

Mission Impact
Situation Awareness
Modeling and Visualization

Dagger is a modeling and visualization tool suite that shows how system

failures impact mission status. Updated with manual or real-time status,

Dagger is used for mission/system planning, situational awareness during

mission execution, and course-of-action analysis.

What problem does it solve?

In environments with large volumes of mission or system status information,

Dagger’s dependency model can put that information in context, addressing

questions such as:

 Given the current state of the system, can the mission succeed?

 Is there any part of the system that will significantly impact mission success?

 What is the impact of loss or degradation of component X on the mission?

 Is there system information missing that is needed to provide the answers to these questions?

In dynamic environments, Dagger’s model editing capabilities make it easy to build, maintain, and visualize

components and dependencies in that environment and evaluate the impact of changes.

Standard Visualizations

 Color represents real-time or historical status. Gray indicates “unknown.”

Different notions of status such as “availability” and “security posture” map

to different color overlays.

 Layer visualization shows the big picture at a glance and makes it easy to

quickly find items of interest. Dependencies are shown on demand. Filters

can be applied to large models to focus the view on what the user cares

about most.

 Hierarchy visualization shows critical dependency paths from a given

item, e.g. to find the cause of mission/system degradation.

 Item details view shows more information to support action or response.

Including historic observational data.

Analysis

 Interactively create and visualize hypothetical scenarios such as “What happens if this system, server,

or facility goes down?” with one or more items.

 Sensitivity analysis computation shows the most important items supporting a target mission, helping

to identify critical infrastructure and key terrain.

User Interface

 Web client provides customizable dashboard for viewing

models, and can run inside OWF/OWP.

 Java client provides full-featured client and editor.

 The model editor provides a drag-and-drop interface for

creating and customizing dependency models.

 Built-in templates and example models provided for

specific domains such as information systems.

Widgets and Plugins

 Live diagram widgets adds geographic or domain-specific context to

model items, e.g. to draw items on a map colored by Dagger status.

 Live table widgets displays live observational data for a subset of items.

 Model importers create models from CSV, GraphML, and other formats.

 Publisher plugin publishes computed status values from one model to another.

 Reporting plugins export status or observations in alternate formats.

 Geospatial widget (web client only) visualizes status on geographic display.

Service & Storage

 Data stores for observational data (indicators) and Dagger models.

 RESTful API for adding and querying observational data, publishing and retrieving Dagger models, and

getting computed model status.

 Supports linking multiple clients to share real-time status or hypothetical/historical scenarios across

multiple views.

Deployment

A typical Dagger deployment requires the following

steps:

1. Install the Dagger client and service.

2. Identify the mission to model. Build the

model with supporting components and

dependencies.

3. Identify potential data sources. Either

configure existing data adapters or develop

new data adapters to map the data to observations in the model. Deploy the adapters.

4. Iterate to refine the model and data feeds.

Contact

Technical Lead Jackie Soenneker

LAVA Technical Business Lead Keith Wichmann

dagger@jhuapl.edu

Dagger
service Models

Service
API

Clients

Data
Adapters

mailto:dagger@jhuapl.edu

