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his expository article shows how some concepts in game theory might be 
useful for applications that must account for adversarial thinking and discusses 

in detail game theory’s application to sensor resource management.
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famously known as Nash equilibrium, which eventually 
brought him Nobel recognition in 1994. Another is 
Robert Aumann, who took a departure from this fast-
developing field of finite static games in the tradition of 
von Neumann and Nash and instead studied dynamic 
games, in which the strategies of the players and 
sometimes the games themselves change along a time 
parameter t according to some set of dynamic equations 
that govern such a change. Aumann contributed 
much to what we know about the theory of dynamic 
games today, and his work eventually also gained him 
a Nobel Prize in 2002. Rufus Isaacs deviated from the 
field of finite discrete-time games in the tradition of 
von Neumann, Nash, and Aumann (Fig. 1) and instead 
studied the continuous-time games. In continuous-
time games, the way in which the players’ strategies 
determine the state (or trajectories) of the players 
depends continuously on time parameter t according to 
some partial differential equation. Isaacs worked as an 
engineer on airplane propellers during World War II, and 
after the war, he joined the mathematics department of 
the RAND Corporation. There, with warfare strategy as 
the foremost application in his mind, he developed the 
theory of such game-theoretic differential equations, a 
theory now called differential games. Around the same 

HISTORICAL CONTEXT
Game theory, a mathematical approach to the analy-

sis of situations in which the values of strategic choices 
depend on the choices made by others, has a long and 
rich history dating back to early 1700s. It acquired a firm 
mathematical footing in 1928 when John von Neumann 
showed that every two-person zero-sum game has a maxi-
min solution in either pure or mixed strategies.1 In other 
words, in games in which one player’s winnings equal 
the other player’s losses, von Neumann showed that it is 
rational for each player to choose the strategy that maxi-
mizes his minimum payoff. This insight gave rise to a 
notion of an equilibrium solution, i.e., a pair of strategies, 
one strategy for each player, in which neither player can 
improve his result by unilaterally changing strategy. 

This seminal work brought a new level of excitement 
to game theory, and some mathematicians dared to 
hope that von Neumann’s work would do for the field 
of economics what Newtonian calculus did for physics. 
Most importantly, it ushered into the field a generation 
of young researchers who would significantly extend the 
outer limits of game theory. A few such young minds 
particularly stand out. One is John Nash, a Princeton 
mathematician who, in his 1951 Ph.D. thesis,2 extended 
von  Neumann’s theory to N-person noncooperative 
games and established the notion of what is now 
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game, although actually finding 
equilibrium is a highly nontrivial 
task (recall that Nash’s proof of 
his theorem is a nonconstructive 
proof). There are a number of heu-
ristic methods of estimating and 
finding the equilibrium solutions 
of N-person games, but in our 
research, we have been developing 
a new method of approximately 
and efficiently solving N-person 
games using Brouwer’s fixed-point 
theorem (a crucial ingredient in 

Nash’s doctoral thesis). In this article, we show how such 
methods can be used in various applications such as opti-
mally managing assets of a sensor.

Finally, we sketch out a software architecture that 
brings the aforementioned ideas together in a hierarchi-
cal and dynamic way for the purpose of sensor resource 
management—not only may this architecture validate 
our ideas, but it may also serve as a tool for predicting 
what the adversary may do in the future and what the 
corresponding defensive strategy should be. The archi-
tecture we sketch out is based on the realization that 
there is a natural hierarchical breakdown between a 
two-person game that models the interaction between a 
sensor network and its common adversary and an N-per-
son game that models the competition, cooperation, and 
coordination between assets of the sensor network. We 
have developed a software simulation capability based on 
these ideas and report some results later in this article. 

NEW APPROACHES

Dynamic Two-Person Games
Many current battlefield situations are dynamic. 

Unfortunately, as important as von  Neumann’s and 
Nash’s equilibrium results of two-person games are, they 
are fundamentally about static games. Therefore, their 
results are not readily applicable to dynamic situations in 
which the behavior of an adversary changes over time, 
the game is repeated many or even an infinite number 
of times (repeated games), the memory of players add 
dynamics to the game, or the rules of the game themselves 
change (fully dynamic games). It is true that there are 
theorems, such as folk theorems, that prove that an infi-
nitely repeated game should permit the players to design 
equilibriums that are supported by threats and that have 
outcomes that are Pareto efficient. Also, at the limit case 
of the continuous-time case, instead of discrete time, we 
may bring to bear some differential game techniques, 
which are inspired mostly by well-known techniques of 
partial differential equations applied to the Hamilton–
Jacobi–Bellman equation, as pioneered by Rufus Isaacs. 
However, unfortunately, these approaches do not read-

time, John Harsanyi recognized the imperfectness and 
incompleteness of information that is inherent in many 
practical games and thus started the theory of uncertain 
games (often also known as games with incomplete 
information); he shared a Nobel Prize with Nash in 1994.

CURRENT RELEVANCE AND THE NEED FOR NEW 
APPROACHES 

Despite their many military applications, two-person 
games, which were researched extensively during the 
two-superpower standoff of the Cold War, have limi-
tations in this post-Cold War, post-September 11 era. 
Indeed, game theory research applied to defense-related 
problems has heretofore mostly focused on static games. 
This focus was consistent with the traditional beliefs that 
our adversary has a predefined set of military strategies 
that he has perfected over many years (especially during 
the Cold War) and that there is a relatively short time 
of engagement during which our adversary will execute 
one fixed strategy. However, in this post-September 11 
era, there is an increasing awareness that the adversary 
is constantly changing his attack strategies, and such 
variability of adversarial strategies and even the vari-
ability of the game itself from which these strategies 
are derived, call for the application of dynamic games 
to address the current challenges. However, although 
solutions of any dynamic two-person game are known to 
exist by what is commonly termed “folk theorem,”3 the 
lack of an efficient technique to solve dynamic games in 
an iterative fashion has stymied their further application 
in currently relevant military situations. In our research 
in the past several years, we have developed such an 
online iterative method to solve dynamic games using 
insights from Kalman filtering techniques.

Furthermore, although the interaction between 
offense and defense can be effectively modeled as a 
two-person game, many other relevant situations—
such as the problem of allocating resources among dif-
ferent assets of a sensor system, which can be modeled 
as an N-person game—involve more than two parties. 
Thanks to Nash’s seminal work in this area,2 we know 
an equilibrium solution exists for any static N-person 

Figure 1.  John von Neumann, John Nash, Robert Aumann, and John Harsanyi—pioneers of 
two-person, N-person, dynamic, and uncertain games, respectively.
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adversarial intent may next be, governed by a model of adversarial strategy transi-
tion (operator k – 1 in the figure), and the most recent measurement of the adver-
sarial intent, given by another model of how a decision node may process the sensor 
node data to map the measurement to a given set of adversarial strategies (operator 
k – 1 in the figure). However, unlike Kalman filtering, a third factor is also balanced 
with the prediction of adversarial strategy and the measurement of adversarial strat-
egy: Nash equilibrium strategy for the adversary (the strategy that the adversary will 
most likely adopt without any further insight into the friendly entity’s intent). Math-
ematically, this insight translates into adding a third term to the famous Kalman 
filtering equations. We start with the famous Kalman filtering equations: 
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where st
tt  = estimated strategy at time t; st = true strategy at time t; 

, ;HOM Nt t t 1! / / +^ h models strategy transition; t/  = set of strategies at time t; 
, ;HOM Nt t t! / / ^ h models intelligence analyst’s understanding of enemy strat-

egy; Gt = game at time t; N(Gt) = a Nash equilibrium solution for the game Gt at 
time t; ct = a Nash equilibrium solution discount factor for the game Gt at time t 
and measures how much the analyst’s reasoning should be trusted; Pt

t  stands for the 
covariance of the moving object and Kt stands for its Kalman gain; and HOM stands 
for the group of homomorphisms; and R stands for the set of real numbers. The fol-
lowing main equation,
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ily give insight into how to 
select and adapt strategies as 
the game changes from one 
time epoch to the next, as 
is necessary in order to gain 
battlefield awareness of all of 
the game’s dynamics.

Therefore, on the basis of 
our experience in Kalman 
filtering techniques for esti-
mating states of moving tar-
gets, we propose a different 
approach to solving dynamic 
games in order to help figure 
out the intent of an adver-
sary to determine the best 
sensing strategies. The key 
observation in our approach 
is that the best estimate of 
the adversarial intent, which 
continues to change, can be 
achieved by combining the 
prediction of what the adver-
sarial intent may next be, the 
most recent measurement 
of the adversarial intent (as 
in Kalman filtering), and a 
Nash equilibrium strategy for 
the adversary (the strategy 
that the adversary will most 
likely adopt without any fur-
ther insight into the friendly 
force’s intent). Furthermore, 
figuring out the adversary’s 
intent makes it possible for 
a sensor network to select 
the best sensing strategy in 
response to this adversarial 
intent and helps achieve 
overall situational awareness. 

Our approach is inspired 
by our experience with 
Kalman filtering, as shown in 
Fig. 2, where the y axis rep-
resents adversarial strategy 
[note that the pure strategies 
(S1, …, S9) on the y axis are 
on the discrete points and 
that the in-between points 
correspond to the mixed 
strategies] and the x axis 
represents time. As in the 
Kalman filtering paradigm, 
our approach tries to find the 
right balance in combining 
the prediction of what the 
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Figure 2.  Filtering techniques for dynamic games. Cov., covariance.
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proof. Therefore, we need to further investigate innova-
tive approaches to solve N-person games, which we will 
use to model cooperation among sensors or systems of 
sensors. Our key innovative idea for N-person games is 
not to resort to some heuristic approach in order to solve 
N-person games, as is usually done for static N-person 
games, but rather to use the techniques inspired by Brou-
wer’s fixed-point theorem used in Nash’s original Ph.D. 
thesis. We note that Nash’s arguments rest on the follow-
ing equations, which describe a transformation from one 
strategy , , , ,s s s sn1 2 3 f = ^ h to , , , ,s s s sn1 2 3 f =l l l l l^ h by 
the following mapping:
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where i = max(0,pi() – pi());  is an n-tuple of 
mixed strategies; i is player i’s th pure strategy; pi() 
is the payoff of the strategy  to player i; and pi() is the 
payoff of the strategy  to player i if he changes to th 
pure strategy.

We note that the crux of Nash’s proof of the exis-
tence of equilibrium solution(s) lies in this fixed theorem 
(shown in Fig. 3) being applied to the following mapping 
T  " l. By investigating the delicate arguments that 
Nash used to convert these fixed points into his famous 
Nash equilibrium solutions, we can use these arguments 
to construct an iterative method to find the approximate 
solutions of N-person games. One possible approach we 
have in mind is to first start from a set of sample points 
in the space of strategies and compute:

	 C
T< <
< <


=^ ^h h

,	 (9)

where C() measures the degree to which a strategy  
is changed by the map T  " l. We can then look 
for a strategy , where C() is close to 1, as the possible 
initial search points to look for equilibrium points to 
start such an iterative search process. Furthermore, we 
have incorporated such techniques into a recent work 

shows how st
tt , the next estimate of the adversarial intent 

given by its next strategy, is a combination of the follow-
ing three terms:

•	 st
t
t1 1– – t : prediction of the next adversarial strat-

egy given strategy transition model t,

•	 K s s–t
t

t
t t

t
t1 1

1
1– –

–
–   t` j: measurement of the 

current adversarial strategy given the model of how 
an intelligence analyst would process sensor mea-
surement data, and

•	 c P N Gt t
t

t
1–` ^j h: Nash equilibrium tempered by a 

discount factor, c Pt t
t^ h.

Furthermore, the next two equations describe how 
uncertainty of adversarial strategy given by the covari-
ance term Pt

t^ h and Kalman gain (Kt) grow under this 
dynamic system. We have empirical verification of the 
effectiveness of these techniques through extensive 
Monte Carlo runs, which we reported in Ref. 4, and we 
plan to solidify this theory of our filtering techniques 
for dynamic games to present 
a practical and computation-
ally feasible way to understand 
adversarial interactions for future 
applications. 

Solving N-Person Games
Unfortunately, there is no 

known general approach for 
solving N-person games because 
Nash’s famous result on equi-
librium was an existence proof 
only and not a constructive 

x
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C
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D

Figure 3.  Brouwer’s fixed-point theorem: A continuous function 
from a ball (of any dimension) to itself must leave at least one 
point fixed. In other words, in the case of an N-dimensional ball, 
D, and a continuous function, f, there exists x such that f(x) = x. 
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cation with each other, it allows us to use the theory 
of bargaining, which is well understood in the game 
theory community, to model the cooperation and coor-
dination among sensors to achieve the most optimal 
solution (Pareto optimal). The optimal solution is not 
always achievable in noncooperative games, which we 
will use when the sensor nodes cannot trust each other 
as readily. 

APPLICATIONS FOR SENSOR RESOURCE 
MANAGEMENT

Figure 5 shows how a possible approach could work. 
There are three levels at which game theory is being 
applied. First, there is a local two-person game that is 
defined by a set of sensing strategies for each sensor and 
the adversary who is aware of being sensed and thus 
tries to elude such sensing (which is being implemented 

by Chen and Deng,5 which has to date the best com-
putational complexity result on the number of players 
and strategies for computing fixed points of direction 
preserving (direction-preserving maps are discrete 
analogues of continuous maps; see Fig.  4). We have 
developed a JAVA program that efficiently implements 
these new techniques (see Table  1 for the current 
computational time on one single dual-core PC run-
ning at 2 GHz given different numbers of players and 
strategies with various algorithmic complexities) and 
plan to further this technique for future applications 
in order to adjudicate resources among N sensors and 
systems of sensors. The advantage of using the Nash 
equilibrium solution is that it is an inherently safe solu-
tion for each actor (sensors or players) because it gives 
a solution that maximizes minimum utility of using 
each sensor given the current conditions and is robust 
against future changes in conditions. Moreover, when-
ever actors can trust and establish effective communi-

Table 1.  Improved complexity on computing fixed points

Dimensions Size Complexity Previous solve time (s) New solve time (s)

3 5 × 6 × 5 36 0.015 0.000

5 6 × 6 × 6 × 6 × 6 1,296 2.532 0.406

3 200 × 200 × 200 40,400 26.922 1.109
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Figure 5.  Game theory at three levels (global, tactical, and local). E/O, electro-optical; HRR, high-range resolution radar; MTI, moving 
target indicator.
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where the first and second row of each payoff matrix cor-
responds to the Blue force act and wait strategies, respec-
tively, and the first, second, and third columns correspond 
to the Red brigade attack, defend, and deceive strategies, 
respectively. For example, the first row of A(offensive) 
reflects that if an offense-minded adversary is attacking 
(column 1), a sensor should be in act mode (row 1) to 
sense the enemy’s action, and therefore there should be a 
high payoff for using the sensor at the right time, result-
ing in a payoff of 5. However, if a sensor is in act mode 
(row 1) when the offense-minded enemy is defending 
(column 2), there is a sensor resource that gets wasted, 
resulting in a payoff of –2. If the enemy is “deceiving” 
(neither fully attacking nor defending, as in column 3), it 
would still be of some use to put the sensor in act mode 
(row 1), resulting in a payoff of 1. The other cases are 
reasoned and modeled in a similar way. As described in 
Ref. 6, the equilibrium solution provides our next sensor 
decision (action or no action) as well as the probabilistic 
assessment of enemy strategy. If the decision is positive 
(action), we then use the level II valuation function to 
select a sensor mode. The assessed enemy strategy is used 
to predict the enemy strategy for the next time step. Such 
reasoning was put into the dynamic game module in the 
simulation architecture shown in Fig. 6. 

We conduct a number of Monte Carlo simulations 
in which the initial enemy strategy is selected either 
randomly or based on the enemy unit composition. In 

by Game-theoretic Robust 
Anticipatory Behavior-
leaning Individual Tracking 
Sensor Resource Manager, 
noted as GRAB-IT SRM 
in the figure). Then, among 
these sensors operating in 
a same area of interest, or 
among the systems of sen-
sors operating in different 
areas of interest, there is an 
N-person game to allocate 
resources. Finally, as these 
local sensors or systems of 
sensors begin to infer the 
intents of adversaries, such 
knowledge may coalesce to 
define a global two-person 
game wherein the Blue force 
may be fighting against 
an overarching adversarial 
leader who is coordinating his subordinates’ activities 
against the Blue force. None of these games are easy 
to define—they are all dynamic and uncertain (other-
wise known as games of incomplete information), and 
such games will depend on many factors with inher-
ent variabilities (environmental as well as human). 
And even if these games are defined, it is nontrivial 
to solve them. However, we believe our aforementioned 
new approaches in solving two-person, N-person, and 
dynamic games should overcome such difficulties and 
allow a game-theoretic approach to be effective in man-
aging resources against adaptive adversaries.

We implemented a simple multilayer version of this 
in the software simulation environments below. As a 
finite game, it is defined by a set of strategies for each 
player and the payoff matrix, representing numerically 
how valuable each player views a particular set of 
strategy choices. The situation modeled here between 
the Blue and Red forces is described as a two-person, 
zero-sum game (in future work we will consider 
extensions to non-zero-sum games). Because the Blue 
force is uncertain of the enemy type, we define a game 
between the Blue force and each possible adversary 
type (offensive, defensive, and deceptive). To simplify 
the simulation and ensuing analysis without losing 
generality, we will assume that each enemy type has 
the same set of strategies. Namely, we have (for this 
simulation):

•	 Blue strategies = {act, wait}

•	 Red brigade types = {offensive, defensive, deceptive}

•	 Red strategies = {attack, defend, deceive}

•	 Payoff matrix:

Bayesian
response
generator

Game
solver

L1/L2/L3
SRM 

Simulation Module

Dynamic Game Module

(Unit decom-
position, Red
strategy)

(Blue strategy,
Red strategy)Enemy

dynamic
module

Strategy
dynamic
module

Act/wait

Predicted
Red strategy

Updated
Red
strategy 

Metric 
Generator

Metric
generator 

Red
strategy

Blue
strategy

Ground
truth 

Sensor mode

Unit decomposition

Analyst
reasoning
module

Figure 6.  Putting game theory into the sensor resource allocation decision. L1/L2/L3, level 1/
level 2/level 3 data fusion.
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(sensor mode and strategies, respectively) only take on 
the integral values.]

In each test, we also compare the game solver with 
a heuristic algorithm where the sensor action/no-action 
decision was assigned on the basis of a prespecified 
probability. We have found that in general, the 
performance of the heuristic solver is significantly worse 
than the performance of the game solver (the heuristic 
solver determines when to or when not to use the 
sensor stochastically with the probability at x%). This 
is understandable because the enemy strategy adapts to 
our sensor actions and changes accordingly, and thus it 
is much more difficult to assess enemy’s strategy without 
an interactive game-theoretic strategy analyzer. Figure 8 
shows the overall performance comparison between the 
heuristic approach and the game solver approach. In this 
test, we set the size of time window for enemy strategy 
policy at 10, and the decision threshold for change is 80% 
(i.e., our sensor will need to be on greater than 80% of 

each trial, we conduct 100 time steps where a dynamic 
sensor decision is made at each step. In the simulation, 
we try three scenarios, with each consisting of a dif-
ferent composition of units (offensive, deceptive, and 
defensive). In the simulation, we run 50 Monte Carlo 
trials for each scenario. In each scenario, the window 
size for sensor action is set at 10 and the decision 
threshold is set differently in each test. For example, 
Fig. 7 shows the results of a typical trial with thresh-
old equal to 40%. Figure 7a shows that approximately 
36% of the time sensor is off (mode 0) and the rest 
sensor is on (mode 1 for ground moving target indica-
tor, mode 2 for HRR on unit 1, and mode 3 for HRR on 
unit 2). Figure 7b shows that in this trial, the enemy’s 
strategy has changed from 1 (offensive) to 2 (defense), 
then back to 1, then later to 3 (deceptive), and then 
back to 1. Figure 7b also shows that approximately 44% 
of the time, the most likely strategy of our assessment 
is the true one. [Note: in Figs. 7a and 7b, the y values 
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or a cooperative game (when sensors can communicate 
effectively enough to enter into a binding agreement). 
The Nash solution(s) of such games provides each sensor 
a strategy (either pure or mixed) that is most beneficial 
to itself and to its neighbor, and this strategy can then 
be translated into its most optimal sensing capability, 
providing timely information to the tactical users of the 
sensor network.

Beyond this proof of concept, we believe game theory 
has the potential to contribute to a myriad of cur-
rent and future challenges. It is becoming increasingly 
important to estimate and understand the intents and 
the overall strategies of the adversary at every level in 
this post-September 11 era. Game theory, which proved 
to be quite useful during the Cold War era, now has 
even greater potential in a wide range of applications 
being explored by APL, from psychological operations 
in Baghdad to cyber security here at home. We believe 
our approach—which overcomes several stumbling 
blocks, including the lack of efficient game solver, the 
lack of online techniques for dynamic games, and the 
lack of a general approach to solve N-person games, just 
to name a few—is a step in the right direction and will 
allow game theory to make a game-changing difference 
in various arenas of national security.
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the time in the preceding time window of size 10 before 
the enemy will potentially change strategy). Note that 
in Fig. 8, we display both the mean and the 1-standard-
deviation interval for both the Pcd and the Pcc. The 
x axis represents the probability of sensor action for the 
heuristic approach. For example, x% represents that for 
x% of the time without the game-theoretic reasoning, 
the sensor is being used. The corresponding y values 
represent that corresponding Pcc and Pcd of such action. 
The horizontal lines represent the Pcc and Pcc that are 
achieved when the game-theoretic approach is being 
incorporated. Figure 8a represents the case in which the 
adversary is of the offensive type. Figure 8b represents 
the case in which the adversary is of the defensive type. 
For the offensive adversary, the game-theoretic approach 
outperformed in most cases. For the defensive adversary, 
the game-theoretic approach seems to outperform any 
heuristic methods. 

CONCLUSIONS
We have shown that game-theoretic reasoning can 

be used in the sensor resource-management problem to 
help identify enemy intent as the Blue force interacts 
and reacts against the strategies of the Red force. We 
have laid down a solid mathematical framework for our 
approach and built a Monte Carlo simulation environ-
ment to verify its effectiveness. Our approach uses game 
theory (two-person, N-person, cooperative/noncoop-
erative, and dynamic) at different hierarchies of sensor 
planning, namely at the strategic/global level and the 
tactical/local level, treating each sensor node as a player 
in a game with a set of strategies corresponding to its 
set of sensing capabilities (location, geometry, modality, 
time availabilities, etc.) whose respective effectivenesses 
are numerically captured in a payoff function. As these 
sensors (players) in the sensor network come into the 
vicinity of each other (spatially, temporally, or both), 
they form either a noncooperative game (when the com-
munication between sensors is minimal or nonexistent) 
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