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INTRODUCTION
The goal of trustworthy computing is to build systems 

that do exactly what they are supposed to do and noth-
ing else, but the complexity of modern software systems 
makes this a very difficult task. One way to address this 
challenge is to monitor execution at runtime. Essentially, 
a relatively simple monitor can analyze a more complex 
program as it executes to make sure some predetermined 
property holds. For example, a monitor could verify that 
each control-flow transfer of a program does not diverge 

from a predetermined control-flow graph (a property 
known as control-flow integrity).1

Computationally expensive runtime analyses add an 
unacceptable performance penalty for most applications. 
However, using a technique called record and replay, a 
program can be recorded at speed and then analyzed in 
the background with great precision without slowing 
down the live execution.2 Record and replay was first 
applied to debugging,3 but more recent work has suggested 

any effective techniques for defending against 
computer attacks are impractical because 
they would significantly impair application 

performance. Enforcing a property called control-
f low integrity, for example, can ensure that a program’s execution does not diverge from 
a specific, predetermined set of paths, but doing so diverts computational resources 
from the program as it runs. To enable practical uses of these techniques, we have 
implemented the virtual machine record and replay (RnR) prototype for modern x86 
computers. RnR separates live execution from analysis by recording an executing virtual 
machine at speed and conducting computationally intensive analysis separately on a 
replay of the virtual machine. Our findings are that the performance overhead of the 
recording mechanism is minimal (less than 5% for common workloads) and that, there-
fore, the recording mechanism provides a resource-friendly way to deploy previously 
impractical techniques.
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The key observation 
behind efficient record and 
replay is that most computer 
operations are deterministic.3 
Given an initial state, a com-
puter executes a predictable 
sequence of instructions until 
some unpredictable event 
occurs (such as when an exter-
nal interrupt occurs). Consider 
the example sequence of x86 
software instructions in Fig. 2, 
but assume that no interrupts 
occur. These instructions 
begin with a mov at memory 
address 0x80489ab2 that 
initializes the value of the 
register ebx to 20. Next, a 
short loop (my_loop) adds 
the value of ebx into another 

register eax (instruction 0x80489ab5), copies data 
from one fixed location in memory to another (instruc-
tions 0x80489ab7 and 0x80489ab9), decrements the 
value of ebx by one (instruction 0x80489abd), and 
then repeats the loop if the value of ebx is not zero 
(instruction 0x80489abe). This instruction sequence is 
deterministic given the initial state, assuming no inter-
rupts occur. Therefore, to replay the instructions, in this 
case, we only need to know the initial state of the system. 
This observation is very powerful when there are hun-
dreds of thousands of sequential instructions that can be 
replayed from an initial state.

Of course, not all execution is deterministic. Instead, 
unpredictable events occur, such as input from the key-
board, network, and external interrupts. Consider the 
sequence of instructions in Fig. 2 again, but this time 
consider that an interrupt occurs (e.g., due to a key 
press) after three iterations of my_loop just before the 
repnz instruction is executed. The interrupt will divert 
the flow of execution temporarily to software known 
as the interrupt handler (not shown). The handler will 
service the interrupt and then resume execution of the 
loop. In this case, the sequence of instructions is not 
deterministic (which includes the interrupt handler 

that it be used for intrusion detection and analysis.2,4 
Although previous results are promising, researchers do 
not have access to a reliable, open, and extensible record 
and replay prototype to use to experiment with new 
types of analyses. To further research in this area, we 
have implemented the virtual machine record and replay 
(RnR) prototype as illustrated in Fig. 1 by extending 
the open-source Kernel-based Virtual Machine (KVM)/
Quick EMUlator (QEMU) virtualization software.5, 6

The key questions we seek to answer are as fol-
lows: How practical is it to record and replay a virtual 
machine? How trustworthy is the record and replay 
mechanism itself? What types of trustworthy comput-
ing applications and technologies are enabled by RnR? 
To answer these questions, we present an overview of 
the RnR technique and implementation (the Record 
and Replay Technique section), provide an analysis of the 
overhead of RnR (the RnR Experimental Results section), 
and discuss possible applications of RnR using previ-
ously impractical defensive techniques (the Trustwor-
thy Computing Applications section). Finally, we outline 
remaining challenges to overcome and summarize our 
findings (the RnR Challenges and Future Work and Sum-
mary sections).

RECORD AND REPLAY TECHNIQUE
The basic record and replay tech-

nique records all activity in a virtual 
machine so that it can be replayed and 
analyzed in detail offline. The record-
ing is intended to be precise enough 
to recreate every state in the recorded 
system. To use RnR in production sys-
tems, however, it is critical to maxi-
mize efficiency.
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Figure 1. To separate execution from analysis, RnR records execution of a virtual machine at 
speed as illustrated on the left. Then, RnR replays the recorded execution for offline, detailed 
analysis as illustrated on the right.
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Figure 2. Example sequence of instructions executed in an x86 computer.
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lectively referred to as the host. The virtual machine and 
software executing in it are collectively referred to as the 
guest. There can be many separate guest domains but 
only one host domain per physical machine.

For our RnR implementation, we have modified 
KVM/QEMU (one of many virtual machine systems).5,6 
Figure 3b illustrates the basic architecture of the unmod-
ified system (see the Recording Virtual Machines and 
Replaying Virtual Machines sections for details on our 
modifications). The system consists of a Linux kernel 
module called KVM, which provides an interface to 
CPU virtual machine extensions, and a user space pro-
cess called QEMU, which emulates most of the virtual 
devices (i.e., network card, video card, hard disk, etc.). 
Both components execute in the host domain. A guest 
operating system and set of applications (not shown) 
execute in a guest domain.

Recording Virtual Machines
To record a virtual machine, we leverage existing 

functionality in KVM/QEMU to capture the virtual 
machine’s initial state and add additional functionality 
to log nondeterministic events. The initial state includes 
the CPU registers, virtual memory, virtual hard disk, 
and other devices that are part of the virtual machine. 
The nondeterministic events are summarized in Table 1.

There are two classes of events that must be recorded: 
synchronous and asynchronous. Each synchronous 
event occurs at a point in “time” that is deterministic 
given all previous events, so we do not need to record 
the “time” for these events. However, each asynchronous 
event occurs at a point in time that is not deterministic, 
so we must log the time of the event. For both types of 
events, the data associated with the event are not deter-
ministic, so they must be logged.

We use a point in the instruction sequence to identify 
time, which we refer to as execution time to distinguish 

instructions) because the timing and type of interrupt 
are unknown. So, to record these instructions fully, one 
needs to capture the initial state and also record the 
interrupt event.

To generalize the record and replay concept, there 
are two important types of data to record: initial state 
and nondeterministic events. To record, the recorder must 
first capture the initial state of the target (software that 
is being recorded or replayed). Then, the recorder must 
log all nondeterministic events that occur as the target 
executes. To replay, the player must first restore the ini-
tial state. Then, as the target executes, the player replays 
the nondeterministic events at the appropriate points 
during the execution.

Virtual Machine Background
Figure 3a illustrates a model of virtual machine systems. 

The hypervisor instantiates one or more virtual machines 
on a single physical machine. Each virtual machine con-
sists of a virtual central processing unit (CPU), virtual 
random access memory (RAM), and virtual devices so 
that an unmodified operating system and set of applica-
tions can execute inside the virtual machine as it would 
on a dedicated physical machine. In this way, physical 
resources of one machine can be shared by many virtual 
machines, maximizing resource utilization, decreasing 
costs, reducing size, and saving power.

We distinguish between the host domain, meaning 
executing within the context of the physical machine, 
and the guest domain, meaning executing within the 
context of a virtual machine. Software that manages 
virtual machines executes in the host domain (i.e., the 
hypervisor, drivers, and emulated hardware), whereas 
the operating system and applications that execute 
inside the virtual machine execute in the guest domain 
(the guest operating system and guest applications). The 
physical machine and software executing in it are col-
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Figure 3. (a) Architecture model of virtual machine system versus (b) KVM/QEMU implementation. DMA, direct memory access; I/O, 
input/output; OS, operating system; VM, virtual machine.
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ing the virtual machine to stop once 
it reaches that execution time. Once 
the virtual machine stops, data from 
the event are copied into the virtual 
machine. For example, if the event 
is DMA, then RnR copies the data 
from the log directly into the virtual 
machine’s memory. After injecting 
the event, RnR resumes execution of 
the virtual machine.

Dynamic Analysis of Virtual Machine 
Replay

The value of RnR lies in detailed analysis of the 
replay. For example, consider a virtual machine 
equipped with RnR that has been recording all activity 
in the virtual machine for the past 24 h, during which 
time malware was installed on the system. One ques-
tion a forensics investigator might ask is when was the 
malware first installed? From there, the investigator may 
want to know what the malware did. To answer the first 
question, the investigator could generate a log of all 
processes that executed by replaying execution and log-
ging the time, name, and identification of each process. 
Then, the investigator could search the list of processes 
to determine the first point in time that the malware 
began executing. There may be other important things 
to analyze in the infected system, such as how the mal-
ware was installed, what data were accessed or tampered 
with, and so forth. All of the questions can be answered 
by analyzing the replay.

To perform analysis, RnR uses a technique known as 
virtual machine introspection (VMI) to read memory 
and CPU registers in the virtual machine as it replays. 
The VMI technique was first introduced as a way to 
inspect live execution of a virtual machine.7 Essen-
tially, VMI provides a way to interpret the state of the 
virtual machine at higher levels of abstraction (e.g., 
kernel data structures, processes, open files, etc.) at any 
point in time. For analysis in RnR, the same VMI tech-
nique is applied to a replay of the virtual machine. The 
advantage of this architecture is that live execution is 
unaffected by the performance overhead of any of our 
analysis techniques.

To generalize analysis, we have designed our archi-
tecture in a way that supports many different dynamic 
analysis techniques implemented as Analysis Engines 
(illustrated in Fig. 4). There are various components 
to the VMI application programming interface that 
provide details of what is happening in the replay with 
increasing levels of abstraction. For example, a forensics 
Analysis Engine may list all processes currently execut-
ing in the replay. The Process VMI subsystem in our 
VMI application programming interface layer provides 
this ability with a function called list_all_processes(). 

it from wall-clock time. We choose execution time as 
opposed to wall-clock time because it is not feasible to 
precisely identify a point in the instruction sequence 
based solely on wall-clock time (due to complexities of 
modern hardware such as memory caches). RnR logs 
execution time by recording the instruction pointer and 
the number of branches executed to account for execut-
ing the same instruction multiple times.

Each type of event listed in Table 1 has input data 
associated with it. The size of the data ranges from bytes 
to tens of bytes per event except for the direct memory 
access (DMA) events, which can be on the order of hun-
dreds of bytes. This size of DMA data varies depending 
on the device. For example, the network card may copy 
1500 bytes of data to main memory (length of a typi-
cal network packet) per event. The amount of data for 
any one event is small, which is why it is very efficient 
to record and replay virtual machines even if there are 
thousands of events per second.

Replaying Virtual Machines
To replay a virtual machine, RnR first loads the 

initial snapshot stored by the recording process and 
detaches the virtual machine from any virtual devices. 
Then, RnR starts re-executing the virtual CPU, allow-
ing it to re-execute the same sequence of instructions 
executed while it was recorded up until the execution 
time of the first event. At that point, RnR reads the first 
event from the log and injects the input into the virtual 
machine. This process repeats for each sequential event 
in the log.

When a synchronous event occurs, such as execu-
tion of the rdtsc instruction, the virtual machine stops 
execution and transfers control to RnR. RnR deter-
mines why the execution stopped and reads the next 
event from the log to inject it into the virtual machine. 
For the rdtsc event, for example, RnR copies the value 
of the clock cycle count as recorded in the log into the 
virtual machine rather than using the current CPU 
clock cycle count.

RnR replays asynchronous events by first determining 
the execution time of the next event and then configur-

Table 1. Types of events recorded and replayed

Type Class Data Size

Port input Synchronous 1 or 4 bytes (data read)
Memory mapped 
input

Synchronous
4 bytes (e.g., advanced programmable inter-
rupt controller data)

Rdtsc instruction Synchronous 8 bytes (number of CPU clock cycles)
Virtual mouse input Synchronous 8–48 bytes (e.g., mouse movement)
Interrupts Asynchronous 1 byte (vector)
DMA Asynchronous Varies (e.g., network packets)
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• “Compute Pi”: We 
installed a program in the 
guest system that would 
compute the first 2 mil-
lion digits of pi. The per-
formance overhead for this 
experiment was 1.4%.

• “Compile kernel”: 
We copied the source code 
for a Linux kernel onto the 
experiment machine and 
compiled the kernel using 
a default configuration. The 
performance overhead for 
this experiment was 4.1%.

• “100 Mb/s Send”: We 
installed an Apache web 
server in the guest system 

along with a web page consisting of ~8 MB of HTML 
pages and PDF files. From a computer connected by a 
100-Mb/s network link, we ran a script to download 
the web page 1000 times with no delay. The perfor-
mance overhead was 7.2%.

• “100 Mb/s Recv”: We installed an Apache web server 
in a separate physical machine. The web server was 
configured as described for the previous experiment. 
The same script from the previous experiment was 
executed on the recorded machine instead of the 
secondary machine. The performance overhead 
was 7.9%.

• “100 Mb/s Recv bursty”: We used the same setup as 
the “100 Mb/s Recv” experiment except that the 
download script was configured to download a web 
page 100 times with 1-s periodic idle periods. The 
performance overhead was 1.4%.

Meanwhile, lower-level functionality could convert a 
guest virtual address to a guest physical address (i.e., the 
rnr_guest_va_to_pa() function).

RnR EXPERIMENTAL RESULTS
There are two important requirements of record and 

replay that we have stipulated to help determine how 
practical it is to record and replay a virtual machine. 
First, the performance overhead added by the recorder 
must be small. Second, the log growth rate must be 
small. This section details the results of our analysis for 
these two aspects of RnR.

Experimental Setup
To conduct performance experiments, we compared 

a virtual machine executing without our recording logic 
as a baseline (KVM/QEMU) with the same virtual 
machine extended with our recording logic (RnR). To 
perform the experiments, our test system consisted of an 
Intel Core 2 Duo CPU running at 3.00 GHz with 4 GB 
of RAM. All tests were conducted by installing a 64-bit 
version of Ubuntu 10.04 into the virtual machine. The 
virtual machine was configured with 256 MB of RAM 
and one CPU.

Performance Overhead
Figure 5 shows recording performance overhead of 

RnR by comparing the time to execute five different 
workloads in a baseline virtual machine (unmodified 
KVM/QEMU) with the time to execute the same work-
loads while recording them with RnR. For each experi-
ment, our results are based on an average of ten runs 
of the experiment. The experiments and results were as 
follows:
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Figure 4. Software design for dynamic analysis of replay. An Analysis Engine controls replay of the 
virtual machine and inspects the replay using a common VMI application programming interface 
(API). TCP, Transmission Control Protocol; UDP, User Datagram Protocol.
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data recorded for interrupts. The “DEV” data account 
for data directly copied to the virtual machine memory 
by a device. “DEV + CPU” is the summation of both and 
characterizes the total log growth rate. The experiments 
and results were as follows:

• “Idle”: We recorded the virtual machine while it was 
idle for 5 min. The log growth rate was constant at 
710 bytes per second.

• “Compute Pi”: We recorded the virtual machine as it 
computed the digits of pi for 5 min. The log growth 
rate was 58 K/s.

• “Compile kernel”: We recorded the virtual machine 
compiling a Linux kernel for 5 min. The log growth 
rate was 243 K/s. However, the log growth rate for 
just the CPU data was 61 K/s. In theory, only the 
CPU data must be recorded for this experiment, but 
our current RnR implementation does not support 
this functionality.

• “100 Mb/s Recv bursty”: We recorded a virtual 
machine while downloading a web page with 1-s 
periodic idle periods for 5 min. The log growth rate 
was 1.23 MB/s.

The experiments represent a CPU intensive test, a 
CPU and input/output intensive test, a network upload 
test, a network download test, and a simplified model 
of an aggressive, interactive web session. Only the “100 
Mb/s Send” and “100 Mb/s Recv” workloads showed a 
performance overhead greater than 5% (7.9% and 7.2%). 
The other three workloads showed a performance over-
head of less than 5%.

The experiments were designed to characterize the 
worst-case results for a range of common activities on 
desktop and server platforms. On the basis of these 
results, we expect that on average, the performance over-
head will be less than 5% because the two network inten-
sive workloads are not common in production systems. 
This indicates that the performance overhead of the 
recording mechanism is practical for many applications.

Log Growth Rate
Figure 6 shows the uncompressed log growth rates 

for four workloads. For these experiments, we selected 
a representative run and plotted the log growth rate 
over time. The log consists of “CPU” and “DEV” (i.e., 
device) data. The CPU data account for any data that 
are read from instructions executed on the CPU and 
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As an example analysis based on the system illus-
trated by Fig. 7b, consider software written in the C 
programming language. One problem with the C pro-
gramming language is that it lacks memory safety (a 
property that guarantees editing one variable will not 
corrupt another variable by going past the bounds of 
the first variable), which can lead to vulnerabilities. 
Variants of C, such as Cyclone, add extra robustness 
to the language, but the added assurance requires per-
formance overhead of up to 60%.8 As an alternative, 
RnR could be used to record the execution of software 
at speed and then analyze the execution in the back-
ground to verify that memory safety violations do not 
occur. Although analysis of the execution is slow, the 
analysis can “catch up” to the live execution during 
idle periods. There is a short window of risk until the 
background process detects a violation, but this greatly 
increases the difficulty of an effective attack.

More advanced systems are illustrated in Figs. 7c 
and 7d. Figure 7c illustrates a technique to parallelize 
analysis by sending the recorded event log to multiple 
analysis systems. Beyond attack detection, Fig. 7d illus-
trates a system that is capable of automatically detecting, 
diagnosing, and recovering from an attack. Additional 
research is necessary to realize this type of system, but 
RnR can potentially enable such techniques.

We have outlined out a few different applications 
of RnR in this section. However, there are potentially 
many areas of research that can build on RnR. We 
intend to explore these research areas and collabo-
rate with others to expand the potential applications 
of RnR.

RnR CHALLENGES AND FUTURE 
WORK

Several challenges remain to be 
solved for RnR. One of the most 
important challenges is determining 
whether RnR itself is vulnerable to 
attack. If RnR is vulnerable, then any 
software built on top of it is vulner-
able. In our current prototype, RnR 
executes as part of a host Linux operat-
ing system with a considerable amount 
of complexity. A better design might be 
to strip down the host operating system 
and isolate different components of 
RnR so that if one component fails, the 
system can recover.

A second important challenge for 
RnR is supporting analysis during the 
replay with VMI as discussed in the 
Dynamic Analysis of Virtual Machine 
Replay section. Although there has 

These experiments were designed to characterize 
extreme workloads ranging from nearly no activity (i.e., 
the idle workload) to CPU, input/output, and network 
intensive workloads. For the network workload, the log 
growth rate was dominated by the DEV data, which 
consist mostly of inbound network packets. The results 
of this experiment indicate that log storage overhead is 
reasonable for many applications. However, for work-
loads that require excessive network input, more storage 
is necessary.

TRUSTWORTHY COMPUTING APPLICATIONS
To answer the question of what types of trustworthy 

computing applications are enabled by RnR, this section 
highlights a few potential technologies. As a first exam-
ple, RnR could be used to record a highly detailed log 
of all activity in a host in support of a possible forensics 
investigation as illustrated in Fig. 7a. For this purpose, 
all application software in a host would be installed in 
a virtual machine that is equipped with our recorder. In 
the event of a compromise, a forensics investigator could 
analyze the log to determine exactly what happened and 
initiate appropriate recovery procedures.

As shown in Fig. 7b, RnR could also be used as an 
intrusion detection monitor—similar to Aftersight2—in 
a host. For this purpose, a monitor would operate in a 
separate process to perform near-real-time monitor-
ing of applications executing in the host. As the host 
executes, the log of activity would immediately be sent 
to the separate process that analyzes the execution in 
the background.
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is that RnR separates live execution from dynamic anal-
ysis of the execution. Experimentation shows that perfor-
mance overhead of recording is less than 5% for typical 
workloads and that the log growth rate is reasonable.

There are several important challenges to solve to 
take advantage of potential applications of RnR. These 
challenges include increasing the trustworthiness of 
RnR itself, developing replay analysis tools and tech-
niques, creating schemes to properly address privacy 
concerns, and discovering practical techniques to record 
multicore virtual machines. We plan to continue look-
ing at ways to address these challenges as we leverage 
RnR as a research platform for trustworthy computing.
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been a lot of work with VMI, there are important chal-
lenges that remain and a lack of extensive tools avail-
able. One of the most important challenges is that the 
guest is not trustworthy. This means that techniques 
that inspect guest data structures need some way to 
guarantee or detect that the guest has not intentionally 
altered the data structures in a way that would confuse 
(or worse, compromise) the introspection mechanisms.

A third critical challenge for using RnR is privacy. 
The recording mechanism will record all data that have 
been input into the machine and all data that are pro-
cessed by the machine. This includes sensitive user data 
such as passwords or other authentication credentials. 
These data are transient in modern systems, but with 
RnR, the data could be stored indefinitely. To properly 
address this concern, various cryptographic schemes 
need to be explored along with careful system design for 
specific applications.

A fourth important challenge we highlight is adding 
support to record and replay multicore virtual machines. 
Our current prototype can only record a uniprocessor vir-
tual machine. Although there are many useful applica-
tions of RnR for uniprocessor virtual machines, extending 
the functionality to support multicore virtual machines 
is an important area of future research. The challenge 
of supporting multicore virtual machines is that shared 
memory access between cores introduces nondetermin-
istic input for each core because it is difficult to predict 
correct ordering of reads and writes from each core.

SUMMARY
RnR is a promising technology that enables many new 

techniques in trustworthy computing. The key concept 
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