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INTRODUCTION
High-resolution panchromatic electro-optical (EO) 

and synthetic aperture radar (SAR) sensors are two of 
the most important intelligence, surveillance, and recon-

naissance resources. SAR is a valuable intelligence asset 
because of its proven operational capability to image tar-
gets both day and night in any type of weather and to 

3-D target detection and recognition algorithm, based on 
the biologically inspired map-seeking circuit (MSC), is 
implemented to efficiently solve the template-match-

ing problem in synthetic aperture radar (SAR) and pan-
chromatic grayscale imagery. Given a 3-D model of a target, this algorithm locates the 
target in a 2-D image and determines its pose (i.e., viewing angles, scale, and spatial 
translations). A key aspect of the MSC is the simultaneous forward transformation of 
the model to match the image coupled with a backward path to make the image 
match the model. The efficiency of the algorithm is a result of the decomposition of 
the n-dimensional pose transformation space into a series of one-dimensional searches 
for each of the transformation parameters. Although originally designed for panchro-
matic electro-optical imagery, we demonstrate that the MSC architecture can also be 
successfully applied to SAR by simply changing the feature-extraction preprocessing. 
Additionally, we introduce modifications to the MSC algorithm that increase the speed 
of detection and allow efficient classif ication when multiple targets are present in the 
same image. We present promising results after applying our algorithm to challenging 
real-world panchromatic electro-optical and SAR imagery.
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set of invertible transformations. In this article, we use 
the MS-MSC algorithm to solve the aforementioned 
template-matching problem in both SAR and pan-
chromatic imagery. Given the 3-D model of a target, 
this algorithm locates the vehicle in a 2-D image and 
determines its pose (i.e., viewing angles, scale, and 
spatial translations). Although the basic algorithmic 
architecture is similar for both types of imagery, there 
are critical preprocessing steps that condition the raw 
imagery for use in the MSC that are sensor-modality 
specific. We also introduce postprocessing to provide a 
confidence metric of the MSC result based on various 
GOF computations. 

In this article, we introduce the MSC algorithm and 
describe the modifications made that resulted in our 
MS-MSC approach. Preprocessing techniques used to 
represent image data within the MSC architecture are 
discussed, and several results on real imagery are pre-
sented. MSC was developed as a neuromimetic algo-
rithm initially designed for EO imagery; we extend and 
demonstrate the use of the MSC architecture to per-
form target detection and recognition in SAR.  To our 
knowledge, this is the first time the MSC algorithm has 
been applied to SAR imagery.  Conclusions and plans 
for future research are summarized in the final section.

MSC ALGORITHM
In the following sections, we present both the 

original MSC algorithm introduced by Arathorn and 
the modified MS-MSC algorithm we developed and 
implemented.

Baseline MSC Algorithm
Detecting and identifying target objects with 

unknown location, scale, in-plane (image) rotation, 

provide precision geo-location 
accuracy. EO sensors are more 
prevalent operationally and 
provide high-resolution images 
that can be used to identify and 
recognize targets. Automated 
exploitation of EO and SAR 
imagery remains a challenge 
because both modalities suffer 
from the difficulties that are 
typically encountered in auto-
mated processing of high-reso-
lution imagery—for example, 
other man-made and natural 
objects in the scene represent-
ing clutter, foreground objects 
that may partially occlude the 
target of interest, illumina-
tion and shading variations, 
and large data volumes. Existing conventional target-
recognition approaches in both EO and SAR include 
template matching and feature-based classification 
techniques. Template-matching algorithms that exhaus-
tively search the target pose state space can be used to 
detect and recognize targets given a 3-D model or 2-D 
target templates. The high dimensionality of this state 
space limits the use of these algorithms in many time-
critical applications, even though the imagery may be 
readily available and of great benefit. In this article, we 
investigate a physical-model-based template-matching 
approach called the map-seeking circuit (MSC) and 
show its ability to efficiently detect and identify targets 
with arbitrary viewing geometries in both EO and SAR 
sensor modalities.

The MSC is a new, biologically inspired algorithm 
developed by David Arathorn at the Center for Com-
putational Biology at Montana State University.1, 2 It 
is a model-based approach that assumes that the cor-
respondence between a model and an observation of 
it can be represented by a decomposition of invertible 
transformations. For example, MSC can be used to effi-
ciently search a high-dimensional space for the best set 
of transformations that map a 3-D object to an observed 
2-D representation in a panchromatic image as dia-
grammed in Fig. 1. In this article, we introduce a modi-
fied MSC algorithm, the multistage-MSC (MS-MSC), 
which incorporates new processing stages including 
initial candidate detection, parallel MSC processing of 
candidates, and calculation of goodness-of-fit (GOF) 
metrics. This modified algorithm increases the speed of 
detection and allows efficient classification when mul-
tiple targets are present in a single image. Our archi-
tecture also enables simultaneous search for different 
target models.

The robust nature of the MSC makes it applicable 
to any process that can be decomposed into a discrete 

Shape matching
3-D-to-2-D
projection

Scale

Rotate

(x,y) shifts

3-D model

Figure 1. Example of MSC transformational layers with an input 3-D truck model and output 
results projected into the panchromatic input image. (Reproduced from Ref. 6, © IEEE 2009.)
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The MSC algorithm attempts to efficiently solve the 
correspondence problem to find the best set of transfor-
mation parameters to match a given 3-D model, M, to 
the observed 2-D image, I. Adopting the notation intro-
duced in Refs. 5 and 6,

 ,c T T M I=^ ^h h  (1)

defines the correspondence c for a particular set of trans-
formations T to be the inner product of the image, I, 
with the transformed model, T(M). The MSC can be 
generalized to problems that can be described as a series 
of L-decomposable transformations:

 T T T Ti
L

i i
2 1

L 2 1
% % %g= ^ ^ ^h h h, (2)

where the subscript ik identifies a specific parameter 
value in the transformation layer T(K) (e.g., an in-plane 
rotation of 2°). Typical transformation layers include 
3-D-to-2-D, scaling, in-plane rotation, and translation. 

The MSC relies fundamentally on the so-called 
Ordering Property of Superpositions, which states the 
following for sparse vectors (v):
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The rationale for this property can be found in Ref. 2. 
Basically, this property states if a given transformation 

azimuth, and elevation in the 
presence of clutter and confus-
ers requires consideration of a 
very-high-dimensional projec-
tion space, frequently on the 
order of 1010 possible transfor-
mations. Exhaustive search of 
this high-dimensional space is 
very computationally expen-
sive and generally precludes 
near-real-time applications. 
Techniques that transform the 
data into an invariant domain 
do provide some dimensional-
ity reduction but may require 
significant preprocessing and 
often do not obviate the need 
to consider a high-dimensional 
space. When the template is 
another 2-D image instead of a 
3-D model, there are powerful 
alternate approaches that can 
be used. For example, varia-
tions on Lowe’s Scale Invariant 
Feature Transform (SIFT) algo-
rithm have been proven to be 
robust in the presence of clutter, scale, and planar rota-
tion.3 The original SIFT algorithm had limited invari-
ance to 3-D-to-2-D projection; a recent extension called 
Affine-SIFT4 builds in additional 3-D-to-2-D projection 
invariance but requires simulated/training data and still 
does not provide a fully 3-D capability.

The MSC is inspired by neurobiological evidence that 
both reciprocal forward and backward transformations 
are required to perform visual cognition (i.e., forward 
mapping of the 3-D model into the imagery coupled 
with backward mapping of the 2-D imagery to fit the 
model) (see Fig. 2). The MSC uses an iterative process 
of simultaneous forward/backward testing of multiple 
superposed transformation hypotheses. Hypotheses are 
competed to quickly converge on the correct transfor-
mation mapping to identify the target in the scene even 
when other confusers and clutter are present. One of the 
most interesting aspects of the MSC is that target seg-
mentation is an emergent property of the algorithm; it is 
not a precondition as in many conventional machine-
vision approaches. 

Although the physical process behind the projection 
of the 3-D model into EO imagery is completely differ-
ent from that required for SAR, the MSC layers used to 
compete the 3-D-to-2-D projections are similar for both 
modalities. The main differences are in the preprocess-
ing of the input images and model templates. In this sec-
tion, we describe the baseline MSC algorithm using EO 
nomenclature and examples; more detail about the SAR 
implementation is provided in a later section.
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Figure 2. Four-layer MSC block diagram showing the forward and backward paths that project 
the 3-D model into the image and vice versa. Here K = 1 = azimuth/elevation, K = 2 = scale, K = 
3 = rotation, and K = 4 = (x,y) shift. The forward and backward superpositions (Eq. 6) are com-
puted on the left and right paths, respectively, and the correspondences, cK(T(K)), for each layer 
are computed in the central boxes (Eq. 7). (Reproduced from Ref. 6, © IEEE 2009.)
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we generate a vector of correspondences that allows 
us to compete the transformation parameters for that 
layer. The state space search in the Kth layer is essen-
tially locally optimized about the current estimates of 
the other L – 1 transformations denoted by, for example, 

,T T ML 1 1– % %g ^^ ^ hh h  where the overbar represents an 
averaging over these transformation states. These aver-
ages are equivalent to the forward/backward MSC super-
positions, where the weight vectors, g, can be interpreted 
as the probabilities associated with the transformation 
parameters. The forward and backward superpositions 
needed for evaluating layer K are given by the following 
recursive equations:
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The Ordering Property of Superpositions ensures 
that a higher correspondence value will be computed 
on average for the best choice of transformation param-
eter—i.e., the vector of correspondences computed for 
layer K,

 c S,T T SK
K

i
K K L K1

F
–

B
–

K
%=^ ^ ^ ^ ^hh h h h , (7)

will, on average, have a larger value for the iK* element 
in the vector. These correspondence vectors are used to 
update the g vectors for each layer for the next iteration. 
Updating is accomplished via a nonlinear competition 
function to force less likely transformation parameter g 
vector elements to zero. If the target under consideration 
is not present in the image, all g vector values can be 
allowed to converge to zero. For applications requiring 
a high probability of detection, the weights can option-
ally be renormalized after each iteration, thus forcing 
the MSC to detect something in the image. False alarms 
that are generated can be addressed by additional GOF 
metrics as described later.

On each iteration, the MSC efficiently searches 
a hyperplane through the original high-dimensional 
state space, revising its estimates of the transforma-
tions as it modifies the g vectors for each layer on the 
basis of the correspondences computed. Hence, for 
each iteration, the dimensionality of search is the sum 
of the dimensionality of the parameter space for each 
layer, NMSC = N(1) + . . . + N(L), rather than the prod-
uct N N N N L1 2

Total $ g= ^ ^ ^h h h. See Box 1 for a detailed 
illustration of the MSC algorithm as applied to a specific 
example image.

is part of the superposition, the response will on average 
be higher than that obtained with one that is not—i.e., 
the probability (Pr{·}) is greater than 0.5 that the dot 
product of the superposition with a vector that is part 
of the sum is greater than the dot product with a vector 
that is not part of the sum. This is very dependent on 
the sparseness precondition.

A critical aspect of the MSC is the forward and 
backward paths that project the model into the image 
(forward path) and invert process to project the image 
into the model (backward path). Instead of exhaustively 
searching the entire high-dimensional transform param-
eter space, the MSC searches a superposition hyperspace 
defined by the inner product of forward and backward 
superpositions. A superposition is defined as a weighted 
linear combination of all possible transformations for 
a given transformation layer (e.g., spatial translations). 
The weights are optimized via nonlinear inhibitor or 
competition functions. 

The weight vectors, g(K), are the coefficients associ-
ated with the transformations for a given layer K, TiK

(K) 
for iK = 1, 2, . . . , N(K), where N(K) is the dimensionality 
of the state space for layer K (e.g., for an azimuth layer 
examining transformations every 5º over a range of 360º, 
N(K) = 72). Initially, the g vector for each layer is set to 
unity—equivalent to an uninformed prior assumption. 
As the MSC iterates, the g vectors are updated on the 
basis of the computed correspondences until they con-
verge to a single nonzero value for each g(K) vector. The 
final converged values for the layers, denoted here by the 
addition of an asterisk, [ iL*, iL – 1*, . . . , i1*], constitute 
the best solution for the azimuth, elevation, scale, in-
plane rotation, and (x,y) translations found by the MSC. 

For template-based classification, the transformations 
are all readily invertible with, of course, the exception of 
the 3-D-to-2-D projection. (The structure of our MSC 
is designed such that this inverse transformation is not 
needed, as discussed later.) In essence, each layer of the 
MSC is designed to search for a given parameter—i.e., to 
take the original L-dimensional correspondence problem,

 ,c T T T M IL 1% %g=^ ^^ ^h hh h , (4)

and approximate it by decomposing it into L-simplified 
one-dimensional searches—one for each transformation 
layer: 
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where only the parameters associated with the trans-
formation in a given layer K are competed. (T(K) is 
the adjoint of the transformation T(K).) For each layer, 
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BOX 1. HOW MSC WORKS
MSC uses a 3-D model to detect, locate, and identify the object in a 2-D image and determine the transformations required 
to project the model into the image. It does so by decomposing the multidimensional transformation state space search, in 
this case 3-D-to-2-D azimuth and elevation, scale, image-plane rotation, and spatial (x,y) shifts, into a series of one-dimen-
sional transformation parameter searches. Linearly weighted sums of individual transformations are used to form what are 
effectively “composite filters.” The unique aspect of MSC is the use of these composite filters combined with both forward 
(model to image) and backward (image to model) projection pathways. The MSC is an extremely efficient variation of a con-
ventional template-matching approach and reduces the computations required from O(N1N2N3 ··· NL) to an iterative search 
involving computations on the order of O(N1+N2+N3 +…+ NL), where Ni is the number of parameters considered in layer i 
of an L layer circuit architecture. 

The detailed example shown here illustrates the MSC finding a pickup truck in the image shown in Fig. 3. The single input 
3-D model and corresponding azimuth definitions are shown in Fig. 4. For this example, a full 360° in azimuth (5° intervals) 
and an elevation range of 0–20° (also 5° intervals) were used for the 3-D-to-2-D layer. Ten scaling factors were used in the 
range from 0.85 to 1.15; image-plane rotations ranged from –6° to 6° (in 2° intervals), and spatial (x,y) shifts included every 
2 pixels throughout the image.

For the first iteration, the MSC is initialized with weights that are uniformly set to unity. (If prior information is available, 
these weights can be initialized to represent any known a priori information.) Figure 5 shows the superpositions generated as 
well as the weights (g vectors) used for the first iteration. For example, SF

(1)  is the forward superposition created by summing 
each azimuth and elevation projection of the model multiplied by the (unity) weighting factors, SF

(2)  is the superposition 
created by summing each of the 10 different scaling factors applied to SF

(1)  multiplied by the appropriate scaling weight, and 
SF

(3) is the superposition generated by the weighted sum of the image-plane rotations applied to SF
(2) . Although the final 

forward superposition, SF
(4) , generated by a weighted sum over all (x,y) spatial shifts is shown, it is not actually needed for the 

MSC. We provide and use it to illustrate the current hypotheses that the algorithm is considering for the complete projection 
of the 3-D model into the image (our red overlays). Similar inverse operations taking place on the input image are computed 
on the backward path. Note that although the weights for the 3-D-to-2-D and (x,y) spatial shift layers are broken out into two 
separate one-dimensional weight vectors for visualization purposes—i.e., azimuth and elevation for 3-D-to-2-D and spatial x 
versus spatial y for the x,y layer—they are actually competed jointly (ganged) in each of these two layers.

Continued

–45° 0° azimuth 45° 90°–90°

–135° 180° 135°

Figure 4. Input 3-D truck model.

Figure 3. Input image with a truck (left) and a car in a parking lot.
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BOX 1. HOW MSC WORKS—CONTINUED
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Figure 6. MSC results after the third iteration.
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Figure 5. MSC results after the first iteration.



P. K. MURPHY, P. A. RODRIGUEZ, AND C. K. PETERSON

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 31, NUMBER 3 (2013)240

BOX 1. HOW MSC WORKS—CONTINUED
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Figure 8. MSC results after the final iteration.
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Figure 7. MSC results after the 10th iteration.
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MS-MSC ALGORITHM
In this section, we discuss the unique properties 

of our modified MSC algorithm: the MS-MSC algo-
rithm. We have implemented the core MSC algorithm 
in MATLAB, where the more computationally costly 
inner-product routines have been coded in C++. A basic 
block diagram of our L = 4 layer MSC architecture is 
shown in Fig. 2, where the four layers implemented are 
azimuth/elevation, scale, in-plane rotation, and (x,y) 
translational shifts. Although the MSC can be designed 
to compete the translational shifts in x and y in two 
separate layers, we have found that better detection 
performance is achieved by combining (x,y) shifts into 
a single layer. This improvement in detection comes at 
additional computational cost because there are now 
Nxshift · Nyshift inner products per iteration rather than 
the Nxshift + Nyshift operations required for two separate 
x and y layers. 

Detection Stage
Testing on data sets containing multiple targets illus-

trates that the MSC can identify the approximate spatial 
locations of the targets in the scene very quickly—often 
within a single iteration. Based on this observation, we 
modified the original MSC algorithm to essentially have 
a detection-processing stage where subimages centered 
on these candidate locations are extracted after just a 
few initial iterations. Multiple instantiations of the MSC 
algorithm are then run in parallel on each extracted 
candidate subimage as shown in the detection stage in 
Fig. 10. This detection stage processing mitigates the 
“winner-take-all” limitation of the original MSC, which 
would converge on only a single candidate in a given 
image. It also yields increased computational efficiency 
because the bulk of the MSC processing is performed on 
much smaller subimage chips as a consequence of the 
reduction in (x,y) translational shift parameter ranges. 

Multiple Model Layer
In typical EO and SAR applications, it is important 

to be able to detect and classify more than one target 
type in the same image. Our initial approach to multi-
ple-target classification was to run the detection-phase 
processing stage described in the preceding subsection 
with a generic target model (e.g., using a simple car 
model to detect both the trucks and cars in the input 
image shown in Fig. 10). This was followed by running 
parallel MSCs for each target model on all candidates to 
find the best match. Our current approach implements 
a new multiple model layer in the MSC algorithm that 
creates a weighted average of the 3-D-to-2-D projections 
of multiple target models, which are directly competed 
in the MSC architecture to find the best model match 
for each candidate. In our implementation, we force 
early convergence on the model and translational layers 

BOX 1. HOW MSC WORKS—CONTINUED
Correspondence vectors are computed for each layer 
and comprise the dot products of the backward super-
position with each of the individual transformations 
for that layer applied to the forward superposition. 
These correspondence vectors (not shown) are used to 
update the weights for the next iteration. The Ordering 
Property of Superpositions guarantees that the correct 
transformation will, on average, generate a larger dot 
product than an incorrect transformation. The results 
obtained by the third iteration are shown in Fig. 6. Our 
weight update parameters have been tuned so that the 
order of convergence is tiered: spatial x,y converges the 
most quickly, followed by 3-D-to-2-D azimuth and ele-
vation, followed by scaling and rotation. Note that even 
after only three iterations, the MSC has developed a 
strong preference for the truck on the left although it is 
still considering the car on the right. No other objects 
present in the image are viable candidates. The azimuth 
and elevation hypotheses are also evolving. Note that 
the MSC has not yet determined whether the truck 
is facing toward or away from the camera (dual peaks 
180° apart in azimuth); scale and rotation weights are 
effectively unchanged as yet from the starting uniform 
priors. The backward path illustrates the wrapped 
inverse spatial shifts required to make the truck in the 
image align with the spatially centered truck model.

MSC results obtained after 10 iterations are shown in 
Fig. 7. At this point, the algorithm has firmly converged 
on the spatial location of the truck but has yet to resolve 
the 180° ambiguity in azimuth; in fact, the higher weight 
is being given to the incorrect azimuth (approximately 
–15°) facing away rather than the correct (approximately 
165°) facing toward the camera. Scale and rotation are 
now being more aggressively competed. Final converged 
results are shown in Fig. 8, demonstrating that the MSC 
was able to recover the correct azimuth (165°) as well as 
determine the best scale and in-plane rotation. Upon 
convergence, only a single nonzero weight for each 
layer remains; these weights identify the transforma-
tion parameters needed to effectively “shrink wrap” the 
model onto the image as shown in Fig. 9.

Figure 9. MSC converged result projected onto the origi-
nal image.
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GOF metrics. However, we have 
since successfully applied SVM 
classification-based MS-MSC to 
automatically detect and iden-
tify logos in Flickr images for a 
Research Program in Applied 
Neuroscience (RPAN) project.8 

MS-MSC FOR 
PANCHROMATIC 
GRAYSCALE IMAGES

EO and SAR imagery require 
different rendering software to 
create the model templates as 
well as modality-specific prepro-
cessing of both the input images 
and the templates prior to using 
the MS-MSC algorithm. In the 
following sections, we discuss 
the creation of the templates, 
describe the EO image edge pre-
processing performed, and pres-

ent results that highlight the performance of MSC on 
panchromatic imagery.

EO Model Template Generation
The MSC requires 3-D models of the targets at the 

beginning of the forward loop. The first layer in the for-
ward loop uses various 2-D projections of the models to 
create the initial superposition images. Because only the 
2-D projections are needed, folders are created that con-
tain panchromatic 2-D image projections of the models 
at various discrete combinations of azimuth and eleva-
tion angles. These folders then become the source of the 
input templates for the MSC algorithm. The template 
folders are generated once offline and used in all subse-
quent applications of the MSC. 

In the case of EO imagery, the 2-D projections are 
created by applying orthographic projections of the 3-D 
models at different azimuth and elevation angles using 
built-in MATLAB routines. 3-D target models are rela-
tively easy to obtain online because of the rapid growth 
in the virtual reality and video gaming communities. 
An increasing number of websites exist where models, 
including military targets, can be affordably purchased 
and downloaded (for example, www.turbosquid.com). 
Although these models are not formally vetted, we have 
found them to be quite realistic and of more than ade-
quate fidelity for our applications. 

EO Template and Image Preprocessing
Because the MSC requires a sparse data represen-

tation, edge-detection preprocessing is done to both 

by controlling the competition parameters. This is done 
to make sure that the estimated pose corresponds to a 
specific target in the image and is not influenced by 
other objects present in the scene.

GOF Metrics Stage
The original MSC algorithm relies on the weighting 

factors in the g vectors to determine whether the tem-
plate is successfully identified in the input image. A bad 
match is found if the weights of each layer do not con-
verge to a single nonzero value. Our experience tells us 
that this approach is not robust enough to discriminate 
between good and bad solutions in challenging imagery. 
In our implementation, GOF metrics are calculated to 
assess the quality of the match between each candidate 
detection and its final MSC result as illustrated in Fig. 10. 

The GOF metrics stage works by first calculating 
multiple metrics that describe how well the winning 
projected 3-D model as determined by MSC matches 
the original subimage data. The edge and the original 
grayscale values of the projected template and input 
subimage are used to calculate the various metrics, 
which include the correlation coefficient, entropy, and 
Hausdorff distance.7 A GOF feature vector is created 
that comprises these various metrics. A classification 
approach, such as support vector machine (SVM), could 
then be trained using the GOF feature vectors of both 
true and false-positive target recognition examples to 
provide an automated classification capability and con-
fidence metric. The results presented in this article do 
not yet include a formal classification stage based on the 
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Figure 10. Detection and GOF stages of MM-MSC. The detection stage identifies multiple 
candidate targets in a given image and processes them in parallel. The GOF stage uses calcu-
lated metrics to assess the MSC recognition results. In addition, a classifier could be trained on 
labeled MSC results to automatically discriminate between good and bad MSC results.
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orientation histogram computed in a local neighbor-
hood. Because the feature vector captures information 
in the local neighborhood, it does not necessarily need 
to be computed for each pixel; spatial downsampling 
can be used to compensate for the growth in dimen-
sionality caused by the feature vector representation. 
The benefit of using edge feature vectors is that they 
are robust against small-scale mismatches between the 
image and the model. Also, the addition of edge orien-
tation information results in a more discriminatory cor-
respondence value. The edge orientation feature vector 
has proven to be a powerful technique for images with 
adequate spatial resolution. However, as the number 
of edge pixels on the target/model decreases or as edge 
complexity increases, downsampling increases the risk 
of missing the target and the mismatch forgiveness 
inherent in this approach increases the likelihood of 
false detections. 

EO Results
In this section, we present five examples of using the 

MSC algorithm on challenging panchromatic images. 
Each of the examples highlights different critical aspects 
of the MSC algorithm. The MS-MSC algorithm was 
run using edge feature vectors. In all of the examples, 
we present the final converged results by projecting the 
outline of the template, with the pose estimated by the 
MSC, in red on the input grayscale EO image. Ground 
truth about the true 3-D pose was not available for any of 
the examples presented; however, the MSC results were 
within a few degrees in azimuth and elevation and a few 
pixels in (x,y) of those determined manually.  Addition-
ally, for each example, information is provided about the 
convergence efficiency of the MSC as compared with 
performing an exhaustive search over the entire state 
space; this information is presented as a percentage of 
the state space searched.

The parameter search space, (min_value:step_
size:max_value), for each example was similar: azimuth 

model templates and input images. Using edges to 
“sparsify” the images was originally suggested by Ara-
thorn in his implementation of the MSC algorithm 
for panchromatic imagery. However, as the complexity 
of the imagery increased, we found that simple edge 
extraction did not result in a representation that was 
sufficiently sparse. To address this, we introduced the 
use of both edge location and edge orientation informa-
tion as shown in Fig. 11.9 Here, edge orientations have 
been quantized into one of four orientation angles: 0° 
= green, 45° = yellow, 90° = red, and 135° = white. 
To constitute a successful match, not only do the edge 
pixel locations in both template and image have to 
align, but the orientation of the edge pixels must also 
be the same. High inner-product values are obtained 
in the MSC algorithm only when both the edge pixel 
location and orientation match. 

The use of oriented edges can be taken a step further 
by introducing edge feature vectors as shown in Fig. 12. 
An edge feature vector is constructed from the edge 

Four orientations

135° 90°
45°

0°

Figure 11. Example of preprocessing to extract edge location 
and edge orientation for a panchromatic image. (Reproduced 
from Ref. 6, © IEEE 2009.)

Four orientations

Figure 12. Example of calculating an edge orientation feature vector for a car model template. (Adapted from Ref. 6.)
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Figure 13. MSC results using an input 3-D truck model and an image with challenging azimuth 
pose (truck on the left, car on the right). The 3-D model template of the target truck model input 
is also displayed. (Adapted from Ref. 6.)

(a) (b)(a) (b)

Figure 14. MSC results using an input 3-D car model and an image with complex clutter and 
lighting. (a) Original image. (b) MSC result projected in image. (Reproduced from Ref. 6, © IEEE 
2009.)

Example 1: Varying Pose
The MSC can detect and 

estimate the pose of the truck 
under challenging azimuth ori-
entations as shown in Fig. 13. 
In this stressing case, both 
the truck (on the left) and the 
car were positioned to face 
the camera. Searching for the 
input truck model, the MSC 
takes 13 iterations (or 0.24% of 
the entire search state space) 
to converge to the correct 
vehicle and the correct pose. 
Figure 1 is another example of 
similar performance obtained 
for a different target orienta-
tion. The result matches our 
manually estimated pose for 
the truck in the image.

Example 2: Complex Clutter and 
Lighting

In Fig. 14 we present an 
example where the car was 
detected and its pose correctly 
determined in an image with 
complex lighting and clutter. 
This time the input is the 3-D 
car model. Even though the 
complicated edges obtained 
for this image decrease the 
sparsity of the superpositions 
at the various layers and intro-

duce local maxima where the MSC could incorrectly 
converge, the MSC was able to estimate the correct 
pose of the target in 12 iterations (0.64% of the entire 
search state space). 

Example 3: Multiple Targets
This example uses an image obtained from the Air 

Force Research Laboratory (AFRL) Sensor Data Man-
agement System public website video data sets (available 
at https://www.sdms.afrl.af.mil). The input image, shown 
in Fig. 15, contains six vehicles including two pickup 
trucks and four cars. We ran our MS-MSC on this image 
using our 3-D model of a pickup truck obtained from 
TurboSquid as the input model. This example demon-
strates the ability of the MS-MSC to detect, recognize, 
and estimate the 3-D pose of more than one target in a 
single image.

The center image in Fig. 16 shows the result of 
the detection stage processing. The detection phase 
spatially locates all six vehicles in the image by the 

angle, 0º:5º:359º; elevation angle, 0º:5º:40º; in-plane 
rotation angle, –10º:2º:10º; and x and y translations, 
horizontal and vertical shifts at 2-pixel intervals over 
the entire image. Ten different scaling factors were 
competed. Scale range variations were kept modest; the 
assumption was that a fairly accurate estimate of scale is 
available a priori (especially true for SAR). For applica-
tions where this is not true, MSC may still be applied; 
however, additional care must be exercised so that the 
resulting superpositions do not become too dense and 
violate the sparseness precondition.

Our first two examples show how the original MSC 
can accurately estimate the correct pose of a target in 
a panchromatic image with significant computational 
time savings compared with an exhaustive search. For 
these two examples, the MSC was run in a winner-take-
all mode. Examples 3 and 4 show the additional benefits 
of the detection and GOF states of our MS-MSC 
algorithm. Finally, in the fifth example, we show the 
benefits of introducing a multiple model layer. 

https://www.sdms.afrl.af.mil
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the image (subimages 2 and 5). Note that for high-
elevation viewing geometries, azimuth and in-plane 
rotation can be easily conflated. The pose estimated by 
the MSC provides a reasonable fit in this case as shown 
in Figs. 16 and 17. 

The MSC attempts to modify the various pose 
parameters to force a fit of the model to the other vehi-
cles present as well, as evidenced in Fig. 16. For the cars 
present, the vehicle shadows in the image are frequently 
being mismatched to the model. Explicit use of shadow 
information will be a future enhancement to our EO 
MS-MSC implementation; shadows are, however, being 
used currently in the SAR MSC implementation as dis-
cussed in a later section. Various GOF metrics are cal-
culated for each of the six solutions and used to quantify 
the quality of the matches. Our metrics confirm that 
only the two trucks in the image are good matches to 
the input truck model. One of the metrics calculates the 
percentage of overlap between edges of the projected 
template and the edges of the candidate subimage. 
Figure 17 shows the value of this metric for each of the 
six candidates in the image. A percentage match higher 
than 80% was obtained for the two pickup trucks plus 
the car (subimage 1) in the bottom-left corner of the 
original full-scene input image. Using this metric alone 
to discriminate between good and bad matches would 
provide only one false alarm (subimage 1). By combining 
this metric with others into a GOF feature vector, it is 
possible to train a classifier to significantly reduce false 
alarms and poor matches.

Example 4: Multiple Targets, 
High-Clutter Image

The image in this example 
also comes from the AFRL 
Sensor Data Management 
System site (Fig. 18) but is 
more challenging than the 
previous example because 
of the highly cluttered 
background and challenging 
lighting conditions. This 
image has three pickup 
trucks in it and was run 
against the truck model. 
In the detection phase 
(center image), we obtain 
11 candidate detections, six 
of which are vehicles. The 
best match between the 
projected template and the 
candidate image chips was 
indeed the white pickup 
truck. This image helps to 
highlight some of the key 

second iteration of the MSC applied to the entire 
image. Each of these candidate locations identifies 
an initial detection that may match the pickup truck 
target model. The six surrounding subimages shown 
in Fig. 16 are the image chips that were extracted and 
passed to the parallel MSC processing stage. The final 
resultant match for each image chip is overlaid in red. 
The best two matches of the projected 3-D pickup 
model correspond to the two actual pickup trucks in 

2

1

5

6

43

Figure 16. Results of applying the MS-MSC algorithm to the AFRL image in Fig. 15. The image in 
the center shows the initial candidate locations identified after the second iteration of the MSC; 
the circular red superposition contours illustrate the capability of the MSC to quickly identify the 
spatial locations of the objects even before the convergence of any of the other pose parameters 
(detection phase). Each of the six candidates identified were then processed in parallel, and the 
MSC was allowed to fully converge to the final pose estimates shown in the zoomed subimages.

Figure 15. AFRL image taken from an airborne platform show-
ing six vehicles—two trucks and four cars—of various unknown 
makes and models.
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Figure 17. Percentage match between the projected truck model and image edges for each 
of the candidate subimages. The two actual trucks in the scene, subimages 2 and 5, have the 
highest percentage match GOF.
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Figure 18. Results of applying the MS-MSC algorithm to the AFRL image. The superposition con-
tours shown in the central image illustrate the MSC results obtained after just a few initial iterations 
prior to convergence (detection phase). Each candidate thus identified was then processed in par-
allel and allowed to converge to the final transformation poses shown in the zoomed subimages. 
The MSC algorithm was used to estimate the best 2-D projection of the model template to each of 
these initial candidate detects.

vehicles except the one truck in 
the right foreground; the lack 
of contrast between the truck 
and the background resulted in 
insufficient edge information 
being extracted. MSC will work 
if enough edges (with their cor-
responding orientations) can be 
extracted successfully. In this 
case, poor edge preprocessing 
for this truck and several of the 
other vehicles present resulted in 
reduced MSC results. Specular 
reflections noticeable in many of 
the subimages contribute to the 
poor initial edge extraction. 

Additionally, it can be seen 
that we detected five false tar-
gets in the image that do not 
correspond to vehicles. These 
five false alarms contain linear 
features (e.g., water tower sup-
port structure) that in the first 
iterations of the detection stage 

of the MS-MSC algorithm have a high correspondence 
with the linear features of the model. The correspon-
dences of these false alarms are not as high as the 

attributes of the MSC algorithm. The computation 
time was greatly reduced when compared with that 
required for an exhaustive search; each of the targets 
converged in less than 
0.10% of the time required 
to exhaustively search the 
entire state space. The MSC 
also exhibited a degree 
of tolerance for target 
obscuration as evidenced 
by the detection of the 
car hidden behind trees 
in the lower-left corner of 
the image (subimage 5). 
Although the final fit is 
poor, the fact that this 
target was initially detected 
even when using the truck 
model was both surprising 
and encouraging. 

This image also helps to 
highlight some of the weak-
nesses of MSC (and other 
similar template-matching 
algorithms) in challeng-
ing imagery. The clutter 
and varying lighting condi-
tions show the importance 
of applying good prepro-
cessing techniques prior to 
applying MSC. The detec-
tion phase found all of the 
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Example 5: Multiple Model MSC
The MSC implementation in this example incor-

porates both the detection phase processing and the 
multimodel layer to compete multiple models simultane-
ously. Figure 20 shows the results of using both the 3-D 
truck and car models as inputs to the multiple model 
layer in our MS-MSC algorithm operating on an image 
that contains the two types of vehicles. In each case, 
the MSC determined the appropriate model and pose 
of each vehicle in less than 14 iterations (<0.25% of the 
entire search state space).

MSC FOR SAR IMAGES
Although the features used in the matching process 

are distinct, the MSC architecture and pose-related 

values obtained from the vehicles in the image. If the 
MS-MSC is run in a winner-take-all mode, these false 
alarms are eliminated and the algorithm converges to 
the white pickup truck in the lower right (subimage 8). 
Because the MS-MSC is retaining and processing all 
initial candidate detections in parallel, it is neces-
sary to find other means to discard false alarms. Our 
approach uses the GOF metrics to accomplish this. Ini-
tial looks at the metrics calculated for this image indi-
cate that they are capable of discriminating between 
good and bad matches. Figure 19 shows the percentage 
match between the edges of the projected truck model 
and each of the detected candidate image chips. A very 
high percentage match value is obtained only for the 
white truck in the image.

MM-MSC

Detection phase

MM-MSC

Figure 20. MSC results with 3-D truck and car models used as inputs to the multimodel layer in the MS-MSC algorithm. Initial detection 
phase superposition contours are shown in the left-hand image, and final convergence of both model and pose are shown on the right. 
(Reproduced from Ref. 6, © IEEE 2009.)
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Figure 19. Percentage match between the projected truck model and image edges for each of the candidate subimages. The two 
actual trucks detected in the scene are subimages 6 and 8.
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ALGORITHM 1. SCATTERING POINT 
EXTRACTION
1. Identify pixels that represent local SAR magni-

tude maxima in a moving neighborhood window 
of L × L pixels. L is kept small so that closely 
spaced scattering centers can be found; a value of 
3 was used in our analysis.

2. Keep only the top kth percentage of the identified 
maximum pixels (usual ranges of k are 1–10%).

3. Dilate each scattering center pixel to provide some 
uncertainty in spatial location for subsequent 
matching.

4. Normalize scattering image so its Frobenius norm 
equals 1. 

themselves or in combination in our SAR MSC imple-
mentation. The features extracted for SAR imagery 
include scattering point magnitude and location, ridge 
position and orientation, and shadows. All the features 
are extracted from the magnitude of the complex-valued 
SAR images, where the magnitude represents the reflec-
tivity of scatterers in the image.12 

Figure 21a shows an MSTAR SAR image chip of 
a T-72 tank oriented at an azimuth of 268°. By using 
the scattering point extraction steps outlined in 
Algorithm 1, the scattering point centers for the MSTAR 
chip were derived as shown in Fig. 21b.  The scattering 
points extracted from two Xpatch-generated templates 
for the T-72 model oriented at azimuth angles of 268° 
and 84°, respectively, are shown in Figs. 21c and 21d.  
Although the MSTAR target and the Xpatch-generated 
template scattering centers shown in Figs. 21b and 21c, 
respectively, arise from the same azimuth orientation, 
the scattering centers do not align perfectly. In fact, our 
initial attempts at applying MSC to the MSTAR chip in 
Fig. 21a converged to the wrong solution of 84° azimuth 
(Fig. 21d) when using only scattering center features. 
This led us to investigate the discriminatory power of 
scattering centers. Figure 22 plots the percentage match 

transformation layers are equally applicable to SAR 
imagery.10 The aspects unique to SAR are in the creation 
of SAR templates from the model and the image pre-
processing techniques. These differences are discussed 
in the following sections. Note that we currently apply 
MSC to only the magnitude of the SAR data; the richer 
aspects of the full complex (magnitude and phase) SAR 
imagery are not yet fully exploited. Results highlighting 
the successful application of MSC to example MSTAR 
data11 are shown in the SAR Results section. MSTAR is a 
public release SAR data set collected by Sandia National 
Laboratories and sponsored by the Defense Advanced 
Research Projects Agency and AFRL.

SAR Model Template Generation
We generate a set of synthetic 2-D SAR image tem-

plates from a 3-D model using the radar simulation 
software package Xpatch. Xpatch takes as inputs a 3-D 
computer-aided design or facet model, a set of radar 
parameters, and an azimuth and elevation angle and 
generates a synthetic SAR image. Obtaining realistic 
SAR images from Xpatch requires that radar parameters 
be chosen to accurately model the SAR sensor of inter-
est. We adopt Xpatch’s azimuth angle conventions such 
that images are oriented with zero azimuth pointing to 
the left and increase in a counterclockwise direction. 
The set of 2-D projections obtained from Xpatch over 
the searchable range of azimuth and elevation become 
the input to the forward layer of the MSC algorithm. 
Like the EO model templates, the SAR model templates 
are generated once offline and stored for subsequent use 
by the MSC algorithm.

SAR Template and Image Preprocessing
The MSC algorithm operates most efficiently when 

working on sparse data. In SAR imagery, the determina-
tion of the most effective image features required further 
investigation. In this section, we explore different pre-
processing techniques to extract sparse features from the 
SAR imagery and show their effectiveness when used by 

(a) (b) (c) (d)

Figure 21. Comparison of extracted scattering centers.  (a) Original MSTAR SAR T-72 tank target at azimuth 268°, (b) extracted scattering 
centers from MSTAR image, (c) scattering centers extracted from Xpatch template generated from T-72 model at azimuth 268°, and (d) 
scattering centers from Xpatch template at azimuth 84°. (Adapted from Ref. 10.)
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the left image in Fig. 21), and Fig. 23b shows the location 
and orientation of the extracted ridges. Red indicates an 
orientation of 0º; cyan, 45º; white, 90º; and yellow, –45º 
as measured counterclockwise from 0º in the horizontal 
direction. The results of the exhaustive search analysis 
using only ridge magnitudes are also provided in Fig. 22 
(red line). The ridge features are much more discrimina-
tory and identify the correct solution for the azimuth 
angle at 268º. As the graph shows, ridges are much less 
susceptible than scattering centers to a 180º azimuth 
mismatch for this image. The weaker secondary peak 
around 240º in Fig. 22 is a result of the ridges on the 
turret misassociating with the side of the tank body.

score (i.e., normalized dot product) of scattering centers 
(blue) for the MSTAR target in Fig. 21, with Xpatch 
templates varying over a full 360º in azimuth. These 
results are obtained by an exhaustive brute force search 
over both spatial (x,y) position and azimuth orientation. 
Given the scattering center feature representation, the 
optimal solution as found by this exhaustive search 
analysis is, in fact, at an azimuth of 84º, an offset of 
~180º from the correct orientation. This confirms that 
the SAR MSC converged to the best solution available 
(albeit an erroneous orientation match). The secondary 
peak at 265º in Fig. 22 (blue line) more closely 
corresponds to the actual azimuth angle of 268º. This 
result shows that scattering 
centers alone do not provide 
sufficient discrimination 
of targets.

The need for additional 
feature attributes led us to 
incorporate ridges. Ridge 
extraction finds local 
maxima in at least one spa-
tial direction. Ridges are 
determined by computing 
the Hessian matrix at each 
pixel, which provides infor-
mation about the strength 
and orientation (the steps 
are detailed in Algorithm 2). 
An example of ridge extrac-
tion is shown in Fig. 23. The 
original MSTAR image is 
provided in Fig. 23a (same as 

(a) (b)

Figure 23. Extraction of ridge information from a SAR Image. (a) SAR image. (b) Ridge position 
and orientation. Red, 0°; cyan, 45°; white, 90°; yellow, –45°. [Reproduced from Ref. 10, © Society of 
Photo-Optical Instrumentation Engineers (SPIE).]

ALGORITHM 2. RIDGE EXTRACTION
1. Smooth SAR image with a 2-D Gaussian filter.

2. Compute the Hessian matrix for every pixel:

                           H
H
H

H
H

xx

yx

xy

yy
= = G,

where Hxx is the second partial derivative in the 
x direction and Hxy is the mixed partial second 
derivative in the x (column) and y (row) direc-
tions.

3. Calculate the ridge strength 

       ( , ) .x y H H H H H4– –xx yy xx yy xy
2 2= +S +^ ^h h

4. Calculate orientation of each ridge 
,tan v vx y

1– = ^ h , where ,v vx y
T^ h  is the minor 

eigenvector of the Hessian matrix.

5. Keep the kth percentile of pixels with the highest 
ridge strength (usual ranges of k are 1–10%).

6. Ridges can be quantized into orientation bins.
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Figure 22. Results of an exhaustive search to match the MSTAR 
image shown in Fig. 21a, which has an azimuth of 268º, to Xpatch-
generated templates with azimuths varying over a full 360º. 
Scattering point (blue) and ridge (red) match scores are shown. 
The result shows that ridges are more discriminatory and have 
a maximum at the correct solution for the azimuth angle (268º). 
(Adapted from Ref. 10.)
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examples provided. The application of MSC to SAR is 
less mature than the work presented for panchromatic 
images. However, the preliminary results presented in 
this section illustrate the benefits of using MSC with 
SAR imagery.

Example 1: Scattering Point and Ridge Matching in Natural 
Clutter

In this example, our test scene consists of an MSTAR 
T-72 tank target chip embedded in a natural clutter 
background. Both scattering point and ridge features 
were used in the matching criteria, and the target model 
input was an Xpatch T-72 tank. Each feature is com-
peted separately to create the correspondence in each 
layer in the form of multidimensional dot products. The 
results from each dot product are combined and used to 
update the weight vector.

The target in the image is oriented at an elevation 
angle of 15.32º and an azimuth angle of 268º. Figure 24 
shows the original input image (with the target high-

In this implementation of the MSC for SAR imagery, 
we are not yet taking advantage of the ridge orienta-
tion information; only ridge location is used. However, 
future work will incorporate this information to provide 
further discrimination capability, as was done with the 
MSC for panchromatic imagery. 

The shadow extraction algorithm attempts to find 
the darkest areas of the image. We use a simple extrac-
tion technique where shadow regions are identified by 
applying two low-pass filters and a threshold. The dark 
regions of the image are matched against shadow tem-
plates generated in Xpatch. More-advanced techniques, 
such as those found in Refs. 13 and 14, would enhance 
our capabilities to correctly identify and segment 
shadow shapes and improve the match between the 
Xpatch generated templates. However, even a coarse 
computation of the shadow region added valuable infor-
mation for classifying targets.

 SAR Results
The results obtained after 

applying the MSC algorithm 
to MSTAR11 data are pre-
sented in this section. Data 
were collected on several dif-
ferent target types, including 
a T-72 tank, a BMP2 infan-
try fighting vehicle, and a 
BTR-70 armored personnel 
carrier. In addition, large-
area natural clutter scenes 
were collected. Complex 
imagery—i.e., both magni-
tude and phase—is provided, 
but at present, only magni-
tude information is used in 
the SAR MSC algorithm.

In each example pre-
sented here, a T-72 3-D tank 
model is used to find a real 
SAR MSTAR T-72 tank 
embedded in backgrounds 
with varying clutter. The 
detection and multiple 
model stages, introduced 
earlier, have not yet been 
implemented for SAR. The 
SAR implementation of 
the MSC still operates in a 
winner-take-all mode; that 
is, the algorithm searches to 
find the single best match 
in the image. A full 360º in 
azimuth is searched using a 
2º-interval step size for all 

(a) (b)

(c) (d)

Figure 24. Iterations of MSC using scattering point and ridge features to identify the target in 
natural clutter. The red contours illustrate the forward superposition of the model into the image 
on each iteration. Convergence is achieved by the eighth iteration, as shown in panel d. (a) Embed-
ded target. (b) Second iteration. (c) Third iteration. (d) Eighth iteration. [Reproduced from Ref. 10, 
© Society of Photo-Optical Instrumentation Engineers (SPIE).]
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lighted) and three of the 
eight iterations of the MSC 
algorithm. Note that the 
correct target location is 
found after only two itera-
tions. The remainder of 
the time (five additional 
iterations) is spent resolving 
the azimuth angle and fine 
tuning the position esti-
mate. Convergence occurs 
at the eighth iteration after 
the MSC has searched 
through just 0.56% of the 
total state space (as defined 
by an exhaustive search). 
It correctly finds the target 
azimuth to be at 268º.

Example 2: Scattering Point 
and Ridge Matching in Man-
Made Clutter

Our second example 
embeds two different 
MSTAR T-72 target chips 
in a Sandia miniSAR image. 
The Sandia image was used 
to provide a more challeng-
ing background than was 
available with the MSTAR 
data set. It includes mul-
tiple vehicles in a parking 
lot. Both embedded target 
chips were taken at the same 
15.32º elevation but at two 
different azimuths, 50º and 
109º, respectively. MSC was 
run using scattering point 
and ridge features to find 
the target using the input 
T-72 tank model.

Figure 25 shows the result 
of the man-made back-
ground test. At the third 
iteration, the algorithm has 
focused on several vehi-
cles present in the scene, 
including the two MSTAR 
tank targets. By the fifth 
iteration, the algorithm 
has eliminated all but the 
two targets. The 12th itera-
tion shows the converged 
target match on the upper-
left target. The target was 

(a) (b)

Figure 26. Comparison of converged results obtained for the MSC algorithm with (b) and without 
(a) shadow features. The addition of shadows provided a final match within 1º of the true azimuth. 
[Reproduced from Ref. 10, © Society of Photo-Optical Instrumentation Engineers (SPIE).]

(a) (b)

(c) (d)

Figure 25. Scattering point and ridge matching in man-made clutter. The red contours illustrate 
the forward superposition of the model into the image on each iteration. Convergence is achieved 
by the 12th iteration as shown in panel d. (a) Original image. (b) Third iteration. (c) Fifth iteration. 
(d) Twelfth iteration. [Reproduced from Ref. 10, © Society of Photo-Optical Instrumentation Engi-
neers (SPIE).]
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All of the examples show how the MSC can locate and 
correctly estimate the pose of the targets in only a small 
fraction of the computations needed for a conventional 
brute force approach—under 1% for the panchromatic 
and under 10% for the SAR examples presented. (The 
apparent performance reduction for SAR is a result of 
the reduced state space as both elevation and scale are 
largely known a priori.)

Although the benefits of the GOF stage were not 
completely implemented for this article, we subsequently 
successfully applied it to a Research Program in Applied 
Neuroscience program where the MS-MSC algorithm 
was used to automatically detect and classify TV logos 
in random pictures downloaded from the Flickr website. 
An SVM classifier was trained using the GOF metrics 
calculated from a labeled training image previously 
processed by the MS-MSC algorithm. The SVM classi-
fier was able to successfully discriminate between good 
and bad matching results of the MSC with an accuracy 
of 89.5%. 

Our future work includes the incorporation of col-
lection-specific effects in our model templates for appli-
cations where support data on collection timing and 
geometry are known. Additional efforts in sparse repre-
sentation of both the model and the image are underway 
to enable larger numbers of simultaneously competed 
models and better performance on highly cluttered 
images. We are also continuing our investigation of 
GOF-based classification to attach confidences scores to 
the resultant matches as well as identifying sensitivities 
to partial occlusions.
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