2/4/2020

Motion Planning with Fixed-Wing UAVs

Article Keywords
Robotics
Autonomous Systems
High-Speed Navigation
Fixed-Wing Aircraft



Collaborating ISC Lab(s)

UxV Gym

Fixed-wing unmanned aerial vehicles (UAVs) offer significant performance advantages over rotary-wing UAVs in terms of speed, endurance, and efficiency. However, these vehicles have traditionally been severely limited when it comes to maneuverability.  By leveraging full-state direct trajectory optimization with a nonlinear aircraft model, researchers at Johns Hopkins APL are able to perform aggressive maneuvers with high angles-of-attack, even ones planned in realtime.  This approach enables high-speed navigation of complex environments by vehicles with large state spaces, nonlinear dynamics, and actuator constraints, all while operating on-the-fly.

                                                                                       

 

Article Keywords
Robotics
Autonomous Systems
High-Speed Navigation
Fixed-Wing Aircraft