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ABSTRACT
Electronic warfare (EW) operators face a multitude of challenges when performing single- and 
distributed-platform sensing and jamming tasks in increasingly dense and agile threat environ-
ments. During an engagement timeline, actions often must be taken quickly and based on the 
partial information available. Recently, the world has observed a boom in artificial intelligence, a 
suite of data-driven lateral technologies that has already disrupted multiple fields where autonomy 
and big data are key elements. Although it is not the solution to all EW tasks, artificial intelligence 
shows promise in offering potential solutions to improve EW efficiency and effectiveness through 
informed decision-making beyond the capability of a human operator. The Johns Hopkins Uni-
versity Applied Physics Laboratory (APL) Precision Strike Mission Area has invested in research and 
development in the specific EW tasks of emitter identification and autonomous resource alloca-
tion. This article presents promising results from these projects and describes recommended future 
work in these areas, as well as additional EW applications that may benefit from research in arti-
ficial intelligence.

human intervention. The next generation of software-
defined RF threat emitters, using increasingly complex 
agile waveforms, has driven shifts in how future elec-
tronic support (ES) and electronic attack (EA) activities 
are conducted. The jamming platform’s overall effec-
tiveness is constrained by its ability to efficiently detect, 
characterize, jam, and communicate threat waveforms 
while intelligently managing the RF resources available 
within the battlespace.

The field of artificial intelligence has received a great 
deal of attention over the past several years, with multiple 
major breakthroughs in areas such as object recognition, 

INTRODUCTION
The electronic warfare (EW) operational threat 

space is one of noncooperative interactions between 
multiple radio frequency (RF) sensing and transmit-
ting platforms operating in contested spectral environ-
ments. This operational space poses many challenges to 
operators performing tasks such as sensing the electro-
magnetic (EM) spectrum, effectively managing spectral 
resources, and sharing critical information across mul-
tiple EW platforms, all while jamming threat emitters. 
These challenges have driven the need for increasingly 
capable RF systems to process and act on large volumes 
of information at machine speeds, often with little to no 
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natural language processing, and automatic speech rec-
ognition. The successful application of machine learning 
(ML) techniques to other problem domains has gener-
ated interest from EW sponsors, operators, and research-
ers seeking to determine how ML approaches can address 
EW gaps. This article focuses on several promising results 
achieved through APL’s Precision Strike Mission Area 
(PSMA) independent research and development (IRAD) 
projects specific to the EW tasks of emitter identifica-
tion and autonomous resource allocation. It also includes 
additional recommended research topics for maturing 
automated EW approaches that could transition to future 
military platforms. Furthermore, this article highlights 
several domain-specific challenges and suggests future 
research topics within this focus where the use of ML 
techniques may show promise.

Background
Figure 1 illustrates a scenario that seeks to achieve 

information dominance and the delivery of over-
whelming EW effects against adversaries through the 
use of collaborative EW. (See the article by Ward et al., 
in this issue, for details on this vision.) The develop-
ment of ML applications to improve EW efficiency 
and effectiveness in the single-platform context is an 
essential building block for achieving collaborative, 
autonomous, and adaptive EW capabilities. In this 
article, we primarily describe the results and knowledge 
gained from two IRAD projects that applied ML to 
sensing and emitter identification to investigate auto-
matic modulation recognition (AMR) and autonomous 
resource allocation. This foundational work demon-
strates the merit of these approaches and establishes a 

growth path to multiplatform, collaborative EW capa-
bilities. The approaches and results presented in this 
article are platform agnostic, and although the primary 
platforms considered to date have been airborne, there 
are probably compelling ground- or sea-based applica-
tions as well.

ML APPLICABILITY TO EW TECHNICAL AND 
OPERATIONAL CHALLENGES

Figure 1 broadly illustrates two challenging topic 
areas within tactical EW operations for which ML offers 
promising solutions. This section briefly describes the 
challenges associated with distributed sensing and dis-
tributed resource management.

Engagement of Agile Threat Emitters
EW systems are challenged by the agility of adver-

sary sensors and communications systems that rapidly 
adapt and operate throughout the EM spectrum. Tra-
ditional EW systems must first identify a threat radar 
to determine the appropriate preprogrammed EA tech-
nique. The effectiveness of this approach degrades as 
radars evolve from fixed analog systems to program-
mable digital variants with unknown behaviors and 
agile waveforms.1 Future radars will probably present an 
even greater challenge as they will be capable of sens-
ing the environment while adapting transmissions and 
signal processing to maximize performance and mitigate 
interference effects. Similarly, communications systems 
are able to adapt frequency, modulation and coding, and 
protocol to operate in the presence of various degraded 
channel conditions with the objectives of maximizing 
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Figure 1. Two topics of interest for collaborative EW within APL’s PSMA. The United States will establish spectrum supremacy and 
deliver overwhelming EW effects against adversaries via the employment of collaborative EW. To realize this objective, two challenges 
must be overcome: distributed sensing, where ML AMR will identify specific signals of interest (left); and distributed resource manage-
ment, where sensing and jamming resources are automatically managed in the battlespace (right).
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data throughput while minimizing frame error and bit 
error rates. Furthermore, modern sensor systems’ ability 
to work in a more agile and less deterministic manner 
have been substantially enhanced by advancements 
in hardware, software, and adaptive signal processing. 
Countering these potential threats requires agile EW 
engagement options that adapt EA techniques based on 
the current observed operating parameters and modes 
of the threat at a given snapshot. Often, this kind of 
engagement will require adapting countermeasures at 
machine speed on the threat emitter’s timescale—in 
other words, acting much faster than human operator 
speeds (on the order of milliseconds or microseconds, 
not seconds). Two Defense Advanced Research Proj-
ects Agency (DARPA) programs focus on this problem 
space: the Behavioral Learning for Adaptive Electronic 
Warfare (BLADE) program has successfully applied ML 
techniques to agile communications signals, and the 
Adaptive Radar Countermeasures (ARC) program has 
successfully applied ML to threat radar signals.1,2 Given 
the body of foundational work established in this area, 
the application of ML to the engagement of threat emit-
ters is not discussed further in this article.

Wideband Sensing
One of the key challenges for EW systems is provid-

ing precise situational awareness of the EM spectrum in 
real time to characterize the behavior of observed sig-
nals and determine what is friendly, threatening, and 
neutral. Adversary sensing and communication systems 
are broadening their use of the EM spectrum, requiring 
ES sensors to simultaneously observe multiple gigahertz 
of spectrum. Traditional ES systems have limited ability 
to simultaneously monitor large swaths of the EM spec-
trum and often resort to scanning a set of narrowband 
channels. After signal collection, large amounts of signal 
capture data must be processed on a tactical timescale 
to characterize emitters and inform EA responses before 
those measurements become stale. These challenges 
are further exacerbated when accounting for the opera-
tional realities of encountering multiple high-density RF 
emitters operating at different RF power levels, observ-
ing partial signals, and sensing in the presence of high 
levels of onboard and offboard RF interference.

In addition to being valuable in sensor-based appli-
cations (e.g., analog processing), ML methods may also 
potentially have a role in alleviating ES data-processing 
bottlenecks. The benefits of wideband sensing can be 
realized only when such sensing is coupled with a signal 
processor capable of coping with correspondingly large 
information rates. Even when computationally expen-
sive operations are decoupled from the full input stream, 
dense signal environments can still overload down-
stream resources if detections are not filtered efficiently. 
ML techniques may have a role in discarding low-priority 

detections earlier in the processing chain, reducing over-
all system load and saving computational resources for 
processing detections that are mission critical. In other 
words, ML may serve a role by catching critical patterns 
earlier in the processing chain and in fewer steps. This 
advantage applies to one particular next-step application 
for the AMR work presented in this article. The AMR 
work focuses on only modulation recognition, leaving 
opportunities for potentially fruitful ML investigations 
into parameters such as signal characterization via band-
width, center frequency, pulse repetition interval, angle 
of arrival, or a combination of these.

Resource Management
The use of an EW platform’s sensing and jamming 

resources must be balanced on the basis of the specific 
mission and threat environment to effectively engage 
RF communications and radar targets. An EW mission 
may include engaging a range of threats, from well-
known, less-agile threats that require limited sensing 
support to complex and adaptable threats that require 
precise sensing and engagement schedules to track and 
defeat. Traditional EW sensing and jamming resources 
from a single platform are managed and scheduled on 
a timescale that can be allocated before the mission or 
adapted during the mission by an operator. However, 
the number of adaptable adversary targets that must be 
sensed and engaged is growing beyond what is feasible 
with traditional human-in-the-loop methods. Maintain-
ing effectiveness on threat emitter timescales requires 
autonomous optimization methods that balance and 
allocate EW resources at machine speed. Future distrib-
uted, collaborative EW missions that include multiple 
platforms working together and adapting to achieve spe-
cific EW mission objectives will necessitate distributed 
resource management.

This seemingly intractable problem can be simpli-
fied if we take a Bayesian perspective. At each point in 
time, the operator has to consider multiple competing 
hypotheses of what the adversary is doing. The operator 
then has to consider what the best course of action is 
from a set of possible hypotheses. These hypotheses can 
be enumerated and assigned real values representing the 
strength of each hypothesis based on the accumulated 
evidence gathered. Bayesian probability theory allows 
us to represent units of evidence as real numbers that 
can be used to strengthen or discard competing hypoth-
eses. This approach allows us to automatically weigh the 
plausibility of different hypotheses and make decisions 
that are based on the hypotheses most supported by the 
evidence. We believe ML has the potential to provide 
significant capability advancement in resource manage-
ment for EW premission planning and near-real-time 
decision-making during EW operations.
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EMITTER IDENTIFICATION INFORMED BY AMR
The emitter identification process allows ES and sur-

veillance receivers to distinguish emissions from threats 
from those that are friendly or neutral. Consequently, 
ES systems must handle a broad set of received wave-
forms, from ones commonly used in commercial bands 
to military-specific radar and communications signals. 
ES systems have relied on pulse processors that use fixed 
descriptors to detect, filter, and extract emitter informa-
tion from received RF modulated pulses. Modulation 
format is one descriptor that ES systems use when char-
acterizing active emitters while surveying the spectrum.

One of the many challenging tasks an EW system 
must accomplish is efficiently determining the modu-
lation format of a detected signal. This topic is more 
broadly known as AMR. Traditional pulse processors 
treat modulation format as a single feature that can 
be coupled with other waveform characteristics used 
to identify active emitters. Many pulse processors will 
match clusters of pulse descriptors against onboard 
libraries to identify which emitter is being observed. Suc-
cessful application of this traditional matching approach 
presupposes that the signal has been previously observed 
and its characteristics are known.

A second challenge for AMR is recognizing and inter-
preting newly observed modulation types or emitter pat-
terns when they are encountered. Novel emissions have 
proved to be challenging for systems that rely on pre-
defined libraries of known emitter characteristics. Before 
software-defined threats became a reality, the process of 
capturing and characterizing novel emissions had been a 
historically tractable problem. Modern adaptive threats, 
however, have driven the need for sensing techniques 

that can rapidly recognize and characterize novel detec-
tions at machine speeds. Figure 2 illustrates the applica-
tion of AMR to a notional tactical EW scenario.

Motivation behind Feature Learning for AMR
Although several deep learning approaches have 

already been applied to AMR,3–5 in fiscal years 2018 and 
2019, the Feature-based Electronic Attack Trained Hyper-
surface Responses (FEATHR) IRAD project explored 
deep feature representation models in the context of 
AMR. The effort highlighted several distinct advantages 
of these models over other types of deep neural network 
(DNN) models directly trained for classification.

Much of the existing work applying deep learning 
to AMR has focused on using neural network models 
to learn categorical modulation assignments from a 
fixed set of labeled examples. A variety of studies have 
shown this approach to be a viable way of performing 
AMR. However, training a model solely for the purpose 
of classification inherently bounds the model’s predic-
tions to the set of labeled classes in the training data. 
This restriction results in the trained model’s inability 
to generalize beyond the set of labels presented during 
training. Extending the class set for a neural network 
classifier requires a lengthy process of collecting new 
examples, labeling the examples, and retraining the 
model with the extended set.

When training a DNN with a classification objective, 
a model will typically use a fully connected output layer 
coupled with a normalized exponential to yield a confi-
dence score across the set of classes being learned. Thus, 
any features learned are never directly observed because 
they are internal to the network’s architecture. However, 
this is not necessarily the case if the learning objective 
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Figure 2. Application of AMR to a notional tactical EW scenario. Shown here is an example of how online AMR may be used to char-
acterize various threats. The upper-left diagram represents a time-frequency distribution of raw detections. The bottom left diagram 
represents identified radar pulse combinations where each distinct color is used to represent a pulse with specific characteristics.
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is targeted at learning features directly. In this context 
of this problem, features can be thought of as distinctive 
patterns in the data that are characteristic of a particular 
signal modulation. This brings us to a set of techniques 
appropriately called feature learning. While similar to 
feature extraction, feature learning does not assume 
predefined rules or transforms for obtaining features 
directly; rather, desired features are learned through 
training with an objective task.

To address the need to recognize and categorize open 
sets of modulations beyond a set of predefined labels, 
we examine a feature learning approach to perform-
ing AMR where features that distinguish differences 
in modulation types, rather than the modulation types 
themselves, are learned first. The model’s objective is to 
learn a transformation that maps examples to a position 
in a multidimensional feature space.

The Triplet Loss
In 2015, researchers at Google Brain published the 

first paper on the triplet loss showing how to classify 
individuals.6 Because the same individual can look dif-
ferent depending on a variety of factors (e.g., lighting, 
clothing, perspective), researchers realized that there 
was a need for a method to classify many individuals 
under nonlinear conditions. By defining the axes of a 
high-dimensional output space using a neural network, 
they found that individuals could be clustered together 
in this space. The term embedding is often used to 
describe the N-dimensional vector that corresponds to 
a position within this output space.

Models trained using the triplet loss, a feature learn-
ing approach, yield a transformation that allows data to 
be mapped into a learned feature space. Examples are 
aggregated in this space on the basis of learned relation-
ships between modulation classes presented during the 
training process. This allows us to subsequently analyze 
these features to both classify known modulations and 
categorize newly observed examples that are not in our 
set of existing labels. We implement a two-step approach 
to first learn a feature representation transform using a 
residual DNN model7 trained with the triplet loss. Once 
the model is trained, we explore two methods for char-
acterizing this feature representation with the learning 
objectives of modulation classification and anomalous 
modulation recognition.

The triplet loss is a supervised training objective 
designed for use with Siamese networks. A Siamese net-
work can be thought of as multiple mirrored instances 
of a single artificial neural network model, where each 
instance is initialized and jointly updated the same way 
throughout the training process. Each output is treated 
as a mapping of an input example into a position within 
a common N-dimensional Euclidean space (also called 
an embedding space). For training configurations using 

the triplet loss, a Siamese network model with three 
instances is created, as shown in Figure 3.

The loss, once calculated at the output, is back-
propagated through each network instance. There are 
three types of samples within each batch of training 
data referenced by the triplet loss: anchors, positives, 
and negatives. The anchor and positive are two exam-
ples that share a common class label, whereas the nega-
tive example must belong to a different class. The triplet 
loss adjusts the relative distances of the anchors, posi-
tives, and negatives using Eq. 1:6

 ||f (a) – f (p) + α|| ≤ ||f (a) – f (n)||. (1)

Eq. 1 states that the distance between the anchor 
and positive must be less than the distance between 
the anchor and negative by a margin distance of α. 
Larger margins spread samples farther apart in the 
N-dimensional space being learned. The f in this case 
is our neural network appropriator that generates an 
encoding on the basis of an input. Satisfying the triplet 
loss equation requires that the positive sample be moved 
closer to the anchor and/or the negative one be pushed 
farther away. The training process adjusts the axes of 
the N-dimensional space, which simultaneously adjusts 
the positions of positives and negatives relative to their 
anchors. Training consists of multiple iterations selecting 
triplets with new anchors, positives, and negatives. The 
net effect of this process causes same-labeled examples 
to gravitate toward one another, forming clusters. Sets 
of valid triplets can be either formed before training 
(offline triplet mining) or computed dynamically during 
training (online triplet mining).8 Eq. 1 can be rewritten 
in the following form to perform triplet training:

 max(||f (a) – f (p)|| – ||f (a) – f (n)|| + α,0). (2)

Anchor

Positive

Negative

Shared weights Triplet loss
Inputs

Network

Figure 3. Example of a triplet loss configuration using a Sia-
mese network training configuration. A Siamese network can 
be thought of as multiple mirrored instances of a single artificial 
neural network model, where each instance is initialized and 
jointly updated the same way throughout the training process. 
Each output is treated as a mapping of an input example into a 
position within a common N-dimensional Euclidean space (also 
called an embedding space).
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Eq. 2 forces the loss to go to 0 when the anchor, posi-
tive, and negative are already in the proper orientation. 
By modifying the loss function, weights and biases of 
our network are adjusted only when the anchor, posi-
tive, and negative are improperly oriented. This version 
of the equation stabilizes training by preventing weights 
and biases from being adjusted when the orientation of a 
given triplet is already valid. The trained N-dimensional 
space is used as our feature representation. When new 
examples are mapped into the new N-dimensional 
space, the data will be clustered appropriately as shown 
in Figure 4. In this new feature space, the Euclidean dis-
tances between the data points represent learned differ-
ences in features.

Using the triplet loss, we create a feature representa-
tion where Euclidean distances between samples corre-
spond to learned differences in the data. Once mapped 
into this feature representation, new waveform examples 
can be classified through association or identified using 
unsupervised techniques.

Figure 4a shows a notional feature space repre-
sentation produced by an untrained neural network 
model with randomized weights and biases. Examples 
are randomly distributed throughout the feature space 
when classes are encoded with an untrained network. 
Untrained feature spaces do not yet contain meaningful 
learned features, and there is no 
way to distinguish classes from 
one another.

Figure 4b shows a notional 
feature space where the neural 
network has been trained with 
classes A, B, and C using the 
triplet loss. In the trained fea-
ture representation, the weights 
and biases of the neural network 
have been adjusted using the 
triplet loss to properly orient the 
positions of each class relative to 
one another. Axes of the learned 
feature space correlate to features 
discovered through the training 

process. In the next section, we 
explore how a common feature 
space can allow proper place-
ment of trained classes and also 
be used to infer the location of 
new classes on the basis of simi-
larities in learned attributes.

Figure 4c shows an example 
of identifying a notional, previ-
ously unobserved class mapped 
into an existing feature space. 
Existing learned features can be 
exploited to characterize new 
classes not part of the original 

training data distribution. Once a common feature rep-
resentation has been established using a DNN model 
with the triplet loss, a parametric approach is then used 
to assign labels to groups of points for classifying new 
examples. Specifically, Gaussian clusters are used to char-
acterize regions of the feature space that coincide with 
a specific class. An unsupervised clustering approach is 
then used to account for regions with unlabeled examples. 
Our approach uses a clustering technique called OPTICS 
(ordering points to identify the clustering structure) to 
assign new clusters to unknown classes.9 The OPTICS 
clustering method has several properties that make it a 
good fit for this application. First, it is a density-based 
clustering approach and therefore has the ability to reject 
noisy points located in regions of low density. Second 
OPTICS uses an additional hierarchical term to account 
for multiple clusters, each with different densities.

Anomaly Detection Using Learned Features

Once a set of modulation features have been learned, 
they may be used in performing tasks such as classifi-
cation or anomaly detection. Figure 5 shows a process 
that fits a multivariate Gaussian model to the learned 
features for each modulation type. Anomalies are deter-
mined by fixing a log-likelihood threshold value for each 

(a) Untrained feature space (b) Trained feature space (c) Trained feature space

z z z

y y y

x x x... ...

Figure 4. Feature space representations before and after training. (a) Examples are randomly 
distributed when mapped into the untrained feature space. (b) Once trained, similar examples 
are aggregated to common locations in the feature space. (c) Placements of new example types 
depend on the learned features of the existing classes.

Association to Gaussian model

New class detected

No association possible Noise detected

Feature representation

OPTICS

Gaussian association

Terminal node

Decision processing

Figure 5. Flow diagram of an anomalous class identification process. This process fits a mul-
tivariate Gaussian model to the learned features for each modulation type. Anomalies are 
determined by fixing a log-likelihood threshold value for each of the Gaussian models. This 
threshold serves as a decision boundary for associating new examples. Examples that do not 
associate are also captured and classified as anomalous, indicated by the bottom branch.
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of the Gaussian models. This threshold serves as a deci-
sion boundary for associating new examples. Examples 
that do not associate are also captured and classified as 
anomalous. This is indicated by the bottom branch in 
Figure 5. Figure 6 illustrates the 3-D projections of wave-
forms mapped within the trained feature space.

If we consider more than one type of anomaly detec-
tion, an unsupervised clustering step is needed to iden-
tify the various possible anomaly types among detections 
classified as anomalous.

The RF Modulation Data Set
In the experiments described below, we used the open-

source RadioML2018 data set released by DeepSig.10 The 
data set consists of roughly 2.5 million examples of 24 
synthetically generated communications modulation 
types. Each example is represented as a 1,024-length 
in-phase and quadrature (IQ) vector sampled in time 
using floating points. The data include multiple envi-
ronmental distortions that are commonly observed in 
collected data. Examples are labeled with a modulation 
tag as well as a discrete signal-to-noise ratio spanning a 
range of –20 to 30 dB. The set of modulations in these 
data are used in two ways: as examples and categories 
for supervised training and as holdouts for unsupervised 
anomaly detection. Supervised training uses IQ vectors 
paired with their appropriate modulation labels, whereas 
holdout modulations are not given a modulation label. 
We first learn a feature representation using a subset of 
22 modulation types and demonstrate an unsupervised 
approach for identifying new classes using two modula-
tion categories—frequency modulation (FM) and 16 
quadrature amplitude modulation (16QAM)—as hold-
out classes.

Supervised Training with Holdout Classes
We partitioned our data set into two categories: (1) a 

supervised category of 22 known classes subdivided 
into an 80% training partition and a 20% evaluation 
partition and (2) a category with two holdout classes 
(FM and 16QAM were withheld during training). Our 
DNN model was trained on the 22 known modula-
tions (i.e., excluding the two holdouts). Following the 
procedure described above, we fit multivariate Gauss-
ian distributions to each modulation feature embedding 
in the training partition. The joint distribution across 
all known modulations is used to define a threshold 
distance. This threshold is used as a multidimensional 
Gaussian boundary for associating new samples to one of 
the existing classes or for flagging unidentified samples. 
Samples that fall within this defined multidimensional 
boundary (indicated by θ in Eq. 3) are associated with 
one of the existing modulation categories. Otherwise, 
the samples are given the unidentified label. Note that 
this step does not assume any prior information about 
unidentified points; rather, it only excludes outlying or 
anomalous examples from classification into a known 
modulation category:

 (x – μ)T S–1 (x – μ) ≤ θ. (3)

Our goal is now to identify our holdout modulations 
as new clusters among our anomalous examples. To do 
so, we run OPTICS9 against the set of anomalous exam-
ples identified during the previous step to create labels 
for examples that fall in regions with sufficient density.

The confusion matrix in Figure 7 shows the accuracy 
of this process for examples at a signal-to-noise ratio of 
10 dB. The true holdout classes (FM and 16QAM) are 
shown as grayed-out columns. Here we show new clus-
ter 1 and new cluster 2 as identified categories showing a 
strong correlation with the set of examples in the hold-
out classes. The unidentified category contains examples 
that fell outside our distribution threshold and were cat-
egorized as noise samples by OPTICS. New cluster 3 is a 
false detection produced by a dense region of misclassi-
fied unidentified samples from other modulation classes.

Next Steps
We view feature learning as a generalizable 

approach for building rich feature representations of RF 
modulations, enabling the identification and classifica-
tion of newly observed RF signals. In many edge applica-
tions in the RF domain, it is often impractical to retrain 
neural network models once they are deployed. Using a 
consistent learned feature representation coupled with 
a simpler classification model enables dynamic recog-
nition of RF modulations without the high processing 
demands of retraining a single model. Postprocessing a 
feature representation with a simple classification model 

Figure 6. 3-D projections of waveforms mapped within the 
trained feature space. Left, A projection of waveforms mapped to 
the trained feature space, where each color represents a different 
modulation. Positions in this space correspond to different com-
binations of learned features. Waveforms with similar/matching 
sets of learned characteristics are placed near each other, form-
ing a cluster. Right, A projection containing only points not 
associated with any of the modulation clusters produced during 
the training stage. Upon running OPTICS, green points were 
identified as noise, while blue and red points were given a new 
“unidentified modulation” label.
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requires far less computing power than that needed for 
retraining. Furthermore, unsupervised techniques can 
be employed to search for new waveforms using exist-
ing learned feature representations that have shown sig-
nificance in distinguishing other modulations. We are 
interested in expanding on several elements of this work.

First, we anticipate that several factors may improve 
this technique’s performance. The original implemen-
tation of the triplet loss was trained using a far greater 
class count than what we used in this work. Higher class 
counts allow the network to learn a richer feature rep-
resentation capturing finer differences between samples. 
In our experiments, we used a data set consisting of 
24 unique modulation types. However, we anticipate 
that training with additional unique modulations will 
improve performance by increasing the variety of the 
triplets used during training.

Second, when considering a breadth of signal types, 
note that different types of features are important in dis-
tinguishing signal types from one another. For example, 
the feature set distinguishing 16QAM modulation from 
quadrature phase shift keying will be different from the 
feature set distinguishing a linear frequency-modulated 
pulse from a nonlinear frequency-modulated pulse. 
Because of this, it makes sense to consider hierarchical 
patterns in how signals relate to one another. Other 
active APL efforts have demonstrated success in using 
hierarchy in performing AMR with DNNs. A potential 
follow-on research effort may be to explore how fea-
ture learning can be combined with signal hierarchies 
to improve classification performance on a broad set of 
signal types. One potential solution may involve con-
structing a nonbinary classification tree using a separate 
learned feature set at each decision point. This approach 

0.00 0.00 0.00 0.04 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00

0.00 0.00 0.00 0.04 0.00 0.93 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.04 0.00 0.02 0.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.90 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.94 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.93 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.01 0.89 0.04 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.01 0.04 0.89 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.91 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.88 0.03 0.01 0.02 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.89 0.00 0.01 0.01 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.92 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.90 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.85 0.03 0.06 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.02 0.02 0.87 0.03 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.04 0.04 0.87 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.79 0.19 0.00 0.01 0.00 0.00

0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.29 0.68 0.00 0.01 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.93 0.07 0.00 0.00

0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.59 0.00 0.00

0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.91 0.04

0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.94

32PSK
16APSK
32QAM

FM
GMSK

32APSK64
QQPSK

8ASK
BPSK
8PSK

AM-SSB-SC
4ASK

16PSK
64APSK
128QAM

128APSK
AM-DSB-SC
AM-SSB-WC

640AM
QPSK

256QAM
AM-DSB-WC

OOK
16QAM 0.00 0.00 0.88 0.06 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

N
ew

 C
lu

st
er

 3

N
ew

 C
lu

st
er

 2

N
ew

 C
lu

st
er

 1

U
ni

de
nt

ifi
ed

32
PS

K

16
AP

SK

32
Q

AM FM

G
M

SK

32
AP

SK
64

Q
Q

PS
K

8A
SK

BP
SK

8P
SK

AM
-S

SB
-S

C

4A
SK

16
PS

K

64
AP

SK

12
8Q

AM

12
8A

PS
K

AM
-D

SB
-S

C

AM
-S

SB
-W

C

64
0A

M

Q
PS

K

25
6Q

AM

AM
-D

SB
-W

C

O
O

K

16
Q

AM

Predicted labels

Confusion matrix

Tr
ue

 la
b

el
s

Figure 7. Confusion matrix illustrating the accuracy of the AMR process for examples at a signal-to-noise ratio of 10 dB. The true hold-
out classes (FM and 16QAM) are shown in the grayed-out columns. New cluster 1 and new cluster 2 are identified categories showing a 
strong correlation with the set of examples in the holdout classes. The unidentified category contains examples outside of the distribu-
tion threshold and categorized as noise samples by OPTICS. New cluster 3 is a false detection produced by a dense region of misclassi-
fied unidentified samples from other modulation classes.
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could allow smaller/simpler models to be used because 
each feature set would no longer have to capture the full 
set of signal types.

Third, this approach assumes examples are captured 
as detections represented as an IQ vector isolated in time 
and frequency. There is probably utility in exploring 
various other waveform representations, such as complex 
time-frequency data or sparse detection samples. Further-
more, combining learned modulation-specific features 
with other contextual data such as direction, wave polar-
ization, or geographic location will be necessary to form 
specific emitter identities with high confidence. Finally, 
the source and characteristics of the false detection pro-
duced in Figure 7 are an area of further investigation.

AUTONOMOUS RESOURCE ALLOCATION
An automated solution to emitter characterization, as 

previously described, provides a useful means of mapping 
observed RF data into specific observed adversary threat 
emitters. However, this alone is not sufficient for provid-
ing a robust EW response. The AMR results presented in 
the previous section generally assume isolated detections 
and complete signal captures are available to inform the 
AMR decision process. The real-world situation an EW 
platform typically encounters is much more complex. 
Usually, an EW platform must jam more possible threat 
emitters across more frequencies than it can simultane-
ously cover and at duty cycles that do not allow sufficient 
receiver sampling of the threat environment. Therefore, 
the limited resources available to an EW system must 
be appropriately tasked such that accurate snapshots 

of threat emitters and their corresponding behaviors 
are balanced with jamming responses. We refer to the 
problem of how best to allocate our available EW assets 
as the resource-allocation problem and illustrate it with 
operational context in Figure 8.

Although in practice we may wish to allocate many 
assets to optimize system performance, here we consider 
resource-allocation problems with two distinct action 
types: sensing and jamming. Sensing refers to the action 
of detecting and identifying the type of waveforms 
present in the environment; jamming refers to the 
action of interfering with an adversary’s waveforms. In 
general, the objective is to maximize jammer on-time 
and minimize useful sensing time (i.e., jammer off-time). 
The two problems are interconnected because sensing 
of the environment informs tailoring and focusing of 
jammer techniques to improve overall jamming effec-
tiveness, but at the expense of jammer off-time.

In fiscal years 2020 and 2021, PSMA funded the 
Intelligent Learning Electronic Attack Maestro (IL’EA 
Maestro) IRAD project to develop a method of address-
ing the resource-allocation problem. The long-term 
vision of IL’EA Maestro is to enable future deployment 
of scalable, distributed, multiplatform approaches to 
enable autonomous resource allocation. Although one 
may use myriad potential methods to design such a 
system, the IL’EA Maestro team has identified the use 
of model-based stochastic optimization coupled with 
approximate Bayesian inference as a particularly prom-
ising approach. In contrast to standard off-the-shelf 
reinforcement learning algorithms, this approach allows 
system designers to incorporate significant domain 
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Figure 8. Illustration of autonomous resource allocation in a tactical EW setting. For illustration only, the ES tasks are shown and shapes 
represent emissions from Red threat emitters. If ES tasks are scheduled without intelligence, sensing intervals do not optimize sensing 
of pulses (top left diagram), shown as dashed boxes that miss many of the pulses. If tasks are scheduled intelligently, they may be per-
formed more efficiently (bottom left diagram), where ES intervals are dynamically scheduled to capture more pulses.
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knowledge (known limitations of adversary capabilities, 
observed behaviors based on prior sensing of adversary 
threats, etc.) into the agent’s design. Whereas with a 
standard reinforcement learning algorithm, we would 
hope the agent could determine adversary vulnerabili-
ties on its own if given enough training time on a simu-
lator, building such knowledge into the system decreases 
the learning burden. The net effect is that the system 
performance increases because less data are required to 
learn a useful model of the adversary, thus requiring less 
overall sensing time. In the remainder of this section, 
we describe the resource-allocation problem and explore 
early results of the IL’EA Maestro project.

The Resource-Allocation Problem
One way to address autonomous resource allocation is 

through Bayesian probability theory (see, e.g., Koller and 
Friedman11). We start by initializing a broad set of pos-
sible adversarial behaviors given a priori information—
for example, expected adversary frequency ranges and 
timing patterns. We then allocate resources to col-
lecting signals from different sections of the frequency 
spectrum at different moments in time to build a set of 
evidence that can support the belief that a particular 
strategy is followed, or not. After each attempted signal 
acquisition (i.e., scan), we update our beliefs about which 
behaviors are possible to reflect the new evidence added 
to our knowledge base.

To better frame the developments of this section, 
let us now formally describe a general instance of the 
resource-allocation problem considered. We consider 
a partition of the subset of the RF spectrum of inter-
est. We consider each element of the partition to be a 
particular frequency channel, of which there are a total 
of c channels. We partition the time axis into discrete 
elements, each of which is of duration Δt. If we denote 
by C the set of channels and T the set of times under 
consideration, we have that the signals of interest under 
consideration evolve as functions of time on the C × T 
product space. Figure 9 shows one potential emitter rep-
resented in a discrete time and frequency space, where 
C = {1, 2,..., 9}, T = {1, 2,…, 20}, and colorized grid spaces 
represent individually received bursts from within a 
pulsed waveform. Note that the red signal is frequency 
agile—it jumps from channel 4 to channel 7 between 
the fourth and fifth bursts.

We denote by S the set of signals of interest in the 
environment. We assume the ability to identify each 
received pulse as a particular signal of interest as each 
pulse is encountered. Importantly, we do not assume full 
prior information regarding the signal’s pattern behavior 
(e.g., pulse length, frequency hop sequence, duty cycle). 
We assume that (1) the set of channels each signal can 
appear on is contiguous (i.e., that it appears between a set 
minimum and a set maximum frequency); (2) the signals 
of interest are periodic; and (3) signals are not mutually 

interfering (i.e., two signals cannot occupy the same 
frequency channel at the same time). Strictly speaking, 
these assumptions simplify the analysis required of our 
current prototype. Relaxing these assumptions to accom-
modate a larger set of possible signals is possible, although 
doing so comes at a cost of requiring more data to learn 
useful signal characteristics. Which set of assumptions is 
best in practice will be determined by context.

We consider a case in which the platforms under con-
sideration have both sensing and jamming capabilities. 
We assume each transceiver capable of performing a 
sensing or jamming action can do so only over a contig-
uous span of channels and that if multiple transceivers 
are available, they can be allocated independently with 
the understanding that they can cause self-interference 
if not coordinated appropriately.

Bayesian Agency
Bayesian agency is a fundamental approach for devel-

oping intelligent learning systems that must interact 
with the world in a meaningful way. It can be consid-
ered as a nontraditional, abstract way of designing rein-
forcement learning agents that have strong assumptions 
built in about the nature of the world and how to reason 
about it. Such assumptions can and should be designed 
in conjunction with human subject-matter experts. 
These assumptions include (1) the set of hypotheses the 
agent considers as possibilities for the world; (2) a distri-
bution of prior beliefs regarding the relative likelihood 
of those possibilities; (3) a method of incorporating data 
obtained from environmental observations to update the 
beliefs regarding the agent’s underlying hypothesis; (4) a 
method for assessing the relative value of a potential 
sequence of future actions; and (5) a method for choos-
ing a particular action to apply to the environment. We 
may decompose items 1–5 into a set of behavior blocks 
as illustrated in Figure 10.

We may regard items 1–3 as constituting the agent’s 
learner (object A in the figure), item 4 as constitut-
ing the agent’s evaluator (object B in Figure 10), and 
item 5 as constituting the agent’s actuator (object C in 
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Figure 9. A potential emitter represented in a discrete time and 
frequency space. Colorized grid spaces represent individually 
received bursts from within a pulsed waveform. The signal in red 
jumps from channel 4 to channel 7.
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Figure 10). We see that the agent interfaces with the real 
world (the environment; object D in the figure) through 
the actuator, which applies an action to the environ-
ment, and the learner, which takes in an observation 
from the environment.

A strength of this approach is that appropriate selec-
tions for the learner, evaluator, and actuator can sig-
nificantly improve the rate at which the agent learns 
to effectively interact with its environment. It is worth 
noting that particular choices of assumptions can restrict 
the agent from being general in the sense that the set 
of feasible control policies admitted by the assumptions 
may be strictly smaller than the set of all feasible control 
policies. If we so choose, we can design the learner, eval-
uator, and actuator to mimic standard general-purpose 
reinforcement learning algorithms such as Q-learning, 
deep Q-learning, policy gradient, and so forth.12 How-
ever, by constructing them with a specific purpose in 
mind, we can attain good performance with less train-
ing time than we can using an off-the-shelf approach. 
Therefore, the agent’s designers are themselves in con-
trol of how much generality is lost.

Before discussing any particular technical details 
involved in developing a Bayesian agent for the resource-
allocation task considered here, let us first discuss some 
abstract principles required to design a Bayesian agent 
that facilitates a high level of operation: approximate 
Bayesian belief propagation, belief-driven action evalu-
ation, and action selection.

Approximate Bayesian Belief Propagation
In an ideal setting, Bayes’ theorem (Eq. 4) is an opti-

mal method for updating belief distributions (i.e., the 

set of probability distribu-
tions over the set of pos-
sible hypotheses; see, e.g., 
Pearl13). However, when the 
sets of hypotheses and/or 
possible observations grow 
too complex, exact belief 
propagation becomes intrac-
table. Concretely, without 
some context-dependent 
simplifying assumptions, the 
computation of the marginal 
probabilities required by 
the Bayesian belief update 
expression requires margin-
alizing over all possibilities. 
This operation typically 
grows exponentially with 
the size of the observation 
set because all combinations 
of observations must be 
explicitly considered. There 

is a wide body of literature studying approximate Bayes-
ian learning/belief propagation.14

 . (4)

The key takeaway is that exact belief propagation, in 
the sense that the designed agent follows Bayes’ theorem 
exactly as prescribed, is usually too complex to be reli-
ably incorporated into an agent’s design. This does not 
imply that nothing reasonable can be done. However, 
it does imply that a certain amount of subject-matter 
expertise is required in choosing an appropriate method 
of belief propagation for a particular application. For 
details regarding how this can be done in our context, 
refer to the example in the appendix.

Belief-Driven Action Evaluation
We now move to the topic of belief-driven action eval-

uation. Under ideal circumstances, we would have access 
to a perfect model of the world, be it a set of analytical 
mathematical relations or a computational oracle. How-
ever, this is often not the case, as with resource allo-
cation for EW. Nonetheless, some means of evaluating 
the future consequences of present and past actions and 
observations is necessary for an agent to make intelli-
gent decisions. Instead of attempting to learn or design 
a perfect model of the agent’s environment, we use the 
distribution of the agent’s current beliefs for this subtask.

From the above, we see how to design a mechanism 
for updating a distribution over the agent’s set of pos-
sible hypotheses. Using such a distribution, it is easy to 
understand that it is possible to compute statistics on 
the return awarded to an agent for a particular sequence 
of actions. If the set of hypotheses and their associated 
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Figure 10. Architecture of a Bayesian agent. Items are decomposed into a set of behavior blocks. 
The agent interfaces with the real through the actuator, which applies an action to the environ-
ment, and the learner, which takes in an observation from the environment.
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belief distributions are sufficiently simple, this action 
may be done analytically, and closed-form evaluations 
can be used to simulate the objective. However, the 
general case requires that some form of sample-based 
approximation algorithm be implemented.

It is at this point worth noting that many methods 
can be used to evaluate the consequences of actions. 
As is the case in standard reinforcement learning, we 
could simply evaluate the expected return of each action 
and select the best alternative according to our current 
beliefs. However, we could equally well design instead 
an optimization problem, the solution—or approximate 
solution—of which informs the agent’s actions. Per-
haps the most central distinction to be made on this 
point is that an optimization problem can be specified 
with known explicit constraints, where the design of a 
reward function hopes to sufficiently encode constraints 
through associating negative rewards (i.e., penalties) 
with operationally infeasible state/action pairs. A reader 
fluent in modern control theory will recognize this 
distinction: one that separates receding horizon optimal 
control and model predictive control. In the former, the 
common practice is to use a penalty function to enforce 
constraints on control signals. In the latter, explicit con-
straints are usually built into the optimization problem 
used to implicitly define the control law (see, e.g., Bor-
relli, Bemporad, and Morari15).

Action Selection
The last subtask to consider in the design of a Bayes-

ian agent is action selection. This may seem trivial. 
It is tempting to assert that one can always simply 
select the best action as specified by the optimization 
method developed in the previous subsection. However, 
such actions are not always unique. In fact, empiri-
cally, resource-allocation problems often include many 
actions with the same expected value. This may occur, 
for example, if several signals to be jammed are given the 
same priority weight and are equally likely to appear at a 
particular moment in time. In this case, one must care-
fully consider how to select a particular optimal action.

Of course, one can select an action randomly (even 
arbitrarily) over the set of all optimal actions without 
explicitly affecting the predicted quality of the system’s 
performance. However, it has been observed to be ben-
eficial to select actions according to a secondary pur-
pose. For example, if one can easily generate statistics 
of the action’s rewards, one can choose the expected 
reward as a primary objective and minimizing variance 
among actions with the optimal expected reward as a 
secondary purpose. To do so, we can order cost-optimal 
actions according to their estimated variance and select 
the action exhibiting the least variance. Doing so can 
significantly improve the agent’s reliability by reducing 
noise in the effect of the agent’s decisions.

Evaluation of Current Status
Now we can detail the current status of our solution, 

some of the underlying design decisions made, and its 
current performance. The choice for a set of hypotheses 
is straightforward enough: given prior assumptions about 
how many signals exist in the environment and their 
corresponding periods, a finite set of possible signals can 
be generated. This is our set of hypotheses.

As data are collected from the environment, they are 
used to update the agent’s beliefs regarding the hypothe-
ses. As evidence is collected from the environment using 
scanning resources, the probability associated with cer-
tain hypotheses will increase, indicating they are more 
likely to be true. In the case of our solution, we make 
certain axiomatic assumptions about the world, which 
we try to ground in realism. This is done in an effort to 
limit the extent of the hypothesis set to only cases that 
are operationally plausible.

The method for updating the distribution of beliefs 
is somewhat more abstract. If the agent has performed a 
scan at a particular time t and has observed a particular 
signal q at time t, the agent then rules out any hypoth-
eses that state that signal q does not exist at time t. The 
process accumulates more information until eventu-
ally only the particular hypotheses that are true for the 
environment remain. Likewise, we update the agent’s 
beliefs whenever a signal is observed on a particular 
channel. Such an observation can be used to support 
any hypotheses about which signals appear on the par-
ticular channel. At a minimum, this causes the agent to 
believe that the signal is more likely to remain in the 
particular channel in the immediate future. However, 
some observations can change the agent’s beliefs more 
dramatically—for example, by informing the agent that 
a particular signal can exist on a channel on which it 
had hitherto been unobserved. The method for evaluat-
ing the value of the agent’s action is likewise involved.

Abstractly, the goal of the resource-allocation agent 
is to learn what is happening in the environment and 
how best to interfere with the adversary’s actions. To this 
end, a stochastic optimization problem is designed on 
the basis of the agent’s current belief state. If the agent 
is more certain about how the environment is going 
to act at a particular moment, the objective prioritizes 
jamming adversarial signals highly. If the agent does 
not have a strong belief about what is going to happen 
presently or in the near future, information gathering 
in the form of scanning is prioritized. When well speci-
fied, such an optimization problem induces a behavior 
that quickly discovers, characterizes, and jams highly 
valued adversarial signals. Concurrently, it gradually 
learns of the behavior of lower-value signals and how 
best to block them without sacrificing performance with 
respect to high-value signals.

To investigate this further, let us look at an exam-
ple of a resource-allocation problem and our current 
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method’s performance with respect to it. We consider 
an environment with 24 frequency channels and eight 
distinct adversary emitters. The period lengths, pulse 
lengths, and interpulse lengths for each of the signals 
were generated randomly. The signals were dispersed 
randomly in the frequency-time space, where the signals 
were allowed to jump to different frequencies so long as 
(1) the emitter could operate on the desired frequency 
and (2) the frequency was available (i.e., not in use by 
other adversarial emitters). The signals were assigned 
utility values taking positive integer values ranging from 
1 to 4 (chosen at random). Utility was accrued for the 
agent whenever a signal was jammed, with the amount 
awarded being the signal’s value.

Figure 11 summarizes the statistical performance of 
three resource-allocation algorithms: (1) a strategy that 
jams adversarial emitters to accrue optimal expected 
rewards after collecting sufficient emitter pattern data 
(in blue), (2) uniformly random jamming across chan-
nels (in orange), and (3) jamming performance assum-
ing perfect knowledge of the emitter patterns (in gray). 
Note that each algorithm was scored on its ability to jam 
appropriate signals, and the signals present had myriad 
scoring weights. Signals were assigned weights roughly 
in proportion to their perceived importance so that 
higher scores correlate with jamming important adver-
sary capabilities (i.e., those associated with higher utility 
values) more frequently.

One thousand sample runs were performed. Histo-
grams of each strategy’s scores are given in Figure 11, 
where the dashed line of the corresponding color gives 
the simulation’s sampled mean performance. Uniformly 
random jamming performs worst among the three, with 
the intelligent resource-allocation method performing 
second best and the perfect jamming strategy performing 

best. Note that the perfect strategy is not possible to 
implement in practice because it is noncausal, requiring 
perfect information about the future, which an imple-
mented agent would not have access to at run time.

We may be interested in more than just the raw jam-
ming capabilities of the agent, however. Therefore, we 
have compared the learning performance of the intelli-
gent resource agent against a uniform searching strategy 
in Figure 12. Here, the blue histogram (and its associ-
ated mean) depicts the performance of an intelligent 
agent taking actions to reduce its uncertainty regarding 
the operating environment as best as possible at each 
epoch (i.e., time discretization interval), and the orange 
histogram (and its associated mean) depicts the perfor-
mance of an agent that scans uniformly at random at 
each epoch. The intelligent agent learns the adversarial 
signal’s frequency ranges and timing patterns at a faster 
rate than the agent that processes information acquired 
by scanning uniformly at random at all times.

Next Steps
At this stage, it is worth noting that there are clear 

gaps between what has been developed with regard to 
solving the resource-allocation problem and what would 
be required of an operational system. It is easiest to note 
that at least some, if not all, of the simplifying assump-
tions made in the current problem statement will need 
to be altered to adhere to real-world systems. Although 
such work is ongoing and is of technical interest, it is 
beyond the scope of this article.

The current agent considers only the control of a 
transceiver. In practice, each platform is likely to be 
equipped with several distinct sensors and emitters. 
Although the particular implementation details of the 
agent will unavoidably change when this generalization 
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Figure 11. Comparison of jamming performance between resource-management strategies. A strategy that jams adversarial emitters 
to accrue optimal expected rewards after collecting sufficient emitter pattern data is shown in blue, a uniformly random jamming across 
channels is shown in orange, and jamming performance assuming perfect knowledge of the emitter patterns is shown in gray. The 
dashed line of the corresponding color gives the simulation’s sampled mean performance.
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is considered, the basic architecture will remain 
unchanged. Changes will be limited to the evaluator.

The current solution we have developed for the 
resource-management problem is an agent designed to 
take actions based on Bayesian assumptions regarding 
its adversary’s waveforms. As the agent accumulates 
knowledge of its environment, it can update its belief 
distributions, leading to better possible jamming actions. 
The agent is different from traditional reinforcement 
learning agents because it strongly incorporates subject-
matter expert knowledge and makes use of model-based 
stochastic optimization methods for taking actions. The 
model-based stochastic optimization methods allow 
designers to place specific constraints and boundaries 
on the agent to prevent it from taking actions that are 
unfruitful from a designer’s perspective. Our results indi-
cate that this method shows promise for use in single-
agent environments.

We believe that with additional research, this method 
can be extended to multiagent environments composed 
of collaborative EW platforms. Of primary concern is 
the communication and processing delay of distributed 
platforms. Because waveforms travel at the speed of 
light, optimizing this method across a battle group of EW 
platforms remains a challenge. At present, we explicitly 
consider only the control of a single transceiver, but we 
hope that the underlying methodology can extend to 
the multiple transceiver case without requiring a severe 
algorithmic redesign.

CHALLENGES OF APPLYING ML TO EW
Although the potential benefits of applying ML are 

compelling, there are many barriers to achieving an 

envisioned future of ML-enabled autonomous behav-
ior within tactical EW platforms. ML techniques can 
serve as a powerful tool for developing models capable of 
making robust, data-driven predictions. However, when 
developing a model that makes data-driven inferences, it 
is critical that there first be a source of data representa-
tive of the problem at hand. A corpus of training data 
that sufficiently captures the RF environment of inter-
est must be available for training ML algorithms. Let us 
consider two types of RF data sources and their roles in 
constructing RF data sets suitable for enabling ML appli-
cations in EW.

RF Collection
An obvious approach to producing an RF data set is 

to directly record signals of interest from a relevant envi-
ronment. This can be a challenge depending on the con-
text of the problem being addressed. Software-defined 
radio has made capturing large volumes of signals more 
accessible. However, it can still be a challenge to capture 
the breadth of signal types needed to form a robust data 
set from a collection. Also, a signal collection will always 
contain a bias toward the specific environment and the 
receiver equipment with which it was captured. Real-
world data impurities, such as channel fading, multipath, 
and interference, can prove problematic if a clean signal 
set is desired. Under other conditions, collected data can 
yield an advantage in validating models against envi-
ronmental factors to which they may not be robust. An 
additional challenge in working with existing captures is 
that most do not contain sufficient annotations needed 
for supervised learning efforts. This often means that 
additional data munging/manual labeling is required 
before the collection can be used.
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Figure 12. Comparison of learning performance between resource-management strategies. The blue histogram (and its associated 
mean) depicts the performance of an intelligent agent taking actions to reduce its uncertainty regarding the operating environment 
as best as possible at each epoch, and the orange histogram (and its associated mean) depicts the performance of an agent that scans 
uniformly at random at each epoch.
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RF Simulation
An alternative approach to generating RF data is 

simulation. A distinct advantage of this approach is that 
any characterized signal can be produced with parame-
ters varied beyond those that could be feasibly collected. 
However, generated RF data will be only as realistic as 
the effects and impairments programmed into the simu-
lation framework. Furthermore, little additional effort 
is required to capture any desired metadata while simu-
lating. This means that labeled data for training super-
vised ML algorithms can typically be more easily added 
to simulated data sets. Conversely, accounting for the 
proper RF effects can make synthesizing adequately real-
istic signal data a challenge. The fidelity at which obser-
vational effects must be modeled largely depends on the 
problem to which the data will be applied. A rigorous 
approach to validation, such as cross validation with 
labeled RF collections, is also needed to ensure that the 
synthetic data used are appropriately representative of 
the true RF signals they are modeled after.

Other Considerations
Once the aforementioned challenges associated with 

ML training data are overcome, additional challenges 
should be considered before applying ML to an EW 
problem. First, many possible tactical host platforms 
for future integration of ML algorithms may be limited 
by size, weight, and power. Additional size, weight, and 
power typically reduces mission time or functions. This 
means that applying typical ML algorithm-training 
approaches within an enterprise server facility with 
an abundance of graphics processing unit resources 
is not feasible on a tactical platform. Similarly, high-
bandwidth data links to connect platforms to these 
facilities may not be available to support ML applica-
tions. Furthermore, approaches for reliable offline train-
ing with limited retraining and/or online learning are 
needed to bring ML to tactical EW platforms. The EW 
community has a long history of relying on hardware-
in-the-loop and range testing and evaluation to char-
acterize the effectiveness of EW techniques. Improved 
testing and evaluation infrastructure is required to 
characterize the nondeterministic behavior of ML algo-
rithms and build trust and confidence within the devel-
opment, sponsor, and operator communities.

CONCLUSION
PSMA IRAD investments into emitter identifica-

tion and resource management have laid the ground-
work for the future of intelligent and autonomous 
EW platforms. The results of research into AMR and 
autonomous resource allocation have yielded promis-
ing results that showcase the ability for platforms to use 
data-driven techniques and address agile threats quickly 

and effectively. Although these foundational efforts 
demonstrate the feasibility of ML solutions in addressing 
EW gaps, we recommend numerous follow-on research 
efforts to mature these solutions.

One such future research vector involves extend-
ing the problem context from specific modulations or 
signal types to specific emitter IDs. This poses several 
challenges that must first be addressed. The problem of 
determining an emitter-specific ID will probably drive 
the need for other contextual information to be pro-
cessed effectively. Other relevant non-RF factors, such 
as geographic location, time of day/month/year, or other 
mission-specific priors, may influence how captured RF 
emissions are interpreted and thus prioritized.

Although test/development frameworks are capable 
of mirroring real-world scenarios (such as the environ-
ment model used for DARPA’s Spectrum Collaboration 
Challenge16), integration with these high-fidelity spec-
trum environment models will be needed to develop and 
test the next iteration of ML-enabled RF systems. Sev-
eral other PSMA efforts on this front seek to accelerate 
the development and demonstration of future collabora-
tive EW systems. The ongoing Small-scale Broadband, 
Low-latency Environment (SaBLE) effort focuses on the 
development of a hardware-in-the-loop RF environment 
emulation infrastructure. The Collaborative and Adap-
tive Systems EW Simulation effort proposes an event-
driven simulation framework designed with modular 
platform interaction models to simulate complex engage-
ments. By varying the level of fidelity dynamically, the 
simulations address temporal resolution challenges 
encountered when modeling collaborative EW engage-
ments at the signal level.

Ultimately, any fielded, automated solution to EW 
gaps will act in concert with human operators in a 
manner that is understandable to the operators and is 
explainable to other members of the command chain. 
Engineering an interface that allows for both manual 
tuning of different signals for prioritization and manual 
tuning of the balance of effort devoted to observation 
and jamming is straightforward at a technical level. It 
can be accomplished by allowing the user to manu-
ally input different objective functions into the agent’s 
optimization online. However, it is challenging to create 
such an interface that an operator can cognitively 
manage. There are many paths to address this task; 
however, all will require significant design effort and 
consultation with relevant experts (e.g., human factors 
engineers, candidate operators).

Finally, incorporation of automated solutions into 
EW missions requires some level of mission planning. 
The Bayesian agency approach to autonomous resource 
allocation may also extend to mission planning to enable 
optimal placement and employment of EW platforms 
and EW techniques. Application of the work described 
in the Autonomous Resource Allocation section to 
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APPENDIX. AN EXAMPLE BELIEF-DRIVEN EMITTER MODEL—LEARNING AND PREDICTING
Following are details on the process of learning a belief-driven model of an adversary emitter’s transmission schedule in 
frequency and time. These details supplement the Autonomous Resource Allocation section. The example that follows is 
notional—the calculations are not an exact reflection of those in the discussed IL’EA Maestro implementation, nor is the set 
of emitters. Rather, this example is pedagogical, intended to give the reader a concise sense of the complexity of implementing 
an appropriate Bayesian model for the resource-allocation problem.

Problem Specification
Because our focus is on pedagogy, we consider a minimum working example instead of a realistic one. The assumptions stated 
in the article continue to apply here as well. Consider an environment with two emitters. Initially, we know neither the emit-
ters’ timing patterns (i.e., periodicity, pulse length, interpulse length, or rising edge time) nor the emitters’ range of possible 
operating frequencies. Each will be learned for each signal by way of observing emissions, storing the data obtained from the 
emissions, and processing the data appropriately. The remainder of this discussion describes a Bayesian approach to achieving 
the following goals: timing pattern prediction and emitter operating frequency prediction.

Updating Beliefs of Timing Patterns
In this section, we discuss the data storage and processing techniques required to identify the emitters’ timing patterns. 
Although the data processing step is ultimately just an application of Bayes’ theorem, P(A|B) = P(B|A)(P(A)/P(B)), the com-
plexity of the application demands careful consideration. Notably, there is a need to propagate observed data forward in time 
perpetually in order to correctly identify each signal’s characteristics. That is, the belief update process is not Markovian. 
What we have seen in the past (even the arbitrarily distant past) has an effect on our beliefs about an emitter’s signal going 
forward. Because we may well need to run this process for an arbitrarily long time to perform a mission and we can neither store 
nor process online an arbitrarily large amount of data, we must develop a means of storing the relevant pieces of information 
in the infinite stream of observer data in a useful manner.

mission planning would need to take into account 
objectives, the environment, and an accurate model of 
the adversary. Often, the scenarios of interest are based 
on competing adversarial objectives in contested envi-
ronments that yield an advantage for the defender. A 
mission planning application should incorporate the 
prior information of the operator in the formulation of 
the hypotheses. If this is done correctly, the hypotheses 
under consideration by the algorithm will be much more 
relevant to the mission objective. However, the opera-
tor also needs to incorporate uncertainty into the priors, 
which will result in a nonzero probability across a set of 
hypotheses that are possible but considered less plausible 
on the basis of the operator’s knowledge.

In this article, we described two active areas of 
research at APL that are applying ML techniques to EW 
domain-specific challenges. We further outlined EW 
gaps and recommended research topics where we antici-
pate ML will serve a role in future EM operational envi-
ronments. The successful adoption of these technologies 
will probably drive changes in how future EW systems 
are developed, tested, and maintained.

REFERENCES
 1Defense Advanced Research Projects Agency. “Changing how we 

win: DARPA technologies that are making a difference today.” 
Mar. 2017. https://www.darpa.mil/attachments/DARPA_Changing-
HowWeWin.pdf.

 2Defense Advanced Research Projects Agency. “Adaptive Radar 
Countermeasures (ARC).” https://www.darpa.mil/program/adaptive-
radar-countermeasures (accessed Aug. 2, 2021).

 3A. K. Nandi and E. E. Azzouz, “Algorithms for automatic modulation 
recognition of communication signals,” IEEE Trans. Commun., vol. 46, 
no. 4, pp. 431–436, Apr. 1998, https://doi.org/10.1109/26.664294.

 4A. Fehske, J. Gaeddert, and J. H. Reed, “A new approach to signal 
classification using spectral correlation and neural networks,” 
in 1st IEEE Int. Symp. New Frontiers Dyn. Spectr. Access Netw., 
Baltimore, MD, Nov. 2005, pp. 144–150, https://doi.org/10.1109/
DYSPAN.2005.1542629.

 5T. J. O’Shea, J. Corgan, and T. C. Clancy, “Convolutional radio mod-
ulation recognition networks,” arXiv, submitted Feb. 12, 2016; last 
revised Jun. 10, 2016, https://arxiv.org/abs/1602.04105.

 6F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A uni-
fied embedding for face recognition and clustering,” arXiv, sub-
mitted Mar. 12, 2015; last revised Jun. 17, 2015, https://arxiv.org/
abs/1503.03832.

 7K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image 
recognition,” arXiv, Dec. 10, 2015, https://arxiv.org/abs/1512.03385.

 8O. Moindrot. “Triplet loss and online triplet mining in TensorFlow.” 
Oliver Moindrot blog, Mar. 2018.

 9M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “Optics: 
Ordering points to identify the clustering structure,” ACM 
SIGMOD Rec., vol. 28, no. 2, pp. 49–60, Jun. 1999, https://doi.
org/10.1145/304181.304187.

10T. J. O’Shea and N. West, “Radio machine learning dataset genera-
tion with GNU radio,” in Proc. 6th GNU Radio Conf., vol. 1, no. 1, 
2016, https://pubs.gnuradio.org/index.php/grcon/article/view/11.

11D. Koller and N. Friedman, Probabilistic Graphical Models: Principles 
and Techniques. Cambridge, MA: MIT Press, 2009.

12R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, MA: MIT press, 2018.

13J. Pearl, Causality: Models, Reasoning and Inference. Cambridge, UK: 
Cambridge University Press, 2009.

14E. T. Jaynes, Probability Theory: The Logic of Science, G. L. Bretthorst, 
Ed. Cambridge, UK: Cambridge University Press, 2013.

15F. Borrelli, A. Bemporad, and M. Morari, Predictive Control for Linear 
and Hybrid Systems. Cambridge, UK: Cambridge University Press, 
2017.

16D. M. Coleman, Ed. “The DARPA SC2 Colosseum Test Bed,” Johns 
Hopkins APL Tech. Dig., vol. 35, no. 1, 2019, pp. 1–78, https://www.
jhuapl.edu/TechDigest/Detail?Journal=J&VolumeID=35&IssueID=1.

http://www.jhuapl.edu/techdigest
https://www.darpa.mil/attachments/DARPA_ChangingHowWeWin.pdf
https://www.darpa.mil/attachments/DARPA_ChangingHowWeWin.pdf
https://www.darpa.mil/program/adaptive-radar-countermeasures
https://www.darpa.mil/program/adaptive-radar-countermeasures
https://doi.org/10.1109/26.664294
https://doi.org/10.1109/DYSPAN.2005.1542629
https://doi.org/10.1109/DYSPAN.2005.1542629
https://arxiv.org/abs/1602.04105
https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1503.03832
https://arxiv.org/abs/1512.03385
https://doi.org/10.1145/304181.304187
https://doi.org/10.1145/304181.304187
https://pubs.gnuradio.org/index.php/grcon/article/view/11
https://www.jhuapl.edu/TechDigest/Detail?Journal=J&VolumeID=35&IssueID=1
https://www.jhuapl.edu/TechDigest/Detail?Journal=J&VolumeID=35&IssueID=1


Machine Learning Applications for Electronic Warfare

Johns Hopkins APL Technical Digest, Volume 36, Number 2 (2022), www.jhuapl.edu/techdigest 137    

In the implementation referenced in this article, we develop this means by using a priori knowledge of a value (T) to provide 
the upper bound on the signal’s periodicity and then constructing an exhaustive set of all feasible timing patterns for a given 
emitter. The size of this table grows cubically, that is, O(T3), with the magnitude of the given upper bound on the signal’s 
periodicity. Although this process is of polynomial complexity and so can be thought of as tractable colloquially, note that this 
level of complexity may not be appropriate for a computation that needs to be completed in real time for large T practically. For 
example, even in the modest case where T = 10, there are 330 possible hypotheses. For the case in which T = 100, that number 
grows to 333,300. For T = 1,000, the number is (approximately) 333 million. This fact limits the utility of the implementation 
discussed here to handling signals with a periodicity of 1,000 quantization intervals or less. A quantization time of 1 ms implies 
that the pulses could be at most 1 s. Although outside the scope of our discussion here, promising research addressing this 
complexity involves storing data in a novel data structure and processing it in a more sophisticated way.

For the present discussion, let us consider the case in which T = 3, which induces a set of eight possible timing hypotheses. For 
each possible period length p, we may write the collection of possible timing patterns as a set of finite fields of length p, where 
each finite field is written as a list of binary values such that the entry is 1 if the signal is active at times t modulo p and 0 
otherwise. Written thusly, we have for p = 1 the set {(1)}; for p = 2 the set {(01) (10)}; for p = 3 the set {(001), (010), (100), (011), 
(110), (101)}; and for p = 4 the set {(0001), (0010), (0100), (1000), (0011), (0110), (1100), (1001), (0111), (1110), (1101), (1011)}. 
Note that each set is the collection of p-digit binary numbers, with all 1s occurring in a contiguous block, when considering 
the fact that the topology of a finite field loops ends around to “connect” to each other. That is, all activity must either be a 
rising or falling edge or be contained between two such edges. Note also that constant signals may be mapped without loss of 
generality to a p = 1 signal and do-nothing signals need not be considered. Thus, for p > 1, we do not explicitly consider fields 
that are either all 1s or all 0s.

If we allow each signal to have T = 3, each signal generates its own set of eight possible timing patterns. It is our task to use data 
to eliminate timing patterns that are not supported by observed data in a computationally efficient manner. To enable this, we 
must make some notes regarding how observations inform the timing decisions. There are a few important cases to highlight.

1. If we take an observation and see a particular signal, that signal must be active at that particular time, modulo some periodicity.
2. If we take an observation and do not see any signal, that does not mean that no signal is active, as the signal may be active 

in a different frequency channel.
3. If we take an observation and see a signal in a time bin such that the signal appears between two previously seen emissions 

for a fixed periodicity p, then the signal must have been active for all times between the previous time modulo periodicity 
observation and the current time modulo periodicity, provided that the signal is actually a period p signal.

The first two observations are straightforward. If a signal is seen, it is active. If it is not seen, we do not obtain any new infor-
mation regarding the signal’s activity (absent any further side information that may be present—i.e., known time correlations 
between distinct signals). The third observation is somewhat obtuse but improves the data efficiency of the model-building 
process drastically when implemented.

To develop an understanding of what is happening in this case, suppose for a signal with T = 3 that the first observation is 
made at time t = 5 (Figure A-1). The time modulo period value for p = 1 is 1 (as it always must be), and so (1) remains a viable 
hypothesis. The time modulo period value for p = 2 is 1 (count: 1, 2 | 1, 2 | 1), and so if the signal is of periodicity 2, it must 
have the timing pattern (10). This is because we have seen the period active at time modulo period 1, and if it was also active at 
time modulo period 2, then it would always be active, and so by default must be a periodicity 1 signal. The time modulo period 
value for p = 3 is 2 (count: 1, 2, 3 | 1, 2), and so all p = 3 hypotheses of the form (x1x) are still possible. The time modulo period 
value for p = 4 is 1 (count: 1, 2, 3, 4 | 1), thus allowing all hypothesis of the form (1xxx) to be possible.

? ? ? ? ?

? ? ? ? ? ?

 p = 1

 p = 2

 p = 3

 p = 4

Figure A-1. Example illustration of determining signal periodicity. This example is based on observation at time interval 5.
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Now, suppose we make an observation at time t = 7 (Figure A-2). The time modulo period value is 1 for p = 2. If the signal has 
periodicity 2, nothing changes: the timing pattern must be (10). The time modulo period value is 1 for p = 3. This then implies 
that the timing pattern must be (110) if the signal is of periodicity 3. The time modulo period value is 3 for p = 4. Using only 
the first two observations from above, this would then imply that all hypotheses of the form (1x1x) are still viable. However, 
using the third fact implies that the timing pattern must indeed be (1110) if the signal is of periodicity 4. Incorporating this 
subtle detail helped us learn faster, to the point where we now know what the timing pattern must be for each allowable peri-
odicity, were the assumed periodicity value is actually true. Further observations would eventually allow us to eliminate certain 
periodicity values because we know that if a signal is active when it should not be, that periodicity is not possible. Thus, under 
the assumptions outlined in this article, we can fully determine the signal’s timing characteristics from partial, intermittently 
observed information.

 p = 1

 p = 2

 p = 3

 p = 4

Figure A-2. Example illustration of determining signal periodicity. This example is based on observation at time interval 7.

Because this discussion is intended to clarify core concepts and not provide exhaustive detail, we will not explain here how 
the presence of multiple signals affects the learning of timing patterns. Suffice it to say that known (or, rather, assumed) cor-
relations between the signals’ timing behavior can help us learn timing information even faster.

Updating Beliefs of Channel Occupancy
In this section, we discuss the learning of the channel occupancy models used internally in the IL’EA Maestro prototype 
detailed in this article. As we did in the section discussing learning timing patterns, we will focus here on pedagogy instead 
of realism. Because using known (or, rather, assumed) frequency spectrum correlations between emitted signals is an integral 
piece of the model, we discuss an example with two distinct signals. It is our task to determine where in the frequency spec-
trum each will be in the near future given our knowledge of what we have observed in the past and our assumptions about 
co-occurrence.

With each signal, we start an assumption that all detectable emissions will occur between a priori known lower and upper 
frequency bounds. We quantize the spectrum into discrete frequency bins that we will describe as channels. For the purposes 
of demonstrating how knowledge of frequency spectrum correlation could potentially be used in learning an appropriate 
emitter model, we assume that the two signals cannot occur on the same channel at the same time (for example, because of 
interference).

Before any observations of either signal are made, we initialize each signal’s distribution of possible operating frequencies as a 
uniform random variable. As observations are made, we keep a record of a few quantities for each tracked signal so as to design 
updated beliefs of channel occupancy (which are more informative than the uniform prior). Namely, we track the lowest and 
highest operating channel observed for a given signal and the time since the last observation of the signal on each channel 
observed.

Intuitively, we would like the distribution to be concentrated primarily between the observed lower and upper operational 
bounds. Additionally, we would like channels where the signal has appeared before to have more “weight” in the model than 
those that have not been confirmed to be in use, and we would like this discrepancy of weight to be itself weighted by how old 
the observation is at the time the belief is to be evaluated. If there were no correlations between signals, we could then assign 
probabilities for each signal without consideration of the other, with the assumed density taking on only the information 
observed for each signal individually. Let us walk through this case for a signal with 10 plausible frequency bands.

If we have seen the signal as low as channel 3 and as high as channel 9, we would want to assign most of the probability 
mass to channels in the set {3, 4, 5, 6, 7, 8, 9} and some small probability (possibly zero) to channels in the set {1, 2, 10}. Thus, 
we may introduce some scale factor w between 0 and 1, such that w >> 0 and the probability assigned to P{[3, 9]} = w and  
P{1, 2, 10} = (1 – w). This form takes care of the first intuition from the preceding paragraph. To take care of the time-value 
intuition, we must introduce some other term such that a new observation almost certainly determines the future location of 
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the signal but older information is not forgotten. There are many ways to accomplish this, but for simplicity’s sake, consider 
the following form.

Assign each frequency channel a buffer to accumulate a weight value. Whenever a certain amount of time has passed (e.g., 
the estimated period of the signal under consideration), multiply the current channel buffer weight by some scalar less than 1 
and add to each buffer a large value if the signal has been seen on the channel since the last weight update and zero otherwise. 
We can consider each buffer value to be a relative likelihood of occurrence, albeit one that is not appropriately scaled to be 
a probability. However, when we update our channel occupancy beliefs, we can rescale appropriately. Using the intuitions 
from above, we can sum together the buffer weights for the channels in {[3, 9]} and use this sum as a scale factor to obtain a 
conditional probability: if the signal is in {[3, 9]}, then its probability of being in a particular channel c in {[3, 9]} is assumed 
to be its buffer weight value divided by the summed scale factor. We can do likewise if the signal is in {1, 2, 10}. If we then 
consider the scale factor w from above to be an assumed conditional probability of occurrence, the net belief we obtain is 
P(channel) = w(Bc/B1) for channels in {[3,9]} and P(channel) = (1 – w)(Bc/B2) otherwise, where Bc is the buffer weight for 
channel c, B1 is the scale factor for the first case (where the signal is assumed to be between the minimum and maximum 
previously seen values), and B2 is the scale factor for the second case (where the signal is assumed to be outside the interval 
of prior observations).

Now we consider incorporating the assumption that signals cannot co-occupy a frequency channel. Note that we can accom-
modate finer-grained temporal correlation models, which, for example, include information about how a signal moves through 
different frequency channels over time. Considering the process described above for the single signal case, we can see that 
the primary means for accommodating time correlation between signals is in manipulating the buffer weights appropriately. 
Intuitively, observations of a signal other than the one being predicted on a particular channel should decrease the likelihood 
that the considered signal is indeed there, as we are assuming a negative correlation between the occurrences of two distinct 
signals on a single channel.

To accomplish this effect in the prediction model outlined, we multiply each buffer weight by a scaling factor that takes the 
value 1 if the signal under consideration is the most recent signal seen on a particular channel and the value (1 – e–ατc) 
otherwise, where α is some positive scaling constant and τc is the time since the most recent signal has been observed. As 
τc grows larger, the influence observing some signal on the channel decreases, eventually to zero. That is, the multiplication 
factor converges to one in the limit of large τc and thus has no effect after much time has passed. However, if a different signal 
has been observed recently, it can significantly reduce the model’s belief that the signal under consideration is present in the 
current channel.
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