
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)528

INTRODUCTION
The goal of trustworthy computing is to build systems

that do exactly what they are supposed to do and noth-
ing else, but the complexity of modern software systems
makes this a very difficult task. One way to address this
challenge is to monitor execution at runtime. Essentially,
a relatively simple monitor can analyze a more complex
program as it executes to make sure some predetermined
property holds. For example, a monitor could verify that
each control-flow transfer of a program does not diverge

from a predetermined control-flow graph (a property
known as control-flow integrity).1

Computationally expensive runtime analyses add an
unacceptable performance penalty for most applications.
However, using a technique called record and replay, a
program can be recorded at speed and then analyzed in
the background with great precision without slowing
down the live execution.2 Record and replay was first
applied to debugging,3 but more recent work has suggested

any effective techniques for defending against
computer attacks are impractical because
they would significantly impair application

performance. Enforcing a property called control-
f low integrity, for example, can ensure that a program’s execution does not diverge from
a specific, predetermined set of paths, but doing so diverts computational resources
from the program as it runs. To enable practical uses of these techniques, we have
implemented the virtual machine record and replay (RnR) prototype for modern x86
computers. RnR separates live execution from analysis by recording an executing virtual
machine at speed and conducting computationally intensive analysis separately on a
replay of the virtual machine. Our findings are that the performance overhead of the
recording mechanism is minimal (less than 5% for common workloads) and that, there-
fore, the recording mechanism provides a resource-friendly way to deploy previously
impractical techniques.

Analysis of Virtual Machine Record and Replay
for Trustworthy Computing

Julian B. Grizzard and Ryan W. Gardner

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 529

The key observation
behind efficient record and
replay is that most computer
operations are deterministic.3
Given an initial state, a com-
puter executes a predictable
sequence of instructions until
some unpredictable event
occurs (such as when an exter-
nal interrupt occurs). Consider
the example sequence of x86
software instructions in Fig. 2,
but assume that no interrupts
occur. These instructions
begin with a mov at memory
address 0x80489ab2 that
initializes the value of the
register ebx to 20. Next, a
short loop (my_loop) adds
the value of ebx into another

register eax (instruction 0x80489ab5), copies data
from one fixed location in memory to another (instruc-
tions 0x80489ab7 and 0x80489ab9), decrements the
value of ebx by one (instruction 0x80489abd), and
then repeats the loop if the value of ebx is not zero
(instruction 0x80489abe). This instruction sequence is
deterministic given the initial state, assuming no inter-
rupts occur. Therefore, to replay the instructions, in this
case, we only need to know the initial state of the system.
This observation is very powerful when there are hun-
dreds of thousands of sequential instructions that can be
replayed from an initial state.

Of course, not all execution is deterministic. Instead,
unpredictable events occur, such as input from the key-
board, network, and external interrupts. Consider the
sequence of instructions in Fig. 2 again, but this time
consider that an interrupt occurs (e.g., due to a key
press) after three iterations of my_loop just before the
repnz instruction is executed. The interrupt will divert
the flow of execution temporarily to software known
as the interrupt handler (not shown). The handler will
service the interrupt and then resume execution of the
loop. In this case, the sequence of instructions is not
deterministic (which includes the interrupt handler

that it be used for intrusion detection and analysis.2,4
Although previous results are promising, researchers do
not have access to a reliable, open, and extensible record
and replay prototype to use to experiment with new
types of analyses. To further research in this area, we
have implemented the virtual machine record and replay
(RnR) prototype as illustrated in Fig. 1 by extending
the open-source Kernel-based Virtual Machine (KVM)/
Quick EMUlator (QEMU) virtualization software.5, 6

The key questions we seek to answer are as fol-
lows: How practical is it to record and replay a virtual
machine? How trustworthy is the record and replay
mechanism itself? What types of trustworthy comput-
ing applications and technologies are enabled by RnR?
To answer these questions, we present an overview of
the RnR technique and implementation (the Record
and Replay Technique section), provide an analysis of the
overhead of RnR (the RnR Experimental Results section),
and discuss possible applications of RnR using previ-
ously impractical defensive techniques (the Trustwor-
thy Computing Applications section). Finally, we outline
remaining challenges to overcome and summarize our
findings (the RnR Challenges and Future Work and Sum-
mary sections).

RECORD AND REPLAY TECHNIQUE
The basic record and replay tech-

nique records all activity in a virtual
machine so that it can be replayed and
analyzed in detail offline. The record-
ing is intended to be precise enough
to recreate every state in the recorded
system. To use RnR in production sys-
tems, however, it is critical to maxi-
mize efficiency.

2. Record events

Interrupt ... Network

Recording

Hypervisor
+ recorder

Virtual
machine

1. Save snapshot

Snapshot

2. Replay events

Replaying

Hypervisor
+ player

Virtual
machine

1. Reload snapshot

Analysis
engine

Inspect

Control

Log

Figure 1. To separate execution from analysis, RnR records execution of a virtual machine at
speed as illustrated on the left. Then, RnR replays the recorded execution for offline, detailed
analysis as illustrated on the right.

Interrupt
Branch
counter

increments

Figure 2. Example sequence of instructions executed in an x86 computer.

J. B. GRIZZARD AND R. W. GARDNER

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)530

lectively referred to as the host. The virtual machine and
software executing in it are collectively referred to as the
guest. There can be many separate guest domains but
only one host domain per physical machine.

For our RnR implementation, we have modified
KVM/QEMU (one of many virtual machine systems).5,6
Figure 3b illustrates the basic architecture of the unmod-
ified system (see the Recording Virtual Machines and
Replaying Virtual Machines sections for details on our
modifications). The system consists of a Linux kernel
module called KVM, which provides an interface to
CPU virtual machine extensions, and a user space pro-
cess called QEMU, which emulates most of the virtual
devices (i.e., network card, video card, hard disk, etc.).
Both components execute in the host domain. A guest
operating system and set of applications (not shown)
execute in a guest domain.

Recording Virtual Machines
To record a virtual machine, we leverage existing

functionality in KVM/QEMU to capture the virtual
machine’s initial state and add additional functionality
to log nondeterministic events. The initial state includes
the CPU registers, virtual memory, virtual hard disk,
and other devices that are part of the virtual machine.
The nondeterministic events are summarized in Table 1.

There are two classes of events that must be recorded:
synchronous and asynchronous. Each synchronous
event occurs at a point in “time” that is deterministic
given all previous events, so we do not need to record
the “time” for these events. However, each asynchronous
event occurs at a point in time that is not deterministic,
so we must log the time of the event. For both types of
events, the data associated with the event are not deter-
ministic, so they must be logged.

We use a point in the instruction sequence to identify
time, which we refer to as execution time to distinguish

instructions) because the timing and type of interrupt
are unknown. So, to record these instructions fully, one
needs to capture the initial state and also record the
interrupt event.

To generalize the record and replay concept, there
are two important types of data to record: initial state
and nondeterministic events. To record, the recorder must
first capture the initial state of the target (software that
is being recorded or replayed). Then, the recorder must
log all nondeterministic events that occur as the target
executes. To replay, the player must first restore the ini-
tial state. Then, as the target executes, the player replays
the nondeterministic events at the appropriate points
during the execution.

Virtual Machine Background
Figure 3a illustrates a model of virtual machine systems.

The hypervisor instantiates one or more virtual machines
on a single physical machine. Each virtual machine con-
sists of a virtual central processing unit (CPU), virtual
random access memory (RAM), and virtual devices so
that an unmodified operating system and set of applica-
tions can execute inside the virtual machine as it would
on a dedicated physical machine. In this way, physical
resources of one machine can be shared by many virtual
machines, maximizing resource utilization, decreasing
costs, reducing size, and saving power.

We distinguish between the host domain, meaning
executing within the context of the physical machine,
and the guest domain, meaning executing within the
context of a virtual machine. Software that manages
virtual machines executes in the host domain (i.e., the
hypervisor, drivers, and emulated hardware), whereas
the operating system and applications that execute
inside the virtual machine execute in the guest domain
(the guest operating system and guest applications). The
physical machine and software executing in it are col-

CPU

Guest
App.

Guest
App.

Guest
App.

Guest
App.

Guest
App.

Guest
App.

RAM Disk Video card Network card

Physical machine

Guest OS Guest OS

Virtual
CPU

Virtual
RAM ...

Virtual machine

Virtual
CPU

Virtual
RAM ...

Virtual machine

Hypervisor

... CPU RAM Disk
Virtual machine

hardware extensions

Physical machine

...

Guest

Host

Guest RAM

Emulated
disk

Emulated
video card ...

DMA

QEMU

Control Device I/O

VMRUN VMEXIT

Guest RAM

Emulated
disk

Emulated
video card ...

QEMU

Linux kernel KVM (controls hardware)

(b) (a)

Figure 3. (a) Architecture model of virtual machine system versus (b) KVM/QEMU implementation. DMA, direct memory access; I/O,
input/output; OS, operating system; VM, virtual machine.

VIRTUAL MACHINE RECORD AND REPLAY

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 531

ing the virtual machine to stop once
it reaches that execution time. Once
the virtual machine stops, data from
the event are copied into the virtual
machine. For example, if the event
is DMA, then RnR copies the data
from the log directly into the virtual
machine’s memory. After injecting
the event, RnR resumes execution of
the virtual machine.

Dynamic Analysis of Virtual Machine
Replay

The value of RnR lies in detailed analysis of the
replay. For example, consider a virtual machine
equipped with RnR that has been recording all activity
in the virtual machine for the past 24 h, during which
time malware was installed on the system. One ques-
tion a forensics investigator might ask is when was the
malware first installed? From there, the investigator may
want to know what the malware did. To answer the first
question, the investigator could generate a log of all
processes that executed by replaying execution and log-
ging the time, name, and identification of each process.
Then, the investigator could search the list of processes
to determine the first point in time that the malware
began executing. There may be other important things
to analyze in the infected system, such as how the mal-
ware was installed, what data were accessed or tampered
with, and so forth. All of the questions can be answered
by analyzing the replay.

To perform analysis, RnR uses a technique known as
virtual machine introspection (VMI) to read memory
and CPU registers in the virtual machine as it replays.
The VMI technique was first introduced as a way to
inspect live execution of a virtual machine.7 Essen-
tially, VMI provides a way to interpret the state of the
virtual machine at higher levels of abstraction (e.g.,
kernel data structures, processes, open files, etc.) at any
point in time. For analysis in RnR, the same VMI tech-
nique is applied to a replay of the virtual machine. The
advantage of this architecture is that live execution is
unaffected by the performance overhead of any of our
analysis techniques.

To generalize analysis, we have designed our archi-
tecture in a way that supports many different dynamic
analysis techniques implemented as Analysis Engines
(illustrated in Fig. 4). There are various components
to the VMI application programming interface that
provide details of what is happening in the replay with
increasing levels of abstraction. For example, a forensics
Analysis Engine may list all processes currently execut-
ing in the replay. The Process VMI subsystem in our
VMI application programming interface layer provides
this ability with a function called list_all_processes().

it from wall-clock time. We choose execution time as
opposed to wall-clock time because it is not feasible to
precisely identify a point in the instruction sequence
based solely on wall-clock time (due to complexities of
modern hardware such as memory caches). RnR logs
execution time by recording the instruction pointer and
the number of branches executed to account for execut-
ing the same instruction multiple times.

Each type of event listed in Table 1 has input data
associated with it. The size of the data ranges from bytes
to tens of bytes per event except for the direct memory
access (DMA) events, which can be on the order of hun-
dreds of bytes. This size of DMA data varies depending
on the device. For example, the network card may copy
1500 bytes of data to main memory (length of a typi-
cal network packet) per event. The amount of data for
any one event is small, which is why it is very efficient
to record and replay virtual machines even if there are
thousands of events per second.

Replaying Virtual Machines
To replay a virtual machine, RnR first loads the

initial snapshot stored by the recording process and
detaches the virtual machine from any virtual devices.
Then, RnR starts re-executing the virtual CPU, allow-
ing it to re-execute the same sequence of instructions
executed while it was recorded up until the execution
time of the first event. At that point, RnR reads the first
event from the log and injects the input into the virtual
machine. This process repeats for each sequential event
in the log.

When a synchronous event occurs, such as execu-
tion of the rdtsc instruction, the virtual machine stops
execution and transfers control to RnR. RnR deter-
mines why the execution stopped and reads the next
event from the log to inject it into the virtual machine.
For the rdtsc event, for example, RnR copies the value
of the clock cycle count as recorded in the log into the
virtual machine rather than using the current CPU
clock cycle count.

RnR replays asynchronous events by first determining
the execution time of the next event and then configur-

Table 1. Types of events recorded and replayed

Type Class Data Size

Port input Synchronous 1 or 4 bytes (data read)
Memory mapped
input

Synchronous
4 bytes (e.g., advanced programmable inter-
rupt controller data)

Rdtsc instruction Synchronous 8 bytes (number of CPU clock cycles)
Virtual mouse input Synchronous 8–48 bytes (e.g., mouse movement)
Interrupts Asynchronous 1 byte (vector)
DMA Asynchronous Varies (e.g., network packets)

J. B. GRIZZARD AND R. W. GARDNER

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)532

• “Compute Pi”: We
installed a program in the
guest system that would
compute the first 2 mil-
lion digits of pi. The per-
formance overhead for this
experiment was 1.4%.

• “Compile kernel”:
We copied the source code
for a Linux kernel onto the
experiment machine and
compiled the kernel using
a default configuration. The
performance overhead for
this experiment was 4.1%.

• “100 Mb/s Send”: We
installed an Apache web
server in the guest system

along with a web page consisting of ~8 MB of HTML
pages and PDF files. From a computer connected by a
100-Mb/s network link, we ran a script to download
the web page 1000 times with no delay. The perfor-
mance overhead was 7.2%.

• “100 Mb/s Recv”: We installed an Apache web server
in a separate physical machine. The web server was
configured as described for the previous experiment.
The same script from the previous experiment was
executed on the recorded machine instead of the
secondary machine. The performance overhead
was 7.9%.

• “100 Mb/s Recv bursty”: We used the same setup as
the “100 Mb/s Recv” experiment except that the
download script was configured to download a web
page 100 times with 1-s periodic idle periods. The
performance overhead was 1.4%.

Meanwhile, lower-level functionality could convert a
guest virtual address to a guest physical address (i.e., the
rnr_guest_va_to_pa() function).

RnR EXPERIMENTAL RESULTS
There are two important requirements of record and

replay that we have stipulated to help determine how
practical it is to record and replay a virtual machine.
First, the performance overhead added by the recorder
must be small. Second, the log growth rate must be
small. This section details the results of our analysis for
these two aspects of RnR.

Experimental Setup
To conduct performance experiments, we compared

a virtual machine executing without our recording logic
as a baseline (KVM/QEMU) with the same virtual
machine extended with our recording logic (RnR). To
perform the experiments, our test system consisted of an
Intel Core 2 Duo CPU running at 3.00 GHz with 4 GB
of RAM. All tests were conducted by installing a 64-bit
version of Ubuntu 10.04 into the virtual machine. The
virtual machine was configured with 256 MB of RAM
and one CPU.

Performance Overhead
Figure 5 shows recording performance overhead of

RnR by comparing the time to execute five different
workloads in a baseline virtual machine (unmodified
KVM/QEMU) with the time to execute the same work-
loads while recording them with RnR. For each experi-
ment, our results are based on an average of ten runs
of the experiment. The experiments and results were as
follows:

System call VMI Filesystem VMI TCP VMI UDP VMI

Replay of virtual machine

Analysis Engine(s)

VMI
API

Process VMI

Kernel VMI

Replay
control Internet protocol VMI ...

CPU VMI Memory VMI Hard disk VMI Network card VMI

Thread VMI Page table VMI Disk cache VMI

Figure 4. Software design for dynamic analysis of replay. An Analysis Engine controls replay of the
virtual machine and inspects the replay using a common VMI application programming interface
(API). TCP, Transmission Control Protocol; UDP, User Datagram Protocol.

Baseline
RnR

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Compute
Pi

Compile
kernel

100 Mb/s
Send

100 Mb/s
Recv

100 Mb/s
Recv
bursty

Figure 5. Performance overhead of KVM/QEMU baseline versus
RnR for various workloads.

VIRTUAL MACHINE RECORD AND REPLAY

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 533

data recorded for interrupts. The “DEV” data account
for data directly copied to the virtual machine memory
by a device. “DEV + CPU” is the summation of both and
characterizes the total log growth rate. The experiments
and results were as follows:

• “Idle”: We recorded the virtual machine while it was
idle for 5 min. The log growth rate was constant at
710 bytes per second.

• “Compute Pi”: We recorded the virtual machine as it
computed the digits of pi for 5 min. The log growth
rate was 58 K/s.

• “Compile kernel”: We recorded the virtual machine
compiling a Linux kernel for 5 min. The log growth
rate was 243 K/s. However, the log growth rate for
just the CPU data was 61 K/s. In theory, only the
CPU data must be recorded for this experiment, but
our current RnR implementation does not support
this functionality.

• “100 Mb/s Recv bursty”: We recorded a virtual
machine while downloading a web page with 1-s
periodic idle periods for 5 min. The log growth rate
was 1.23 MB/s.

The experiments represent a CPU intensive test, a
CPU and input/output intensive test, a network upload
test, a network download test, and a simplified model
of an aggressive, interactive web session. Only the “100
Mb/s Send” and “100 Mb/s Recv” workloads showed a
performance overhead greater than 5% (7.9% and 7.2%).
The other three workloads showed a performance over-
head of less than 5%.

The experiments were designed to characterize the
worst-case results for a range of common activities on
desktop and server platforms. On the basis of these
results, we expect that on average, the performance over-
head will be less than 5% because the two network inten-
sive workloads are not common in production systems.
This indicates that the performance overhead of the
recording mechanism is practical for many applications.

Log Growth Rate
Figure 6 shows the uncompressed log growth rates

for four workloads. For these experiments, we selected
a representative run and plotted the log growth rate
over time. The log consists of “CPU” and “DEV” (i.e.,
device) data. The CPU data account for any data that
are read from instructions executed on the CPU and

200

150

100

50

DEV + CPU
CPU

1 2 3 4 5
Time (min)

15

10

5

DEV + CPU
CPU

1 2 3 4 5
Time (min)

300

400

200

100

DEV + CPU
CPU

1 2 3 4 5
Time (min)

75

100

50

25

DEV + CPU
CPU

1 2 3 4 5
Time (min)

Lo
g

si
ze

 (M
B)

Lo
g

si
ze

 (K
B)

Lo
g

si
ze

 (M
B)

Lo
g

si
ze

 (M
B)

(a) (b)

(c) (d)

Figure 6. Uncompressed log growth rate of recorder for various workloads: (a) idle (CPU overlaps DEV + CPU); (b) compute Pi (CPU over-
laps DEV + CPU); (c) compile kernel; and (d) 100 Mb/s Recv bursty.

J. B. GRIZZARD AND R. W. GARDNER

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)534

As an example analysis based on the system illus-
trated by Fig. 7b, consider software written in the C
programming language. One problem with the C pro-
gramming language is that it lacks memory safety (a
property that guarantees editing one variable will not
corrupt another variable by going past the bounds of
the first variable), which can lead to vulnerabilities.
Variants of C, such as Cyclone, add extra robustness
to the language, but the added assurance requires per-
formance overhead of up to 60%.8 As an alternative,
RnR could be used to record the execution of software
at speed and then analyze the execution in the back-
ground to verify that memory safety violations do not
occur. Although analysis of the execution is slow, the
analysis can “catch up” to the live execution during
idle periods. There is a short window of risk until the
background process detects a violation, but this greatly
increases the difficulty of an effective attack.

More advanced systems are illustrated in Figs. 7c
and 7d. Figure 7c illustrates a technique to parallelize
analysis by sending the recorded event log to multiple
analysis systems. Beyond attack detection, Fig. 7d illus-
trates a system that is capable of automatically detecting,
diagnosing, and recovering from an attack. Additional
research is necessary to realize this type of system, but
RnR can potentially enable such techniques.

We have outlined out a few different applications
of RnR in this section. However, there are potentially
many areas of research that can build on RnR. We
intend to explore these research areas and collabo-
rate with others to expand the potential applications
of RnR.

RnR CHALLENGES AND FUTURE
WORK

Several challenges remain to be
solved for RnR. One of the most
important challenges is determining
whether RnR itself is vulnerable to
attack. If RnR is vulnerable, then any
software built on top of it is vulner-
able. In our current prototype, RnR
executes as part of a host Linux operat-
ing system with a considerable amount
of complexity. A better design might be
to strip down the host operating system
and isolate different components of
RnR so that if one component fails, the
system can recover.

A second important challenge for
RnR is supporting analysis during the
replay with VMI as discussed in the
Dynamic Analysis of Virtual Machine
Replay section. Although there has

These experiments were designed to characterize
extreme workloads ranging from nearly no activity (i.e.,
the idle workload) to CPU, input/output, and network
intensive workloads. For the network workload, the log
growth rate was dominated by the DEV data, which
consist mostly of inbound network packets. The results
of this experiment indicate that log storage overhead is
reasonable for many applications. However, for work-
loads that require excessive network input, more storage
is necessary.

TRUSTWORTHY COMPUTING APPLICATIONS
To answer the question of what types of trustworthy

computing applications are enabled by RnR, this section
highlights a few potential technologies. As a first exam-
ple, RnR could be used to record a highly detailed log
of all activity in a host in support of a possible forensics
investigation as illustrated in Fig. 7a. For this purpose,
all application software in a host would be installed in
a virtual machine that is equipped with our recorder. In
the event of a compromise, a forensics investigator could
analyze the log to determine exactly what happened and
initiate appropriate recovery procedures.

As shown in Fig. 7b, RnR could also be used as an
intrusion detection monitor—similar to Aftersight2—in
a host. For this purpose, a monitor would operate in a
separate process to perform near-real-time monitor-
ing of applications executing in the host. As the host
executes, the log of activity would immediately be sent
to the separate process that analyzes the execution in
the background.

Physical machine

Record virtual
machine

(live)
Forensics

log

Physical machine

Record virtual
machine

(live)

Near
real-time

replay
analysis

Record virtual
machine

(live)

Analyze
replay

Physical machine

Analyze
replay

Physical machinePhysical machine

Record virtual
machine

(live)

Analyze
replay

Physical machine

Recover

Attack
detected?

No

Yes

(a) (b)

(c) (d)

Figure 7. Overview of various applications of RnR: (a) forensics logging of host: (b)
monitoring single host in near real time; (c) monitoring host in a cloud (distributed
analysis); and (d) self-healing host.

VIRTUAL MACHINE RECORD AND REPLAY

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 535

is that RnR separates live execution from dynamic anal-
ysis of the execution. Experimentation shows that perfor-
mance overhead of recording is less than 5% for typical
workloads and that the log growth rate is reasonable.

There are several important challenges to solve to
take advantage of potential applications of RnR. These
challenges include increasing the trustworthiness of
RnR itself, developing replay analysis tools and tech-
niques, creating schemes to properly address privacy
concerns, and discovering practical techniques to record
multicore virtual machines. We plan to continue look-
ing at ways to address these challenges as we leverage
RnR as a research platform for trustworthy computing.

REFERENCES
 1Abadi, M., Budiu, M., Erlingsson, Ú., and Ligatti, J., “Control-Flow

Integrity Principles, Implementations, and Applications,” ACM
Trans. Inf. Syst. Secur. 13(1), 4:1–4:40 (2008).

 2Chow, J., Garfinkel, T., and Chen, P., “Decoupling Dynamic Analysis
from Execution in Virtual Environments,” in USENIX 2008 Annual
Technical Conf., Boston, MA, pp. 1–14 (2008).

 3LeBlanc, T. J., and Mellor-Crummey, J. M., “Debugging Parallel Pro-
grams with Instant Replay,” IEEE Trans. Comput. 36(4), 471–482
(1987).

 4Dunlap, G. W., King, S. T., Cinar, S., Basrai, M. A., and Chen, P.
M., “ReVirt: Enabling Intrusion Analysis through Virtual-Machine
Logging and Replay,” SIGOPS Oper. Sys. Rev. 36(SI), 211–224 (2002).

 5Kernel Based Virtual Machine Main Page, www.linux-kvm.org/page/
Main_Page (accessed 31 July 2013).

 6QEMU Open Source Processor Emulator, wiki.qemu.org/Main_Page
(accessed 31 July 2013).

 7Garfinkel, T., and Rosenblum, M., “A Virtual Machine Introspec-
tion Based Architecture for Intrusion Detection,” in Proc. Network
and Distributed Systems Security Symp., San Diego, CA, pp. 191–206
(2003).

 8Trevor, J., Morrisett, G., Grossman, D., Hicks, M., Cheney, J., and
Wang, Y., “Cyclone: A Safe Dialect of C,” in Proc. USENIX Annual
Technical Conf., Berkeley, CA, pp. 275–228 (2002).

been a lot of work with VMI, there are important chal-
lenges that remain and a lack of extensive tools avail-
able. One of the most important challenges is that the
guest is not trustworthy. This means that techniques
that inspect guest data structures need some way to
guarantee or detect that the guest has not intentionally
altered the data structures in a way that would confuse
(or worse, compromise) the introspection mechanisms.

A third critical challenge for using RnR is privacy.
The recording mechanism will record all data that have
been input into the machine and all data that are pro-
cessed by the machine. This includes sensitive user data
such as passwords or other authentication credentials.
These data are transient in modern systems, but with
RnR, the data could be stored indefinitely. To properly
address this concern, various cryptographic schemes
need to be explored along with careful system design for
specific applications.

A fourth important challenge we highlight is adding
support to record and replay multicore virtual machines.
Our current prototype can only record a uniprocessor vir-
tual machine. Although there are many useful applica-
tions of RnR for uniprocessor virtual machines, extending
the functionality to support multicore virtual machines
is an important area of future research. The challenge
of supporting multicore virtual machines is that shared
memory access between cores introduces nondetermin-
istic input for each core because it is difficult to predict
correct ordering of reads and writes from each core.

SUMMARY
RnR is a promising technology that enables many new

techniques in trustworthy computing. The key concept

Julian B. Grizzard is the Principal Investigator of APL’s virtual machine record and replay research. He is a research sci-
entist in APL’s Asymmetric Operations Department where he focuses on solving national cybersecurity challenges with
a particular interest in trustworthy computing. Ryan W. Gardner is a research scientist in APL’s Asymmetric Operations
Department and a member of the virtual machine record and replay research team. He is interested in discovering practi-
cal solutions to cybersecurity problems that do not sacrifice usability goals. For further information on the work reported
here, contact Julian Grizzard. His e-mail address is julian.grizzard@jhuapl.edu.

 The Authors

The Johns Hopkins APL Technical Digest can be accessed electronically at www.jhuapl.edu/techdigest.

www.linux-kvm.org/page/Main
www.linux-kvm.org/page/Main
wiki.qemu.org/Main
mailto:julian.grizzard@jhuapl.edu
www.jhuapl.edu/techdigest

	Analysis of Virtual Machine Record and Replay for Trustworthy Computing
	Julian B. Grizzard and Ryan W. Gardner
	INTRODUCTION
	RECORD AND REPLAY TECHNIQUE
	Virtual Machine Background
	Recording Virtual Machines
	Replaying Virtual Machines
	Dynamic Analysis of Virtual Machine Replay

	RnR EXPERIMENTAL RESULTS
	Experimental Setup
	Performance Overhead
	Log Growth Rate

	TRUSTWORTHY COMPUTING APPLICATIONS
	RnR CHALLENGES AND FUTURE WORK
	SUMMARY
	REFERENCES
	Figures and Tables
	Figure 1. Virtual machine record and replay prototype.
	Figure 2. Example sequence of instructions executed in an x86 computer.
	Figure 3. Architecture model of virtual machine system versus KVM/QEMU implementation.
	Figure 4. Software design for dynamic analysis of replay.
	Figure 5. Performance overhead of KVM/QEMU baseline versus RnR for various workloads.
	Figure 6. Uncompressed log growth rate of recorder for various workloads.
	Figure 7. Overview of various applications of RnR.
	Table 1. Types of events recorded and replayed.

	 The Authors

