
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 1 (2010) 71

INTRODUCTION
The DoD definitions1 of the terms model and simula-

tion are as follows:

• Model: A physical, mathematical, or otherwise logi-
cal representation of a system, entity, phenomenon,
or process.

• Simulation: A method for implementing a model
over time.

Models and simulations are further classified by the
DoD into four levels: campaign, mission, engagement,
and engineering. These four levels are shown and
defined in Fig. 1. A campaign-level simulation includes
such a large number of model elements that using engi-
neering-level models on a single computer would prob-
ably take years of execution time. Typically for guidance,

navigation, and control (GNC) analysis, the number
of assets is more limited, and the simulation is at the
engineering level—although the level of sophistication
of the models used varies with the system questions to
be answered.

This article discusses the engineering questions,
model implementations, and simulation architectures
used in a GNC simulation. We start with a brief his-
torical review of GNC simulations and their uses, and
then we examine the requirements of a digital simula-
tion independent of the models and outline current
simulation designs. Finally, we characterize the essential
models for a GNC simulation and the different levels of
detail for these models. Additionally, we consider some

his article presents a brief history of missile simulations and a discussion of
the programming languages and paradigms used for developing them. Evolv-

ing language and programming paradigms elicit requirements for new
simulation architectures. Within this execution framework, engineering-level guidance,
navigation, and control simulations must include certain functional modules to capture
the performance characteristics of the missile system. The level of model sophistication
required depends on the particular engineering question to be answered. Six-degree-of-
freedom simulations are effective tools for cost and risk reduction during the develop-
ment and deployment of missile systems.

Six-Degree-of-Freedom Digital Simulations for
Missile Guidance, Navigation, and Control

Patricia A. Hawley and Ross A. Blauwkamp

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 1 (2010)72

P. A. HAWLEY and R. A. BLAUWKAMP

engineering questions that the simulation may answer
based on the level of model fidelity.

HISTORY
Orville and Wilbur Wright did not simulate air-

frames; they prototyped them. As pilots, they acted as
the guidance and navigation subsystems, and they solved
any unstable control systems problems with the airframe
during flight testing by improvising attitude commands
and after landing by modifying the control surfaces to
achieve, after an iterative process, safe and stable per-
formance. Their successes triggered the development of
airplanes around the world, but their methodology was
costly both in terms of material and in the health and
safety of the pilot. It also was impractical for unmanned
airframes such as missiles.

The first missiles were the Greek and Roman ballis-
tae, whose motion gave us the term ballistic trajectory.
Their designers and users determined the performance
characteristics of these weapons empirically and incre-
mentally modified and improved them over the years. It
wasn’t until Sir Isaac Newton supplied the mathematical
and physical language to describe this motion that engi-
neers could more accurately predict the performance of

Engineering

Engagement

Mission

Campaign

Figure 1. These four levels of simulation reflect the level of detail
in the simulations and the scope of the questions being asked.
Starting at the most detailed level, an engineering simulation
models a missile system’s components and their interactions
to the highest fidelity possible. Next, an engagement simula-
tion omits some of the detail of the engineering simulation but
includes models for launch platforms and threats so that the sys-
tem’s effectiveness at neutralizing the threat can be ascertained. A
mission-level simulation omits more details and aims to address
the tactical effectiveness of the missile system to perform a spe-
cific mission (e.g., air defense). Finally, a campaign-level simulation
seeks to determine the best capability mix of “blue” forces against
“red” forces by focusing on order of battle and probability of kill.
Ideally, all available engineering details would be included at all
levels of simulation, but this is generally not feasible.

ballistic missiles. During World War II, German engi-
neers improved on the launch mechanism of their bal-
listae by adding rocket propulsion and a simple azimuth
control for rudimentary guidance. The performance of
these first guided missiles was poor, but it was sufficient
to inspire an entire segment of today’s defense industry.

The first “simulation” of a missile consisted of a rocket
engine burn time and the ballistic equation of motion
to determine the missile’s achievable range, as well as
a heading to determine its approximate impact point.2
Current missile systems are described by nonlinear dif-
ferential equations, partial differential equations, and/
or discrete-time equations. These models may encom-
pass high-fidelity aerodynamics involving tables of
wind tunnel measurements,3 time-varying propulsion
characteristics, digital autopilots, one or more homing
sensors, inertial sensors, communication links, and one
or more guidance laws. The complexity of these mis-
siles is reflected in the costs and the capabilities of such
systems. Instead of simply hitting a target as large as a
London neighborhood (the goal of the German missiles
of World War II), current interceptors are expected to
impact within centimeters of the aimpoint. Given the
expense of testing such complex systems, and the dif-
ficulty in fully evaluating all components to their full
range of capability, simulations are an effective means of
cost and risk reduction.

PROGRAMMING LANGUAGES AND PARADIGMS
The first digital programs were written in assembly

language, and the combination of hardware and lan-
guage limited their scope. Fortunately high-level pro-
gramming languages provided engineers with more
sophisticated tools for building programs. One of the
first high-level programming languages was FORTRAN,
the IBM Mathematical FORmula TRANslation System.
FORTRAN allowed engineers to write mathematically
sophisticated equations to model missile systems. The
challenge then was to write equations that were suc-
cinct enough to execute on the slow memory-limited
early digital computers—without any particular software
architecture. To achieve real-time performance with
hardware in the loop, engineers used analog comput-
ers rather than slower digital ones. An analog computer
uses the voltages and currents of electrical components
as surrogates for the state variables in differential equa-
tions and, therefore, could represent the operating con-
dition for a missile during testing of subsystems such as
tail actuators or seeker heads. Because analog comput-
ers require special-purpose hardware and configurations
and are limited by noise, nonlinearities, and parasitic
effects, they have been replaced by digital computers as
the speed and memory capacity of the digital computers
have improved.4 Invariably, with each increase in hard-
ware performance, engineers increase the complexity of

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 1 (2010) 73

6DOF DIGITAL SIMULATIONS FOR MISSILE GNC

the models that they describe in computer code. Logi-
cally, there should be a corollary to Moore’s Law (which
states that the power of digital hardware doubles approxi-
mately every 2 years) to indicate that the models coded
on these rapidly advancing computing platforms double
in complexity every 2 years.

FORTRAN is a high-level procedural programming
language with high-quality mathematical libraries for
numerical computations, but initially there were few
data structures—only scalars, arrays, and COMMON
blocks—and few control constructs—IF, GOTO, and
DO; so, as the size of the code blocks and the size of
the code development teams increased, the maintenance
and reliability of the programs became problematic.5, 6
“Spaghetti code” proliferated and undermined the effec-
tiveness of engineering models for testing the perfor-
mance of increasingly sophisticated missile systems. The
first attempt to address this problem was the develop-

ment of structured programming: a top-down software-
development methodology that imposed a disciplined
breakdown of the data flow in a simulation. Operations
on the data were partitioned into modules or procedures
and executed sequentially, and the system states often
were represented by an appropriate set of data structures.
This methodology exposed the control flows that pro-
duce spaghetti code, namely the infamous GOTO state-
ment and the equally nefarious FORTRAN COMMON
block, but did not eliminate the problems associated with
global scoping of variables in a simulation. Data flowing
through a simulation built by using structured program-
ming may suffer unintended consequences as a result of
a small change in the internal workings of a particular
code module,7 and the engineer maintaining the simu-
lation may have a difficult time finding the source of
the problem if the change was made by another team
member. Despite these drawbacks, there are millions of

MidcourseGuidance
TerminalGuidance

BoostGuidance

BoostAutopilot

Autopilot

ShipSensor

ShipMotionLauncher

Missile

SystemRoot

Ship
ThreatObjects

FlightController

INS

Propulsion

TVC

Dynamics

FinActuators
IMU

Gyros

Gyros

Accelerometers

Fuze

Servos

RFSensor

IRSensor

ReentryVehicle

Booster
Decoy

HomingSensors

WarheadSection
Seeker

Airframe

InertialSensors

Figure 2. This tree shows a hierarchical model tree for a missile system. The SystemRoot in cyan connects the tree to the simulation
executive. The top nodes—Missile, ThreatObjects, and Ship (in blue)—correspond to the top-level functional descriptions of objects that
would appear in a mission or engagement simulation. The pink nodes are higher-level models composed of the more detailed models
that are the leaves of the tree (in green). These leaves correspond to the engineering models that would appear in a 6-degree-of-freedom
(6DOF) simulation.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 1 (2010)74

P. A. HAWLEY and R. A. BLAUWKAMP

1
1

1

111

0..* 0..*

ModelObject

Dynamics

Propulsion

TVCFinActuator

Airframe
–actuators: vector<FinActuator>
–tvc: TVC
–dynamics: Dynamics
–propulsion: Propulsion
+jettisonTVCEvent()

–states: StateVector
–derivatives: DerivateVector
–timeStamp: TimeStamp
–mutex: Lock
–condition: Condition
+initialize()
+activate()
+propagateStates()
+updateStates()
+computeOutputs()
+reset()
#waitForStates(in time: TimeStamp)
#waitForOutputs(in time: TimeStamp)
+connectToData(in object: ModelObject)

–mass: double
–thrust: vector<double>
–cgLocation: vector<double>
–fuelMass: double
–momentsOfInertia: matrix
+getMass(in time: TimeStamp): double
+getCGLocation(in time: TimeStamp): vector<double>
+getInertia(in time: TimeStamp): matrix
+getThrust(in time: TimeStamp): vector<double>

–deflectionLimit: double
–rateLimit: double
–deflection: double
–deflectionRate: double
+getDeflection(in time: TimeStamp): double

–deflectionLimit: vector<double>
–rateLimits: vector<double>
–deflections: vector<double>
–deflectionRates: vector<double>
+getDeflections(in time: TimeStamp): vector<double>

–Cn: AerodynamicsTables
–Cm: AerodynamicsTables
–Cl: AerodynamicsTables
–CN: AerodynamicsTables
–CA: AerodynamicsTables
–CY: AerodynamicsTables
–forcesTotal: vector<double>
–MomentsTotal: vector<double>
–position: vector<double>
–velocity: vector<double>
–acceleration: vector<double>
–quaternion: vector<double>
–angularRate: vector<double>
–angularAcceleration: vector<double>
+getPosition(in time: TimeStamp): vector<double>
+getVelocity(in time: TimeStamp): vector<double>
+getAcceleration(in time: TimeStamp): vector<double>
+getDCM(in time: matrix): matrix
+getBodyRates(in time: TimeStamp): vector<double>
+getAngularAccelerations(in time: TimeStamp): vector<double>

Figure 3. This class diagram shows that the Airframe is composed
of a vector of zero or more FinActuator objects, a Propulsion object,
a Dynamics object, and zero or more thrust-vector control (TVC)
objects. The Airframe constructs these models when it is instan-
tiated, and it destroys them when it is destructed. Each of these
classes inherits methods from the ModelObject that encapsulate the

functionality required by the simulation executive. The get functions (in green) allow other models to access the outputs of these objects.
A model can generate an event as indicated by the jettisonTVCEvent method in the Airframe model. The variables in blue are the private
data of the models. Notice that the ModelObject does not maintain a list of subscribers for the Observer pattern because the objects do
not push data to their subscribers. Instead, the objects pull data from publishing objects with the correct time stamps and may wait for
the data to be ready. The connectToData method finds the object supplying the required data by searching the model tree. These objects
do not propagate time, but they do depend on it.

lines of structured-programming FORTRAN code still
in use. Existing FORTRAN numerical libraries often
are linked into the C++ programs to supply efficient
mathematical utilities, and it is possible to wrap legacy
FORTRAN code in a C-style interface for use in a C++
simulation.

To foster greater maintainability of programs, a more
effective separation of concerns was needed. The next
paradigm for high-level programming was object-ori-
ented (OO) programming. In an OO design, data and

actions are bound together in objects to separate one
model’s functionality from another model’s functional-
ity and to separate time and other simulation services
(e.g., random numbers and I/O) from the models. This
methodology specifically addressed the scoping8 of data
and/or state variables in the simulation; namely, a model
has state variables, and these states are private9 data of
the class. An instance of a class is called an object, and
other objects cannot directly affect the states of the
model; they can only request access to publicly available

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 1 (2010) 75

6DOF DIGITAL SIMULATIONS FOR MISSILE GNC

information provided by the model. Multiple instances
of a class can be present in a simulation, but because the
states are encapsulated,10 these instances are indepen-
dent. A particular missile subsystem may be composed
of multiple modules forming a hierarchical tree of nested
models. To simplify code development and reuse, classes
may inherit11 states and/or behaviors from base classes;
for example, a digital autopilot model class would inherit
from the DiscreteModel base class. Inheritance supports
the concept of polymorphism,12 wherein a model can
be treated as a plug-and-play component in the simu-
lation—a higher-fidelity seeker model can be swapped
into the simulation for the terminal homing phase after
dynamically removing a lower-fidelity seeker model used
for the midcourse phase. These programming concepts
require a high-level language such as Smalltalk, C++,
or Java. Often, C++ is chosen because it is backward-
compatible with the C programming language used for
low-level hardware coding and provides OO classes with
inheritance and templates for generic programming.
C++ is statically typed and allows for user-created types

with operator overloading; i.e., the programmer may
create a type (a class) and explicitly overload the binary
+ operator to perform a syntactically appropriate combi-
nation of two objects of that type. Attempting to use the
overloaded operator with another type generates a com-
piler error. Catching usage errors at compile time versus
run time typically improves simulation execution times
by eliminating conditional tests from the final code.

Grouping data or state variables into objects that
dictate the operations that may be performed on these
states illuminated the various ways that engineers use
data and operations while writing code. The authors of
Design Patterns: Elements of Reusable Object-Oriented
Software13 catalogued many of the most commonly seen
pairings of data and operations and grouped them into
categories: creational, structural, and behavioral. A
pattern describes a programming idiom, i.e., the parti-
tioning of functions and responsibilities into particular
classes or objects to achieve a given task or algorithm.
An engineer equipped with a set of design patterns or
idioms is equipped with a set of tools for producing effec-

t

0

0 2 4 6 8

4

3 6 9

8

10

0

0

0

k

k

k

t

dt = 2

T = 2

T = 4

T = 3

dt = 1 dt = 1 dt = 2 dt = 2 dt = 1 dt = 1

dt = 2 dt = 1 dt = 1 dt = 2 dt = 2 dt = 1 dt = 1

Model Equations InterconnectionsPropagation of Time

Continuous Model 1

Continuous Model 2

Discrete Model 1

Discrete Model 2

Discrete Model 3

u
y
y
y

y

0 1 0 11
3

4

5

2

=

R

T

S
S
S
SS

6

V

X

W
W
W
WW

@
(, ,
(, ,)

)x f x
x u t

u t
y g

1 1 1 1

1 1 11

=
=

o

u
y
y
y

y

01 0 02

1

3

4

5

=

R

T

S
S
S
SS

6

V

X

W
W
W
WW

@
() ((), ()

((), ())
)

()
x k f x k k

x k u k
u

y k g
12 2 2 2

2 2 2 2

+ =
=

() ((), ()
((), ())

)
()

x k f x k k
x k u k

u
y k g

13 3 3 3

3 3 3 3

+ =
=

u
y
y
y

y

00 1 03

1

2

4

5

=

R

T

S
S
S
SS

6

V

X

W
W
W
WW

@

() ((), ()
((), ())

)
()

x k f x k k
x k u k

u
y k g

14 4 4 4

4 4 4 4

+ =
=

u
y
y
y

y

1 0 1 04

1

2

3

5

=

R

T

S
S
S
SS

6

V

X

W
W
W
WW

@

(, ,
(, ,)

)x f x
x u t

u t
y g

5 5 5 5

5 5 5 5

=
=

o
u

y
y
y

y

0 0 105

1

2

3

4

=

R

T

S
S
S
SS

6

V

X

W
W
W
WW

@

Figure 4. The blocks highlighted in yellow are the model equations that correspond to the leaves in a hierarchical tree that are either
discrete or continuous. The equations to the right (green) indicate how the blocks are interconnected. The time axes on the left (blue)
indicate each model’s expected update times independent of the other models; however, to be mathematically correct, the differential
equations must be propagated such that whole time steps (n * dt) align with the update times for the discrete models that provide inputs
to the continuous models. This requirement forces the time steps for the numerical integration to change to smaller values if necessary to
align with the discrete time propagation as shown by the variability of dt on the axes. These three behaviors separate into three compo-
nents in the 6DOF simulation architecture: time propagation, model equations, and model interconnections/communication.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 1 (2010)76

P. A. HAWLEY and R. A. BLAUWKAMP

Trapezoidal

RungeKutta4

+createWorkVectors(in numberOfStates: int): void
+integrate(in timeStamp, in dt: double, inout states: vector<double>, in derivatives: vector<double.): void
+advanceSubDt(inout timeStamp: TimeStamp, in dt: double): void

–state0: vector<double>
–derivativeSum: vector<double>

ContinuousTimeModel

–algorithm: Integrable
–states: vector<double>
#derivatives: vector<double>
–timeStamp: TimeStamp

#setIntegrationType(in integrationTypeIn: IntegrationType)
#createStateVector(in numberOfStates: int)
+getState(): vector<double>
+setState(in stateIn: vector<double>

«interface»
Integrable

Algorithm1

+createWorkVectors(in numberOfStates: int): void
+integrate(in timeStamp, in dt: double, inout states: vector<double>, in derivatives: vector<double.): void
+advanceSubDt(inout timeStamp: TimeStamp, in dt: double): void

+createWorkVectors(in numberOfStates: int): void
+integrate(in timeStamp, in dt: double, inout states: vector<double>, in derivatives: vector<double.): void
+advanceSubDt(inout timeStamp: TimeStamp, in dt: double): void

–temp: vector<double>
–qVector: vector<double>

Figure 5. This class diagram highlights the way the Strategy pattern is used to choose from among multiple integration algorithms for
the differential equations in a continuous-time model. Calls are made by the ContinuousObject on its field myIntegrable, whose type is
the abstract type, Integrable. Calls on the abstract type are dispatched to the specific concrete instance this field references, an object of
class Trapezoidal or RungeKutta4.

tive maintainable code. In the context of missile simu-
lations, these patterns illustrate the separation of state
models from the mechanisms that propagate the equa-
tions over time and the mechanisms that allow models
to communicate with each other and with the execution
architecture. As an example, consider the hierarchical
tree of model objects in Fig. 2; its related classes conform
to the structural Composite pattern. The class diagram
in Fig. 3 illustrates the Airframe branch of the tree in
Fig. 2; the ModelObject base class implements the func-
tions that support the simulation executive and defines
empty (abstract) methods for the derived classes to
implement, describing the differential and/or difference
equations for the models. This is the Template pattern.
A critical factor for missile simulations is the propagation
of the state equations over time for continuous models
(consider Fig. 4). Flexibility of the numerical integration
algorithms used can be achieved by the Strategy pattern
(see Fig. 5). A field of the model is defined as an abstract
algorithm type, and methods defined by this type (e.g.,
integrate) are called on this field in a generic way by the
enclosing model. Each concrete algorithm implements
the methods of the abstract type in its own specific

way, for example, trapezoidal or fourth-order Runge–
Kutta integration (see Box 1). Communication between
models can be encapsulated in the Mediator pattern or
more commonly in the Observer pattern. The Observer
pattern, when extended to a distributed programming
environment, is called the Broker14 pattern. Thus, the
major advantage of design patterns in OO programming
is a common vocabulary and building blocks for the
engineers developing a missile simulation.

ARCHITECTURE REQUIREMENTS
Programming paradigms and languages are the ham-

mers and nails of the simulation engineer but not the
blueprints. To get to the blueprints, the engineering
team must decide on a set of software requirements.
First, recall that the separation of the model imple-
mentation from the time-propagation algorithm occurs
quite naturally (as illustrated in Fig. 4), but the interac-
tion of the time-stepping and synchronization with the
calculation of equations in models must be mathemati-
cally correct to achieve the correct propagation of the
state space equations. This independence of the layers

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 1 (2010) 77

6DOF DIGITAL SIMULATIONS FOR MISSILE GNC

Functional

Executive

Truth

1

1

1

1

1

1

1

Executive Layer
 Numerical integration
 Clock
 Random processes
 External I/O

Model Layer
 Hierarchical model tree

Tr
ut

h
or

 E
nv

iro
nm

en
t L

ay
er

G
ra

vi
ty

W
ea

th
er

S
ig

na
l p

ro
pa

ga
tio

n

Tr

ut
h

da
ta

Node

0..*

Figure 6. This diagram illustrates the layers of a 6DOF simula-
tion where the time management, I/O, and random processes
are encapsulated in the Executive Layer; the models for grav-
ity, weather, and signal propagation are encapsulated in the
Environment Layer; and the hierarchical model tree is encapsu-
lated in the Application Layer (as in Fig. 2). Note that the nodes of
the hierarchical tree have interfaces for utilizing the Executive and
Truth Layers as well as the functional interfaces for the model ele-
ments. Often other layers are illustrated for a simulation architecture:
for example, the User Interface Layer, which often is a graphical user
interface (GUI), and the Operating System Layer for platform-specific
code. These layers are optional for a missile 6DOF and may be imple-
mented as part of the three layers shown.

is illustrated in Fig. 6 by the separation of the execu-
tive utilities and environment from the models. Clearly,
the executive elements do not depend on the models,
but they do supply functionality that the models may
use. Second, the model-state equations (Fig. 4 center)
often depend on other models’ states and/or outputs
(Fig. 4 right), so communication between these models
must be not only transparent but also synchronous at
internal time steps in the numerical integration (Fig. 4
left). Third, as model complexity rises and run-time
execution slows, multithreading or distributed process-
ing becomes a possible solution to the requirement for
real-time execution while maintaining model fidelity. In
summary, the architecture executive requirements are as
follows:

1. Synchronous evaluation of continuous state equa-
tions at time-step bounds for both major and
minor time steps in the numerical integration
algorithm

2. Synchronous evaluation of continuous and discrete
equations at the time-step bounds for the discrete-
time models

3. Asynchronous evaluation of aperiodic events (e.g.,
separation of missile stages)

4. High-quality, random number generation for noise
processes

5. Reproducible results
6. Start and restart of simulation runs at an arbitrary

time
7. Flexible configuration of the executive and model

parameters at run time
8. Transparent logging of outputs (usually by creating

a hierarchical file structure that mimics the model
tree structure)

9. Real-time execution for hardware-in-the-loop
applications

10. Multithreading to enhance run-time performance15

BOX 1. RUNGE–KUTTA INTEGRATION FORMULA

() () (),x t x t dt k k k k6 2 2n n1 1 2 3 4= + + + ++ where tn + 1 = tn + dt

(,)k x t yn n1 /= o state derivatives at tn

(,)k x t dt x dt k2 2n n2 1 /= + +o state derivatives at midpoint of interval using states advanced to the midpoint using Euler’s
method and k1 as the slope

(,)k x t dt x dt k2 2n n3 2 /= + +o state derivatives at midpoint of interval using k2 as the slope

(, *)k x t dt x dt kn n4 3 /= + +o state derivatives at endpoint of interval using k3 as the slope

The commonly used fourth-order Runge–Kutta integration algorithm breaks each major integration interval into four
minor integration steps. Each step involves the calculation of the derivatives with an updated state. Note that time does not
step uniformly through the minor steps. The advantage of using a higher-order algorithm, such as this one, is that the error
shrinks by dt4 rather than by dt, as it does in a first-order algorithm, such as the Euler method.

11. Distributed processing to enhance run-time perfor-
mance and/or operation in a High-Level Architec-
ture (HLA) environment16

12. Portability and maintainability
13. Scalability

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 1 (2010)78

P. A. HAWLEY and R. A. BLAUWKAMP

The first three requirements are necessary for math-
ematical correctness. The fourth requirement refers
to statistically valid Monte Carlo results that require
independent random processes, and the fifth require-
ment refers to reproducing a single run in the presence
of random processes by logging the seed(s) used in the
random number generator(s). The sixth requirement
simply allows a user to (re)run the simulation from an
arbitrary time so, for instance, the terminal phase of
flight could be explored in more detail without running
from t = 0. The seventh and eighth requirements address
inputs to and outputs from the simulation for con-
figuration and post-processing, respectively. The next
three requirements may or may not be part of the final
specification for the architecture, but they should be
considered for future reuse of the code. Portability and
maintainability refer to executing the code on different
hardware and software platforms (e.g., PCs or worksta-
tions running Windows or Linux) and adopting good
programming practices and configuration management
so that a team can efficiently develop code and transi-
tion that code to new users and developers. Scalability
refers to using this architecture with as many models as
the user chooses without degrading the performance.
This last item would, of course, impact the run-time
performance, but it should never affect the accuracy of
the simulation results.

Another layer of the architecture handles the com-
munication between models and the external “world”
(gravity, signal propagation, weather, etc.). This layer of
utilities has the following requirements:

• Loose coupling between models supports dynamic
creation and destruction of models during a simula-
tion run.

• Communication must be transparent between
models.
	¤ Models request data from a particular class, and

the communication mechanism finds the near-
est matching object and connects the subscriber
to the publisher (Observer pattern).

	¤ As models are created and/or deleted from the
simulation, the communication mechanism
adjusts the subscriptions.

All of these requirements are independent of the
system to be modeled and, therefore, the architecture
that matches these requirements promotes reusability.

The following are some examples of current APL
simulations within the Air and Missile Defense Depart-
ment that are using OO architectures with model
hierarchies:

• OO Simulation Architecture (OSA):
	¤ Evolved Sea Sparrow Missile launch-to-

intercept simulation is a high-fidelity, 6DOF
implementation.

• C++
• Single threaded
• Synchronous execution
• Composite pattern for model tree
• Mediator pattern for model communication

• Java Event-Driven Implementation (JEDI):
	¤ SwarmSim is the Swarm Simulation for Small

Boat Defense.
	¤ MIDAS is the Missile Defense Analysis

Simulation.
	¤ Both are launch-to-intercept 6DOF simulations

for ongoing system design and feasibility studies.
• Java
• Multithreaded
• Synchronous execution (rendezvous

between threads)
• Composite pattern for model tree
• Observer pattern for model communication

• Open Architecture Simulation Interface Specifica-
tion (OASIS):
	¤ OASIS is a specification for 6DOF simulation

development in either C++ or Java.
	¤ The Multiple Kill Vehicle End-To-End Simula-

tion is built with Simitar, an OASIS-compliant
simulation framework.
• C++ (Simitar is the C++ implementation of

the OASIS; it has had several engineering
releases and is being actively developed.)

• Single threaded for the first few releases
• Asynchronous execution
• Composite pattern for model tree
• Observer pattern for model communication

THE COMMON MISSILE MODEL
Up to this point, the discussion of a missile simula-

tion has indicated only that the subsystems comprise
smaller subsystems, etc., and thus are naturally repre-
sented by a hierarchical tree (as in Fig. 2). What has not
been discussed is what makes up a missile system. To a
certain extent, the mathematical model chosen depends
on the question to be answered.

As mentioned earlier, a minimal set of equations
for the V-2 rocket would treat the airframe as a point
mass without aerodynamics but with a thrust equation
and just the ballistic equations of motion after motor
burnout with an azimuth constraint. These equations
are sufficient to obtain rough estimates of the impact
point. Variations in wind conditions and motor burn
as well as heading and attitude control errors would
affect actual performance. Adding simple trim aero-
dynamics17 with a transfer function representation of
the autopilot and a proportional navigation guidance

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 1 (2010) 79

6DOF DIGITAL SIMULATIONS FOR MISSILE GNC

law18 produces a 3DOF simulation model that often is
used to estimate a missile’s operational footprint. This
approach is valid during the initial phases of a new mis-
sile’s development or to model the general performance
of a system whose specific design details are not known
(adversaries). A variation on this approach would be
to successively modify the guidance law over some set
of guidance law options to assess which law yields the
best performance in the scenario context. Again, these
results would be optimistic because they ignore so many
other factors in the system, but the engineer can use the
demonstrated trends to direct the next phase of model
development.

Another level of fidelity is shown in the models of
Figs. 7–9. Figure 7 shows the “tennis court” model for
an axisymmetric airframe linearized about a flight con-
dition (e.g., the pitch channel of the airframe). Figure 8
is the classic “three-loop” autopilot for the pitch chan-
nel and a second-order transfer function model for an
actuator with angle and rate limiting. Figure 9 illus-
trates a simple inertial measurement unit (IMU) and
the proportional navigation guidance law. Assuming a
roll-stabilized missile, the engineer can use these models
to perform 5DOF analysis of the system at the selected
flight condition. This level of modeling can be useful for
investigating observed instabilities during a test flight or
computing values for a gain-scheduled autopilot during
initial design studies (e.g., airframe control design and
trade studies).

Subsequently, a full 6DOF simulation coded from
the proposed missile system specifications can be used
to verify the predicted performance of the system once
the full aerodynamic characteristics, functional algo-
rithms, and expected noise sources are included. A
6DOF simulation can be used to design initial flight
tests to exercise various missile subsystems at particu-
lar operating conditions. Similarly, after flight testing
of the system has begun, the 6DOF simulation param-
eters can be validated against the measured telemetry.
The interactions of the missile with supporting engage-
ment systems, such as surface-based radar and weapons
control, can be explored and overall system performance
can be evaluated. The simulation can be used to assess
the risks associated with modifications to the missile or
to assess its performance against a new threat. For an
operational system, a simulation identifies and illumi-
nates key sensitivities in the existing hardware. The
effect on system responsiveness and lethality of poten-
tial hardware or software changes can be characterized.
Understanding this system behavior allows the engi-
neer to revise the missile specifications, if necessary,
for future deployments. Finally, it can be used to gen-
erate operational guidelines for deployment and firing
protocols.

Although the degree of sophistication of the models
varies from the simplest 3DOF to the full-up 6DOF, in

dCN/d� QS/m

dCm/d�

dCN/d�

1/s

1/s

cos�/|Vm|

dCm/d� dCm/d�

QSd/I

�

� �

��

+

+

+
+ +

+

+

�

�

�

�
– �
.

.

.

�
..

Airframe

Figure 7. Aerodynamics airframe model where δ is the actuator
deflection, Q is the dynamic pressure, S is the reference area, d is
the reference diameter, I is the moment of inertia, m is the mass,
a is the angle of attack, is the acceleration, g is the flight-path
angle, and is the Euler angle. The partial derivatives are the aero-
dynamic coefficients linearized at a selected flight condition.

KI

KA

KGK 1/s� �� +
+

+

+

+

�m

�m

�c

.
–

Autopilot

�c

�c
.

�2 1/s 1/s
��+ +

2��

––

Actuator

Angle limit

Rate limit

� �

Figure 8. A “three-loop” autopilot and simple transfer function
model for the actuator. The autopilot uses the acceleration com-
mand from the guidance law and the measured acceleration and
body rate (see Fig. 9) as inputs to obtain the actuator command.
The gains in the autopilot are scheduled as a function of flight
condition to achieve missile stability and command following. The
actuator command passes through a second-order transfer func-
tion with angle and rate limiters.

x �

�

.

. .

Guidance
law

Inputs from
seeker

z–1

�

�

�c(k)

Vc(k)
�m

�m

�(k)

+

+

� +

+

1 + az–1

z–1

1 + az–1

IMU

w
v

Figure 9. The IMU adds noise to the truth values for the accel-
eration and body rate and passes the measurement through a
discrete transfer function. The noise includes nonlinearities, bias,
random-walk noise, and white noise. The guidance law is propor-
tional navigation where the navigation constant, λ, typically is set
to four, and the inputs are the line-of-sight rate and closing veloc-
ity to the target computed at discrete times.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 1 (2010)80

P. A. HAWLEY and R. A. BLAUWKAMP

Airframe

Flight
commands

Sensor
commands

Flight
data

Sensor
commands

External
commands

World
data

World data

World
data

Flight
controller

Inertial
sensors

Terminal
sensors

Environment

Target

Target
data

Sensed
target data

Sensed
body data

Missile states and state rates

Weapons control system

Figure 10. Common missile model. The blocks shown illustrate the subsystems required for a
generic missile for GNC system studies. The subsystems outside the orange block are external
to the missile body, and the ones inside the orange block are onboard the missile. The inertial
sensors include any IMU, inertial reference unit, and/or GPS unit that measure and/or estimate
the missile’s states. Terminal sensors may include RF or IR seekers that may be strap-down
or gimbaled and measure the target’s states for guidance. Environment encompasses any
physical processes that affect the missile’s operation: gravity, atmospheric pressure, weather,
multipath, etc. Target includes the target’s motion as well as any observables, e.g., radar cross-
section and irradiance. Weapons control system accounts for initial conditions at launch as
well as any uplinked information after launch.

Dynamics

Airframe
mass

Mass
characteristics

World data

World
data

Aerodynamics

Propulsion

Inertial
sensor

Environment

Flight
control

actuators

Aero
steering

commands

Flight
controller

Flight
commands

Aero forces
and moments

Hinge moments
and panel forces

Propulsive forces
and moments

Missile
state
and

missile
state
rates

Mass
changes

Figure 11. Airframe model. The airframe model includes the subsystems that produce the
dynamic equations of motion. These subsystems can include missile staging, control surface
actuators, TVC vanes, and engine throttling as well as aerodynamics. The equations can be
simple—a point mass with trim aerodynamics and perfect actuators and propulsion—or
complex—an extended body with flexible bending modes, a center-of-mass offset from the
center of control, thrust misalignments, and actuator models with hysteresis, friction, mis-
alignments, etc.

each case, the model tree hier-
archy has some basic required
components. During the
original design of the OSA
simulation, separating out the
executive portion from the
model portion produced a set
of diagrams for the critical
elements of a generic missile
simulation. These elements
were dubbed the Common
Missile Model19 and appear in
Figs. 10–12. A missile is a phys-
ical entity whose motion and
orientation are controlled to
intercept a target entity with
a specified accuracy. The basic
elements of a missile include
an airframe, inertial sensors
to stabilize the attitude and
assist in guidance, one or more
terminal sensors and/or com-
mand uplinks, a flight control-
ler, and models external to the
missile such as the launch plat-
form, the threat, and any envi-
ronmental models (weather,
gravity, etc).

An airframe model com-
putes missile states from forces
and moments. Missile states are
defined as those attributes that
define missile translational
and rotational motion: typi-
cally, they are the Cartesian
position, velocity, the quater-
nion (for orientation), and the
angular velocity. The airframe
receives steering commands
from the flight controller that
then are realized as forces and
moments by the actuators.
The airframe model has sev-
eral components: dynamics,
airframe mass, aerodynamics,
propulsion, and flight control
actuators (see Fig. 11). Dynam-
ics are the continuous-time
missile states (position, veloc-
ity, orientation, and angular
rates) and state derivatives
(velocity, acceleration, angu-
lar rates, and angular accel-
erations) given the forces,
moments, and mass character-
istics, e.g.,

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 1 (2010) 81

6DOF DIGITAL SIMULATIONS FOR MISSILE GNC

Autopilot Navigation
processor

Estimated
missile

states and
rates

Guidance
processor

Speed
controller

Weapons control system

Body sensor data

Airframe

Flight
commands

Sensor
commands

Sensor
commands

Guidance
commands

Flight
commands

Guidance
commands

Guidance
data

Navigation
data

Control
data

Body
sensor

data

Target
sensor
data

External
commands/

data

External
commands/

data

External
commands/

data

Terminal
sensor

Inertial
sensor

Figure 12. Flight controller. The flight controller encompasses the models for GNC. These
models may be simple conceptual equations with no noise, latency, or other error sources, or
they may be detailed models of Kalman filters and guidance laws with mode logic for various
stages in flight and a high-fidelity autopilot or wrapped flight code. A speed controller is shown
for the case when the propulsion may be throttled; for solid propellants, this model may be
omitted.

where Dynpsr ≡ dynamic pres-
sure, S ≡ reference area, D ≡
reference diameter, a ≡ angle
of attack, ≡ aerodynamic roll
angle, and d ≡ control surface
deflections.

Propulsion provides the mis-
sile thrust forces, moments, and
mass variations. Flight control
actuators are those mechanisms
that physically realize the con-
trol commands, e.g., control
surface deflections. For an endo-
atmospheric system, the control
surfaces typically are tails, aile-
rons, or canards, but other flight
control systems may include
thrust-vector control vanes or
pulse-width modulated thrust-
ers. The airframe provides truth
information to the inertial
sensors (typically, accelerom-
eters and rate gyros) and inter-
acts with the physical world
through environmental objects
such as gravity and atmosphere
(Mach, speed of sound, tem-

perature, wind, weather, etc.). The inertial sensors mea-
sure the airframe’s motion and feed it back to the flight
controller.

Terminal sensors are a collection of objects that pro-
vide measurements of the target-relative states (e.g., posi-
tion and velocity and/or line of sight and line-of-sight
rate) to the flight controller. Two major types of terminal
sensors are RF and IR receivers. These sensors interact
with an environmental object to account for various
physical-world sources of measurement noise (thermal
noise, multipath, clutter, etc). Various levels of fidelity
may be employed in the sensor models used in a GNC
simulation, but final performance predictions usually are
made with high-fidelity models, particularly for the ter-
minal mode of the engagement.

The flight controller consists of the navigation pro-
cessor, the guidance processor, the autopilot, and the
speed controller (see Fig. 12). Typically, the navigation
processor consists of an inertial navigation system (INS).
The INS provides estimates of the missile states to the
guidance processor based on measurements obtained
from rate gyros and accelerometers (the inertial sensors)
but may include processing of communication uplinks
or possibly GPS measurements. The guidance processor
consists of the guidance law(s) and the guidance filter(s).
The guidance filter processes the measurements from
the terminal sensor(s) and inertial sensors to produce
well-behaved estimates of the target states. The guid-
ance law(s) combines these with the estimated missile

moment

where position and velocity

where acceleration

/ /

/

mwhere andmass force/ /

,

,

,

(,)

,

, ,

dt
dR V R V

dt
dV A A

mA F F F F

F

dt
dQ f Q

dt
d M M M M

Q Mwhere quaternion angular velocity and

gravity aerodynamics propulsion

gravity aerodynamics propulsion

/ / /

v

v

v

=

=

= = + +

=

= = + +

/

/

Usually, the moments act about the center of mass
of the rigid body so there is no gravity moment (in a
uniform gravitational field). Airframe mass calculates
the missile characteristics (e.g., center of mass and
moment of inertia) as inputs to the dynamics. Aerody-
namics computes the aerodynamic forces and moments
as functions of the flight conditions and control surface
deflections, i.e., the forces and moments are obtained via
lookups and interpolation in multidimensional tables:

(, , , , ,)mach altitude� � �

(, , , ,)
(, , , ,)
(, , , ,)

,

(, , , , ,)

(, , , , ,)
,

F Dynpsr S
C mach altitude
C mach altitude
C mach altitude

M Dynpsr SD
C mach altitude
C
C mach altitude

A

Y

N

l

m

n

aerodynamics

aerodynamics

� � �

� � �

� � �

� � � �

�

� � � �

=

=

>

>

H

H

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 1 (2010)82

P. A. HAWLEY and R. A. BLAUWKAMP

states to produce steering commands. Note that there
may be a different guidance law and filter for each phase
of flight. The autopilot transforms the steering com-
mands to control surface commands for the airframe.
In addition, the autopilot may have multiple control
options based on the phase in flight. If the missile motor
uses solid propellant, the speed controller is omitted;
otherwise, it typically throttles the engine to achieve
the required speed. All of these flight control functions
are, of course, critical elements in a GNC simulation,
but they cannot act alone, so the other subsystems and
external models are implemented to simulate the actual
system’s operation.

Many of these state equations are nonlinear and
time-varying. In the past, GNC designs have relied on
linearization techniques to simplify designs. Within
the framework of linear state space systems, the sepa-
ration principle states that the model observer (INS
and guidance filters) does not affect the eigenvalues of
the controller (airframe and autopilot), so the devel-
opment and modeling of these subsystems could be
treated independently (see Box 2). However, to achieve
greater performance, more modern designs use non-
linear models and control design techniques, and the
separation principle breaks down.20 This more exacting
design regime requires greater model fidelity and stricter
requirements on the simulation execution, and this per-
formance is provided by a well-designed 6DOF digital
simulation.

CONCLUSIONS
A digital simulation may serve many purposes. For a

new concept, a 3DOF simulation explores system per-
formance within the constraints of the proposed model
specifications. If the proposed models do not achieve the
design objectives, the specifications may be revised or
the concept may be scrapped altogether—without the
high cost of hardware prototyping and flight testing. For
a system under development, a 6DOF simulation verifies
expected performance given the design specifications,
provides an operational platform during hardware pro-
totyping, and is validated during flight testing. It is an
essential tool for designing operational flight tests that
exercise the various subsystems at selected points in the
performance envelope. It also is essential for identifying
and illuminating key sensitivities in the existing hard-
ware of an operational system.

Simulation architecture requirements do not vary
with the level of model complexity. In all cases, the
simulation must provide synchronous propagation of
state equations with support of asynchronous events and
repeatable random processes for correct mathematical
modeling. For continued utility throughout the develop-
ment process, the simulation architecture should addi-
tionally support the following:

• Real-time execution for hardware evaluation via
hardware-in-the-loop and/or computer-in-the-loop

• Multithreaded execution to help achieve real-time
performance

• Distributed processing both to achieve real-time
performance and to operate in an HLA environ-
ment

• Portability and maintainability
• Scalability

For GNC studies, the missile 6DOF simulation
must implement the subsystems shown in Figs. 10–12.
The sophistication of the models depends largely on

BOX 2. SEPARATION PRINCIPLE
Consider the linear system:

,
x Ax Bu
y Cx

= +
=

o

where x is the state vector, u is input vector, and y is
the output vector.

Then an observer for this system is of the form:

(–) ,
,

(–) ,

x Ax L y y Bu
y Cx

x A LC x Bu Ly
or

= + +
=

= + +

to t t

t t

to t

where xt is the estimated state. Because the feedback
control will use the estimated state, then

– .u Kx= t

If the error vector is defined such that

– ,e x x= t

then

and
(–)

– (–) .

e A LC e

u K x e

=

=

o

Finally, the system equations become

–
–

.x
e

A BK BK
A LC

x
e0

=
o

o
; ; ;E E E

These equations illustrate the separation principle
of designing a controller and an observer independently
for linear systems. The last matrix equation is block-
triangular so the eigenvalues for x and the eigenvalues
for e are independent with K influencing x and L influ-
encing e. These conditions fail for nonlinear control
laws and observers.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 1 (2010) 83

6DOF DIGITAL SIMULATIONS FOR MISSILE GNC

the information that is available for the system—new
concepts may not have any information besides gen-
eral specifications—and the engineering question that
is being asked of the system. In some cases, a simple
Matlab or Simulink model may be an appropriate tool for
investigating a concept; however, as more model infor-
mation becomes available and/or hosting multithreaded
flight code becomes a requirement, transitioning to
a 6DOF implementation makes sense. Aerodynamic
tables can be wrapped in a “mex” file for use in Matlab
and Simulink, but the user does not have the control
over the synchronization at time-step boundaries that
a 6DOF implementation provides. For run-time execu-
tion, a 6DOF implementation can be refactored to
run in a distributed or multithreaded configuration or
run in a federation with other system simulations (for
example, high-fidelity radar or threat simulations); at
this time, Matlab and Simulink do not have these capa-
bilities. This control of the model equation propagation
and information flow between models is particularly
important for the nonlinear, highly coupled designs
currently being developed. 6DOF performance predic-
tions for these systems are a valuable tool for risk and
cost reduction during missile system development and
deployment.

REFERENCES AND NOTES
 1DoD Modeling and Simulation (M&S) Glossary, DoD 5000.59-M,

Defense Modeling and Simulation Office, Washington, DC (15 Jan
1998).

 2Tsiolkovsky, K. E., “The Exploration of Cosmic Space by Means of
Reaction Device,” Sci. Rev. (5), in Russian (1903).

 3Etkin, B., Dynamics of Atmospheric Flight, Dover Publications, Mineola,
NY (2005).

 4Korn, G. A., “Continuous-System Simulation and Analog Computers:
From Op-Amp Design to Aerospace Applications,” IEEE Control Syst.
Mag. 25(3), 44–51 (June 2005).

 5Hayes, B., “The Post-OOP Paradigm,” Am. Sci. 91(2), 106–110
(Mar–Apr 2003).

 6Subramaniam, G. V., and Byrne, E. J., “Deriving an Object Model
from Legacy Fortran Code,” Proc. 1996 Int. Conf. on Software Mainte-
nance, Monterey, CA, pp. 3–12 (4–8 Nov 1996).

 7Ross, J. M., and Zhang, H., “Structured Programmers Learning Object-
Oriented Programming,” SIGCHI Bull. 29(4), 93–99 (Oct 1997).

 8Scope is an enclosing context where values and expressions are associ-
ated; for example, global scope implies the variable is visible and mod-
ifiable everywhere in the program. Local scope means that the vari-
able is visible and modifiable only in the local (subroutine) context.

 9Private indicates that the data are hidden within the class and out of
scope outside that class, and it is a keyword in C++ and Java.

10Encapsulation refers to the principle of information hiding in which
the interface of a class (its public operations) are separated from its
implementation (its private data and private operations). This tech-
nique allows the code developer to change the implementation with-
out violating the contract with the user stated by the public interface.

11Inheritance is a generalization of a base class’ implementation.
A derived class inherits data and behavior from its base class as it
reuses and extends its operations. For instance, an Autopilot is–a
ModelObject indicates that Autopilot should inherit from ModelOb-
ject. Inheritance therefore produces a hierarchy between classes of
objects.

12Polymorphism lets the user invoke the functions specified by the base
class’ interface but achieve the derived class’ behavior. This binding
of behavior can be done at run time and yields plug-and-play swap-
ping of ModelObjects. Another form of polymorphism, parametric
polymorphism, refers to the compile-time polymorphism achieved
with C++ templates or Java Generics.

13Gamma, E., Helm, R., Johnson, R., and Vlissides, J. M., Design Pat-
terns: Elements of Reusable Object-Oriented Software, Addison-Wesley,
Upper Saddle River, NJ (1995).

14The Common Object Request Broker Architecture, or CORBA,
defined by the Object Management Group is a middleware standard
for the Broker pattern. Implementations of CORBA enable simula-
tions on different platforms written in different programming lan-
guages to execute together.

15A thread is a sequence of computer instructions executed by a CPU
core. A thread shares the address space with other threads in the
same process. A single CPU core time-slices the execution of mul-
tiple threads, but multiple threads can run simultaneously on separate
CPU cores.

16IEEE Computer Society, IEEE Standard for Modeling and Simula-
tion (M&S) High Level Architecture (HLA)—Framework and Rules,
IEEE Standard 1516-2000, doi: 10.1109/IEEESTD.2000.92296
(2000).

17Lansberry, J. E., Momentless Missile Dynamics Model with a Rotating
Earth, Technical Memorandum A1E(04)U-2-001, JHU/APL, Laurel,
MD (9 Feb 2003).

18Murtaugh, S. A., and Criel, H. E., “Fundamentals of Proportional
Navigation,” IEEE Spectrum, 75–85 (December 1966).

19Chiu, H. Y., A1E OO Working Group Presentation Viewgraphs, 26
February 1997, Technical Memorandum A1E(97)-2-040, JHU/APL,
Laurel, MD (5 Mar 1997).

20Palumbo, N. F., Reardon, B. E., and Blauwkamp, R. A., “Integrated
Guidance and Control for Homing Missiles,” Johns Hopkins APL
Tech. Dig. 25(2), 121–139 (2004).

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 1 (2010)84

P. A. HAWLEY and R. A. BLAUWKAMP

Patricia A. Hawley is a member of APL’s Senior Professional Staff in the Guidance, Navigation, and Control (GNC)
Group of the Missile Systems Branch in the Air and Missile Defense Department. She holds a B.A. in astronomy and
physics, an M.S.E.E. from Purdue University, and an M.S. in applied physics from The Johns Hopkins University Whiting
School of Engineering. Ms. Hawley has pursued additional graduate courses in electrical engineering and mathematics at
the University of New Hampshire. Her area of expertise is in 6-degree-of-freedom simulations of guidance, navigation, and
control systems. She is a member of the Institute of Electrical and Electronics Engineers and the American Institute of
Aeronautics and Astronautics. Ross A. Blauwkamp received a B.S.E. degree from Calvin College in 1991, and an M.S.E.

degree from the University of Illinois in 1996; both degrees were in elec-
trical engineering. He continues to pursue a Ph.D. from the University of
Illinois. Mr. Blauwkamp joined APL in May 2000 and currently is the super-
visor of the Advanced Concepts and Simulation Techniques Section in the
GNC Group. His interests include dynamic games, nonlinear control, and
numerical methods for control. He is a member of the Institute of Electrical
and Electronics Engineers and the American Institute of Aeronautics and
Astronautics. For further information on the work reported here, contact
Patricia Hawley. Her e-mail address is patricia.hawley@jhuapl.edu.

The Authors

Patricia A. Hawley Ross A. Blauwkamp

The Johns Hopkins APL Technical Digest can be accessed electronically at www.jhuapl.edu/techdigest.

