not widely known or supported 
across the community, it is research in these areas that 
will ultimately make cyberspace safe for further develop-
ment and use.

ware and software recognize the need to give developers 
mechanisms that they can use to provide this hardware-
assured separation for roots of trust. At the beginning 
of this century, major manufacturers, such as Intel and 
Microsoft, formed a consortium call the Trusted Com-
puting Group (TCG) to create specifications for sepa-
ration support that can be implemented by processor 
manufacturers and used by software developers of sensi-
tive applications. Their foundational specification is of 
the Trusted Platform Module (TPM), a separate crypto-
graphic processor and memory that allows establishment 
of a software root of trust. Today, a TPM has been imple-
mented in nearly all commercial processors and shipped 
with new products. If your computer is less than 5 years 
old, it almost certainly contains a TPM.

APL participates on TCG working groups and has 
contributed significantly to the specification of the 
TPM. In “Trusted Platform Module Evolution,” Osborn 
and Challener provide background on the TCG and 
the TPM and describe the newest TPM specification. 
McGill participates on a new working group for extend-
ing the TPM specification to mobile devices. Her article, 
“Trusted Mobile Devices: Requirements for a Mobile 
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