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INTRODUCTION
Persistent video surveillance systems are used rou-

tinely for retrospective analysis of an attack. By using 
sophisticated facial recognition capabilities, surveillance 
systems might also be used to identify persons of interest 
at portals. The challenge is to use these systems to detect 
threatening activities by unknown actors in sufficient 
time to proactively respond to the threat and prevent an 
attack. The ability to meet this challenge requires posing 
different sets of questions and developing approaches to 
answer those questions. We pose two complementary 
questions: “If I know what activities I am looking for, 
how do I search for them?” and “If I do not know what I 
am looking for, to what should I pay attention?”

The need for tools for reasoning about databases of 
temporally labeled actions and transactions is a gen-
eral need for many persistent surveillance applications 
including video, distributed sensor network, and elec-
tronic communication data streams. Event graph1 and 
probabilistic Petri net2 approaches for multiagent activ-
ity recognition have been described for video analysis. 
We propose a two-pronged iterative analysis approach 
including an extension of the event graph representa-
tion for detecting targeted group behavior and analysis 
of routine behaviors. Although we discuss in this article 
the application of these approaches to video analysis, we 
explicitly decouple the analysis tools from the feature 
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extraction of the raw data and emphasize the formu-
lation of models that are easily created, modified, and 
understood by the analyst. This “sensor-independent” 
implementation allows the algorithms and tools that are 
developed to be incorporated into non-video and multi-
modal persistent surveillance systems. 

A notional analysis hierarchy is shown in Fig. 1 for a 
persistent video-surveillance application. Other analo-
gous layers can be defined for other surveillance applica-
tions such as cell phone or e-mail communications. The 
vast quantities of raw video data acquired are system-
atically reduced by each layer of processing. Each suc-
cessive layer extracts increasing abstractions of the data 
but necessarily loses information and introduces errors 
and uncertainty.

The image segmentation layer separates raw pixels 
into regions that share sufficient similarity (e.g., color, 
texture, temporal continuity) to be considered distinct 
from each other. Strong shadows and occlusions are two 
factors that may cause segmentation errors because the 
boundaries of the object are ambiguous. The entity clas-
sification and identification layer classifies the image/
video regions as a physical entity such as a building, 
forest, vehicle, or person. Some systems may go as far as 
to identify the particular object, such as a specific indi-
vidual, through feature matching to a database. Once 
an entity is classified, its location can then be tracked 
over time. The previous uncertainties of segmentation, 
classification, and identification are propagated into the 
tracking algorithms, leading to continuity and ambigu-
ity errors of the tracks. The spatiotemporal activity and 

event detection layer remains a particularly active area 
of research and is focused on identifying the activity of 
individual entities in the video, with uncertainties gen-
erated in the accuracy of the activity interpretation. 

Although not every persistent surveillance system 
includes the layers discussed, these layers do illustrate 
the hierarchy of data abstractions required to ultimately 
yield a database of actions and transactions, potentially 
from a heterogeneous suite of sensors, each tagged with 
data fields such as entity classification and identification; 
activity classification, start time, and end time; and a 
collection of relevant uncertainty measures. Although 
the types of activities and their detectable attributes and 
confidences will depend on the particular sensor system, 
the approaches for reasoning about the detected activi-
ties can be general.

APPROACH
In many cases, the analysis of the actions of indi-

viduals is insufficient to discriminate threatening activ-
ity from benign activity. The analysis of the activity of 
groups of individuals, with requirements for team coor-
dination, can potentially increase the ability to detect 
larger threats against the background of normal every-
day activities. The top three layers in Fig. 1 represent 
our two complementary approaches to provide tools for 
analysts to interactively and iteratively build and refine 
queries against a database or streaming data to identify 
complex activities that may pose a threat. In the first, 
for targeted adversary goals, we develop a model of the 
expected group activity and then search the data for 
matches. In the second, we develop approaches to detect 
and describe routine behavior to understand the activity 
patterns of both our adversaries and the general popula-
tion among which they operate.

GROUP ACTIVITY QUERY
The top layers in Fig. 1 are expanded upon in Fig. 2. 

Once the analyst selects a targeted adversary goal and 
estimates the constraints, a model of hypothesized group 
activity can be developed through a planning analysis 
from the perspective of the adversary. The goal can be 
decomposed into subgoals, which can be further decom-
posed into tasks and subtasks. Each task or subtask is 
then assigned to a role to be assumed by an entity (e.g., 
person, vehicle, or location). We describe a task involv-
ing only one entity as an action by that entity, and a 
task involving more than one entity as a transaction 
between those entities. The detect group activities layer 
matches the roles and tasks in the specified group activ-
ity against entities and actions/transactions extracted 
by the abstract data layers for the given sensor system. 
By broadly defining an entity to be a person, vehicle, or 
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Figure 1. A notional processing hierarchy for the analysis of per-
sistent video-surveillance data. 
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location, the specified group activity is general to many 
applications and includes spatial relationships of people 
and vehicles with specific geographic locations, regions, 
or boundaries.

The specified group activity includes more details than 
are represented in Fig. 2. Most plans for coordinating 
multiple people toward a common goal have timing con-
straints. Some tasks must precede other tasks, and some  
tasks must be performed simultaneously. In addition, there  
are contingencies, with optional tasks substituting for 
other tasks. While multiple roles in the plan may be taken 
by one entity, other roles may require distinct entities.

The matching of the specified group activity to the 
action/transaction database presents several challenges. 
The computational complexity of the search for matches 
must be carefully managed, as the databases and stream-
ing rates for persistent surveillance systems can grow 
large. This complexity is compounded by the need for 
inexact matching of the specification to the database, 
due to errors both in the specification and the data-
base. The errors in the specification result from incom-
plete knowledge of the adversary’s true constraints and 
options. The errors in the database include the abstrac-
tion errors mentioned but also include errors of omission 
because some activities may not be observed.

We focus the development of approaches for detect-
ing expected group transactions on an open-air drug-
deal scenario, inspired by an episode of HBO’s dramatic 
series The Wire. The adversary’s goal in this scenario is 
to complete an exchange of drugs for money. There are 
several constraints on execution of this conspiracy. First, 
to make detecting a transaction more difficult for the 
police, both the money and drugs must not be exchanged 
between the same two people. Second, to prevent theft, 
the customer should not be able to observe where, or 
with whom, the drugs are stored. By distributing the 

transactions over both time 
and space and by involving 
multiple individuals, the con-
spirators make it difficult for an 
observer to understand what is 
happening. The detection task 
is made more difficult against 
the background of everyday 
transactions of residents in 
the neighborhood, which, on 
a single-transaction scale, are 
indistinguishable from those 
transactions of the drug deal.

TEST DATA
We have developed a simu-

lation (see Box 1 and Fig. 3) 
running in the Virtual Battle- 
space 2 (VBS2) multiuser 

gaming environment to generate data for testing and 
evaluating our approaches and algorithms. The use of a 
gaming simulation as a data source offers many benefits:

•	 The gaming environment can accommodate both 
non-player characters (NPCs), with their behaviors 
controlled by finite-state-machine (FSM) models, 
and human players, with unpredictably creative 
behavior.

•	 A simulation gives control over the number of exe-
cuted group activities and the complexity and scale 
of background individual activity.

•	 A simulation provides a complete symbolic record of 
all activity, eliminating the need for developing or 
selecting data abstraction software.

•	 Uncertainties inherent in sensing and data abstrac-
tion (e.g., noise, errors, and omissions) can be mod-
eled as degradations of the accuracy and confidence 
of the ground-truth activity.

All of our experiments to date have used only the 
simulated activity of NPCs. Human players will be intro-
duced later to evaluate the robustness of the inexact 
matching approaches we are developing. We define the 
behavior of each NPC using an FSM, with the transac-
tions between NPCs emerging based on the individual 
responses. We have defined FSMs to produce the drug-
deal scenario, as well as several background behaviors 
that draw from the same set of transactions within the 
drug deal: a flower purchase and giving scenario, a hot 
dog vending and purchase scenario, and a friendly wave.

GROUP ACTIVITY SPECIFICATION
While developing our approach for specifying tar-

geted group activities, we seek an intuitive and expressive 
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BOX 1. SIMULATING GROUP ACTIVITY IN VIRTUAL 
ENVIRONMENTS

The multiuser virtual environments used to create online 
simulated-world games are also used for training, mission 
rehearsal, telepresence, visualization, and data generation. 
Game designers generate relatively complex behavior for 
NPCs—the computer-controlled agents in the game—with 
modeling constructs such as FSMs and behavior-based con-
trol. To generate coordinated group activities for our test 
database, we selected the VBS2 environment (Fig. 3a), used 
widely by the U.S. military for training, with NPC behavior 
controlled by FSMs.

An FMS captures a behavior model with a preselected set 
of internal states, such as waiting, eating, and sleeping. The 
FSM switches between these states according to rules gov-
erned by the current state, possible next states, external 
conditions, and chance. By carefully defining FSMs control-
ling the behavior of two NPCs, we can orchestrate desired 
transactions between the NPCs. Although we specify that 
an NPC is able to engage in a transaction, we do not know 
exactly when, for how long, or with whom the transaction 
will take place. We can approximate personality types by 
modifying the probability of transitioning between states 
for individual NPCs so that different NPCs prefer differ-
ent activities as well as prefer to assume different roles in 
an activity.

Whereas generating desired individual actions of NPCs is 
relatively simple with FSMs, generating coordinated group 
transactions is not as simple. Behavior prescription in 
modern game design is egocentric, i.e., the atomic unit of 
activity is that of a person or a team with the environment 
(objects, terrain). No modeling construct explicitly repre-
sents a transaction; instead, each NPC’s participation in a 
transaction is coded separately, with stimulus defined in one 
agent and the response in another. Group activity emerges 
as a result of synchronicity between individual NPC state 
transitions. As an example of different approaches to 
transaction prescription, contrast panels b and c of Fig. 3. 
Figure 3b shows the desired transactions between roles in 
our simulation. Figure 3c shows the expanded FSMs of the 
stash, runner, and cashier roles and the implied transactions 
between self-centered states and state transition criteria 
across the roles. As the number and complexity of the FSMs 
increase, the role transaction diagram ideally would be gen-
erated by yet-to-be-developed consistency-checking algo-
rithms to validate the design of the FSMs and their transac-
tions. A consequence of implicitly specifying transactions is 
lack of direct control of the transaction frequency. Transac-
tion frequency is moderated by three interdependent fac-
tors: FSM state-transition probability, resource/counterpart 
availability, and duration of transaction. We achieve the 
desired overall transaction rate by iteratively customizing 
these factors.

Figure 3. (a) An instant during the VBS2 simulation, with individuals tagged with states and transitions. (b) Transaction-ori-
ented representation of group transactions between the roles of customer (Cu), cashier (Ca), runner (Ru), stash (St), hotdog 
vendor (Hv), and flower vender (Fv). See Box 2 for detailed descriptions of the transactions. (c) Implied transactions (shown as 
large arrows) between states in one FSM and satisfying state transition criteria in other FSMs.
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notation of the goal–task–role decomposition shown in 
Fig. 2, along with the temporal constraints and relation-
ships of the tasks. By leveraging analyst familiarity with 
graphical representations of social networks, we express 
the task–role relationships as a graph, with nodes rep-
resenting individuals and edges representing actions 
(an edge from a node to itself) or transactions (an edge 
between nodes). The specified transaction network for 
our drug-deal scenario is shown in Fig. 4a. We specify 
that the customer pays the cashier, the cashier signals 
the runner, the runner goes to the stash, and the runner 
gives the drugs to the customer. The transaction net-
work shows what (and potentially where) transactions 
must take place but does not show when. 

The temporal constraints are specified by using 
another graph, a simple temporal network3 (STN) 
(Fig. 4b). Each node-pair in the STN represents an 
action/transaction edge in the transaction network. The 
left node in the node-pair represents the beginning of 
the activity and the right node, the end of the activity. 
The directed edges in this graph indicate precedence, 
with the arrow pointing from the preceding activity to 
the following activity. The minimum and maximum 
allowable time intervals (in seconds) are shown as labels 
on the edges and node-pairs. Figure 4b specifies that 
the customer payment to the cashier is the first transac-
tion, and the runner delivering to the customer is the 
last transaction. The lack of an edge between transac-
tions B and C indicates that their relative ordering is 
not specified: if the runner anticipates the drug order, he 
may visit the stash before getting a confirmatory signal 
from the cashier.

The temporal relations described by Allen and Fergu-
son4 and used by Hongeng and Nevatia1 do not include 
numerical temporal constraints. Hongeng and Nevatia 
mention the potential expressive power of numerical 
temporal constraints while deferring implementation 
due to representation and algorithmic complications.1 In 
an application with a large number of transactions, these 
numerical temporal constraints are critical in pruning 
the search space of the query. If one activity is specified 
as preceding another activity without any constraint on 
the time lag, every pair of activities must be evaluated, 
resulting in an explosion of both returned matches and 
search time as the database size increases.

We have implemented the capability to specify a 
group activity in our prototype Group Activity Network 
Analysis (GANA) software, leveraging APL software 
previously developed for rapid, iterative query refinement 
against a social-network database. This software has 
extensive user-centered capabilities. The first is ontol-
ogy-assisted queries (see Box 2 and Fig. 5), enabling the 
user to construct a group activity specification in terms 
of problem-specific concepts that expands into queries 
against the full set of relevant database fields. Another 
capability is the direct interaction with the analyst by 
using graphs, with interactive visual construction of 
graph queries, and return of database matches as graphs 
(Fig. 6). Unseen by the user, GANA generates textual 
database queries (e.g., structured query language or 
“SQL”) directly from the graphical representations cre-
ated by the user, executes the query against the database, 
and processes the returned records of matching activity 
for displays as graphs.

The group transaction network and STN form the 
basis for our group activity detection approach. We 
are currently addressing the challenges of robust group 
activity detection, including:

•	 Data abstraction errors that corrupt otherwise 
matching database information

•	 Individuals or activities not being observable by the 
data collection system

•	 Alternative paths to accomplishing the same tar-
geted adversary goal

•	 Incorrect assumptions resulting in partial mis-
matches of the transaction network and/or STN

The potential sources of detection error are in both 
the data abstraction and the activity analysis, suggest-
ing a consistent uncertainty management approach 
across the layers. The analyst is permitted to assign mea-
sures of uncertainty to each part of the activity speci-
fication. When the uncertainty management is fully 
implemented, the analyst will be able to rapidly screen 
surveillance data by iteratively posing queries of varying 
specificity and then sorting returned matches by an inte-
grated measure of overall (data abstraction and activity 
specification) uncertainty.
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Figure 4. A specified group activity comprises (a) a group activ-
ity network of individuals (nodes) and transactions (edges) and 
(b) the constraint STN. The temporal constraints are expressed as 
allowable time intervals (in seconds) for di, the duration of, and 
Δtij, the delays between, the transactions. For example, the cus-
tomer (Cu) paying the cashier (Ca) is transaction A. This transac-
tion takes up to 5 s and is followed up to 10 s later by the cashier 
signaling (B) the runner (Ru) to deliver drugs to the customer.
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BOX 2. ONTOLOGY-ASSISTED QUERY

The explicit and expressive semantics of an application 
area’s concepts, together with their relationships repre-
sented through logical formalisms and inference, constitute 
a knowledge representation known as an ontology. Ontolo-
gies allow automated processing of data and information in 
a logical, well understood, and predictable way. In the drug-
deal scenario there are roles of customers, cashiers, runners, 
and stashes, and the relationships among those roles are the 
transactions pays, signals, givesTo, and meetsWith. In GANA 
we use ontology-assisted queries to visually explain the 
defined concepts and relationships to the user to facilitate 
graph query construction and to enable automated expan-
sion of queries based on the ontology. 

One semantic construct GANA takes advantage of is the 
subsumption semantic relation, i.e., the is-a relation in 
knowledge representation, to assist in query construction 
and query execution. Subsumption in classes means that an 
instance of the subsumed class can be used in any place that 
an instance of the subsuming class can be used. For example, 
an instance of a woman can be used anywhere an instance 
of a person can be used within a system, because a woman 
is a person. In the GANA drug-deal scenario there can be 
a meetsWith transaction, a givesTo transaction, and a pays 
transaction, each of which describe parts of a drug-deal sce-
nario and are represented by a number of edges in the ontol-
ogy graph. In an ontology we represent these transactions as  
successively more specific or specialized versions of kinds 
of transactions through the subsumption relationship. 
Therefore, a givesTo transaction is more specific or special-
ized than a meetsWith transaction, and a pays transaction 
is more specific or specialized than a givesTo transaction. 
Stated another way, a pays transaction is-a givesTo transac-
tion, and a givesTo transaction is-a meetsWith transaction 
(Fig. 5a). By using subsumption, GANA can assist the user 
in exploring (Fig. 5b) and visually constructing (Fig. 5c) a 
desired query, or it can automatically execute an appropri-
ately expanded set of queries that leverage the semantic 
information encoded in the ontology. 

Another semantic construct GANA will take advantage of 
is the symmetry semantic relation. Symmetry means that 
for all classes x and all classes y, x relatesTo y implies y relat-
esTo x, where relatesTo is a semantic relation. In the GANA 
drug-deal scenario a meetsWith relation may be described 
as symmetric in the ontology, which means if customer 

meetsWith cashier it is implied (and can be inferred) that 
cashier meetsWith customer. This would allow a user to 
explore a graph schema in much more flexible and dynamic 
ways. Subsumption and symmetry are just two of the seman-
tic constructs that GANA takes advantage of in provid-
ing ontology-assisted graph query. Some other constructs 
GANA could take advantage of through its use of ontology 
technology include reflection, inverse-relation, transitivity, 
equality, and disjointness.
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Figure 5. (a) The Web Ontology Language (OWL) definition 
of the meetsWith, givesTo, and pays transactions in a drug-
deal context. (b) These transactions are shown in relation to 
the cashier (Ca) and customer (Cu) roles shown in the ontol-
ogy graph for the user. (c) The options for transactions to 
specify in the user graph query, as generated by the GANA 
use of the ontology.

With the relative ease of acquiring enormous quan-
tities of data, the next challenge becomes performing 
the database searches in a reasonable time for problems 
of a useful size. Fortunately, the search is less complex 
than (unordered) subgraph matching, which is NP-
complete. The temporal constraints on the transactions 
allow pruning of subgraph searches, greatly reducing the 
search depth. The complexity of the search is therefore 
a function of the time-density of observed transactions 
relative to the timing constraints, as well as a func-

tion of the number of actions and transactions in the 
specification.

A recent test of query speed was performed against 
databases of transactions extracted from our VBS2 
simulation. The first database contains 899 transac-
tions, with an average of one transaction every 6.4 s 
performed among 439 individuals. The second database 
is derived from the first, duplicating records and chang-
ing times and person identifiers, resulting in twice the 
transactions and individuals with the same transaction 
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rate. The third database similarly doubles the size of the 
second database. The drug-deal query shown in Fig. 4 
was executed against the three databases using the H2 
relational database engine and a desktop computer. The 
average of 10 database engine execution trials is shown 
in Fig. 7. The scaling of the query is close to linear, as 
shown by the comparison to the appropriate multiples of 
the time for the first database. Although this speed may 
be sufficient for many applications, we are investigating 
both graph analysis5 and database-optimization tech-
niques for increasing the scale of the problems address-
able by this approach.

Knowing the ground truth for the simulated activities 
in the database, we were able to calculate performance 
metrics for the executed queries. We created a larger 
database with 1163 drug deals, 1903 flower sales and 
deliveries, and 8019 hot dog sales. The simulated hot 
dog sales and flower sales and deliveries are designed to 
generate activity patterns similar to drug deals. The pre-
cision of the query is the fraction of returned subgraphs 
that are actually drug deals, and recall of the query is the 

fraction of drug deals that were 
correctly returned as subgraphs. 
The detection performance of the 
drug-deal query for several differ-
ent temporal constraints is shown 
in Fig. 8. The shorter times on the 
left result in high precision, with 
few false detections but a relatively 
low recall, as one-quarter of the 
drug deals are missed. As the tem-
poral constraints are relaxed, the 
recall rate increases, but the preci-
sion falls as more random transac-
tions are mistaken for a drug deal.

ROUTINE DISCOVERY AND 
CHARACTERIZATION

As a complement to the model-
driven specification of targeted 
group activity, we are investigat-
ing data-driven approaches for 
discovering routine activities. 
An understanding of the activity 
pattern of a person or population 
helps to identify interesting activ-
ity, either because it does not fit 
into a known pattern, a pattern 
has evolved, or a new pattern has 
emerged. In addition, a detected 
instance of a routine activity can 
be included as part of a larger 
group activity specification.

Although many of the human 
activities in the physical world can be casually described 
as routines, identifying these patterns of unknown struc-
tures in time and space is a challenge because of the pat-
terns being embedded among unrelated data sequences 
and the data streams having timing behavior spanning 
multiple spatiotemporal scales.

We have investigated approaches to identify human 
routines by using location data extracted from camera 
network test beds.6 The test bed was developed for 
research on monitoring the elderly and those in assisted 
living. We observed that recurring human routines tend 
to happen inside periodic time windows (i.e., hourly, 
daily, weekly, etc.). The routines themselves were not 
periodic in the strict sense but they occurred within 
time intervals that are periodic.

Using data from a live test bed, we performed the 
data abstraction steps discussed previously to produce a 
database of activities. We used privacy-preserving imag-
ing sensors in our house test bed, and there was typi-
cally only one individual in the house. We therefore had 
minimal data abstraction requirements. Given our low-

Figure 6. GANA user interface showing the specified group activity defined by the user as 
a transaction network (lower left) and STN (lower right). The results are shown in the upper 
window, with all matching subgraphs highlighted in purple and the one selected by the 
user highlighted in red.
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Figure 8. Recall and precision metrics for drug-deal queries with 
different transaction delay constraints. 
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BOX 3.  ANALYSIS OF ROUTINE ACTIVITIES

The algorithm for detecting a human behavior routine in a 
sequence of events evaluates candidate periods, l, and finds 
the smallest time envelope in which a given event satisfies 
the desired frequency and consistency parameters. This step 
is needed because the occurrences of events are not periodic 
in the strict sense, but they do occur within time envelopes 
that are periodic. The challenge in detecting these routines 
is to simultaneously identify the period of the routine enve-
lope and determine which events occur persistently within 
the discovered time envelope.

The algorithm for determining whether a set of events 
is a routine with a candidate period l is based on a slid-
ing window sequence approach. Suppose the event type 
“kitchen visits that last approximately an hour and occur 
between noon and 5:00 p.m. every day” is a routine. To help 
visualize the basic approach, Fig. 9a shows these events on 
a time line, which with inspection shows that there is a 
sequence of contiguous time intervals, each of length l = 
24 h, such that each 5-h envelope in the routine belongs 
to one of the intervals, and no two envelopes are in the 
same interval.

We determine whether the events are part of a routine by 
analyzing each candidate interval l, from smallest to largest. 
We have developed an efficient algorithm7 to determine the 
set of all possible intervals. If L is the length of the entire 
interval of observation, and t0 is the first time point on the 
interval, we can construct W, a sequence of contiguous 

1L +l8 B  time intervals each of length l,

 , , , , , , , , ,W t l t t t t t t t–0 0 0 1 1 2 1–L Lg=
l l

6 6 6 8 8 8@ @ @ BB B

as seen in Fig. 9b. Let  denote the distance between the 
first event and the left endpoint of the time interval W con-
taining t. If we slide the entire sequence of time intervals in 
W to the right by  (Fig. 9c), we will discover a set of enve-
lopes [of events with the same type as (kitchen, 60 min)] that 
make up a temporal property of a routine [(kitchen, 60 min)] 
with period l. Because  is at most l, we will, after at most l 
time units, find that (kitchen, 60 min) is a routine of period 
l with a frequency of 4, a minimum consecutive repetition 
of 2, and with events in 66% of the observed time intervals. 
The time envelope of the routine is found by reversing the 
slide of W until events no longer are in separate intervals.
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Figure 9. (a) Shown is a set 
of four approximately hour-
long kitchen events and the 
targeted characterization of a 
5-h time envelope (denoted 
by blue rectangles) and a 24-h 
periodic interval,  l. (b)  Given 
a candidate interval l  =  24 h 
(as part of a series of candi-
date intervals), construct a 
sequence W of the intervals. 
(c) Shifting W by increments 
up to δ will find that l is a peri-
odic interval for the events. 
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resolution sensors, we directly interpreted the presence 
of an individual at a specific location in their home as 
an activity of that individual. For example, presence in 
the dining room was interpreted as a dining activity. 
Location and activity can be separately recorded as a 
natural extension of this work. In addition to the activ-
ity classification, we recorded the time and duration of 
that activity for each instance. This processing allowed 
us to construct an activity database for the resident of 
the test bed.

To discover routine behavior, we aimed to find all 
spatially tagged activities with approximately the same 
start time and duration within periodic time intervals 
of interest. We have developed efficient algorithms (see 
Box 3 and Fig. 9) to detect and characterize routines for 
each activity type across a range of periodic time inter-
vals. The strength of each routine is a measure of the 
consistency with which the activity is observed as part 
of the routine. This approach is easily extensible to other 
applications with multiple individuals and more com-
plex activities derived from more informative sensors.

The spatiotemporal characterization of activity rou-
tines allows a more powerful encoding of activity that 
includes the temporal context of the activity. The same 
activity may have a different meaning at different times 

of day. For example, a 7- to 9-h presence in the bedroom 
at night can be interpreted as sleeping, whereas a 1- to 
2-h presence in the bedroom during the day can be inter-
preted as napping. With the activities clustered into spa-
tiotemporal events, traditional data mining techniques 
can now be used to discover correlations between events 
and build spatiotemporal models of the observed data.

A model of individual activity routine derived from 
30 days of data from the test bed is shown in Fig. 10. 
The model is represented similarly to an FSM, with the 
activities represented as nodes and the probability of 
transition to the next activity represented by a labeled 
edge. The labels for the nodes are user-specified inter-
pretations of the spatiotemporal events. The labels are 
provided for convenience and illustration but are unnec-
essary because the nodes are explicitly defined by the 
location, start time, and duration of the event. Varying 
levels of modeling resolution can be obtained by vary-
ing the threshold strength for the activity routines. The 
circuit of orange edges in Fig. 10 represents the sequence 
of activities in a normal day, as defined by the most prob-
able path through the model.

This general approach to routine discovery and 
modeling forms the basis for the general spatiotempo-
ral analysis of routine activities of multiple entities in 
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Figure 10. A model of routine activities for a 1-day time window derived from an instrumented house. Activities are clustered based 
on when, where, and how often they are performed. Activities that fit a spatiotemporal profile are modeled as an FSM with probabilities 
derived from observations, yielding a predictive model of routine behavior.
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a persistent surveillance context. Data-driven models of 
routine activity enable novel capabilities for the spatio-
temporal analysis of surveillance data. The presumably 
large number of routine activities can be separated from 
those activities that are not routine. First, the stable 
and strong routines can be analyzed to understand and 
characterize a large fraction of everyday activities form-
ing the background activity “noise” against which one 
is seeking to identify threats. Second, a shift in the 
activity from that predicted by the model may indi-
cate that the population knows of an unseen threat. 
Lastly, with the routine activities removed, the burden 
of examining the remaining activities is reduced for 
alternative analysis such as for the detection of targeted  
group activities.

CONCLUSIONS
The challenges of understanding the coordinated 

activities of more than one individual monitored by 
persistent surveillance systems are numerous. To effi-
ciently and accurately extract the salient information 
from the raw data, many technologies must be tailored 
to the particular sensor suite and desired system goals. 
We are investigating analysis approaches and tools that 
can be shared across many of these systems. With a focus 
on developing scalable approaches useful in real-world 
applications, we are leveraging expertise spanning sev-
eral technical fields and two institutions.

For the detection of specified group activities, we 
have developed general and powerful visual represen-
tations of both the query and database returns, con-
nected by automated and efficient database searches, 
to enable rapid screening of large databases and itera-
tive hypothesis generation and evaluation. The next 
step is to implement, test, and refine strategies for more 
robustly specifying group activities and to validate these 
approaches by adding human players and enhanced  
sensor-error models to our simulations.

We have also developed novel, efficient approaches 
for the detection and characterization of routine activi-
ties. These approaches have been tested on real-world 
test beds by using video and Global Positioning System 
sensors. We will continue the validation of routine 
detection and characterization on increasingly complex 
real-world data.
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