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INTRODUCTION
Cyber resilience is an idea increasingly viewed as 

vital as society becomes ever-more dependent on com-
puter-enabled “cyber” systems. This article begins by 
summarizing the nature of today’s cyber systems and 
why they remain so difficult to fully secure. This discus-
sion motivates the next section, which elaborates on the 
idea of cyber resilience, including a working definition of 
cyber resilience, an exploration of how cyber resilience 
ties to the mission/organizational level, and a brief sam-
pling of resilience frameworks, mechanisms, and quan-
tification approaches. Finally, the article speculates on 
the future of cyber resilience. Along the way, the article 
describes ongoing cyber resilience work at APL, includ-
ing the Cyber-Resilient Ship envisioned future initia-
tive, which focuses on future Naval platforms that can 

operate through and recover from cyberattacks despite 
reliance on compromised components. (See the article 
by Gregg, Nichols, and Blackert, in this issue, for more 
on envisioned futures initiatives.)

CURRENT STATE OF CYBER
In 2021, cyber is ubiquitous, supporting a broad 

range of applications, such as banking, entertainment, 
home security, voting, and weapon systems. Of course, 
the use of cyber has its downsides. We are all familiar 
with the specter of identity theft and online fraud, but 
cyberattacks can also have potentially life-threatening 
consequences in contexts as varied as medical infusion 
pumps, self-driving vehicles, and critical infrastructure. 
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nisms include use of backup generators in hospitals and 
municipal flood control tools such as diversion canals 
and storm water basins.

The term cyber resilience has many definitions. The 
Committee on National Security Systems offers this 
representative definition in its glossary: “The ability of 
an information system to continue to: (i) operate under 
adverse conditions or stress, even if in a degraded or 
debilitated state, while maintaining essential operational 
capabilities; and (ii) recover to an effective operational 
posture in a time frame consistent with mission needs.”15 
Here the concern spans an assortment of potentially 
adverse cyber events (ACEs), such as malicious attack, 
software bugs, component failures, operator errors, and 
acts of God. Cyber resilience becomes more motivat-
ing when we can show how ACEs impact higher-level 
mission/business functions that depend on cyber. See 
Figure 1 for a basic illustration of the concept. An ACE 
can affect missions via impacts on the performance of 
supporting mission-essential functions (MEFs) provided 
by a target system. A resilient architecture may allow 
MEF performance to rise above its associated minimal 
threshold value.

It can be daunting to perform the analysis required 
to understand multiple MEFs from across a set of sup-
porting cyber systems and how their performance can 
impact mission threads across a timeline. Monte Carlo 
simulation is one useful technique.16

Cyber Resilience Frameworks
Several cyber resilience frameworks have emerged in 

recent years. For example, the National Institute of Stan-
dards and Technology (NIST) Cybersecurity Framework 
organizes resilience mechanisms into five categories: 
identify, protect, detect, respond, and recover.17

NIST Special Publication 800-160, Vol. 2, “Devel-
oping Cyber Resilient Systems: A Systems Security 
Engineering Approach,”18 describes a collection of 

Meanwhile, in cybersecurity circles it has become nearly 
axiomatic that despite more than two decades of effort, 
the community is unable to fully secure cyber-intensive 
systems.1 It is generally safe to assume that determined 
adversaries will eventually penetrate high-value systems, 
or are already inside via malicious implants embedded in 
supply chain components.2

Why are cyber systems so hard to secure? In short: 
assurance, complexity, and connectivity.3 The trust-
worthiness of modern cyber systems is often impossible 
to verify. Most large-scale cyber systems are not con-
structed from rigorous specifications, and they tend to be 
composed of ever-more intricate layers of functionality 
that incorporate third-party libraries and open-source 
elements, many of uncertain pedigree. The intercon-
nected nature of cyber systems is a further complicating 
factor, as every additional direct or indirect connection 
represents a potential attack vector.

The use of mathematically rigorous techniques, 
known as formal methods, to specify and validate 
cyber functionality can help, as can the use of various 
trusted computing approaches, though scalability issues 
persist.4–6 (See the article by Kouskoulas et al., in this 
issue, for details on some of the work APL is doing in 
formal methods.) Assured technology is not enough, 
however; people and processes are also critical. People 
can be relatively easy to fool,7,8 and business/mission 
processes may not anticipate all the different ways in 
which supporting cyber systems can fail. Vulnerabili-
ties introduced during design and integration remain a 
major challenge, with even the largest vendors and user 
organizations deploying expensive “bug bounty” pro-
grams to aid in the search for flaws.9,10 Indeed, research 
suggests that a majority of software vulnerabilities 
remain latent in large-scale systems, awaiting discov-
ery by attackers and defenders.11,12 At the same time, 
advances in the fundamental science of cybersecurity 
lag as attention and energy is focused on other areas, 
such as creating and conforming to resource-intensive 
compliance programs13,14 whose effectiveness is difficult 
to ascertain.

In summary, the cyber community struggles to com-
pletely secure complex cyber systems, with attackers 
maintaining an asymmetric advantage over defend-
ers. Nonetheless, organizations must still achieve their 
business/mission functions despite growing dangers 
associated with their dependence on cyber. In fact, 
what ultimately matters to organizational stakeholders is 
that those functions remain robust in the face of cyber 
threats—that is, that they are resilient.

CYBER RESILIENCE
While interest in cyber resilience has grown signif-

icantly over the last 10 years, resilience itself is not a 
new concept. Examples of non-cyber resilience mecha-
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Figure 1. ACE impact on mission essential functions (MEFs) per-
formance. The color-coded outcomes illustrate how the system’s 
ability to quickly respond to ACEs can determine mission success 
or failure.
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face across multiple system dimensions. . . . prompting 
attackers to question if the vulnerabilities they find are 
real or fake, if systems are a decoy and if the layout of a 
network is genuine.”24

Another example of coordinated resilience mecha-
nisms appears in Figure 3.25 The context is a space 
system that includes a telemetry, tracking, and com-
manding (TT&C) application for a space vehicle. The 
application is critical, so system designers arrange for 
periodic measurement of the application’s integrity, 
including its executable and data files (A in the figure). 
A monitoring system compares integrity measurements 
to “known-good” measurements provided by a trusted 
platform module, or TPM (B). If the integrity measure-
ment indicates a loss of integrity (e.g., as indicated by 
differing cryptographic hashes computed over the files), 

resilience goals, objectives, and 
techniques/mechanisms, all 
driven by a risk management 
strategy (Figure 2).

APL’s own Resilient Pro-
gram Framework emphasizes 
the need to understand and 
influence the adversary across a 
system’s life cycle. Furthermore, 
APL recently dedicated a Digest 
issue to resilience that included 
articles on cyber resilience 
principles and best practices.19

Cyber Resilience Mechanisms
In addition to organiz-

ing frameworks, much has been written about specific 
resilience mechanisms/techniques to implement the 
resilience concepts suggested by the frameworks. Exam-
ples include

•	 redundancy with diverse implementation,

•	 hardware-based attestation,

•	 dynamic changes in connectivity,

•	 multiple alternative modes of operation,

•	 automated operating system reimaging, and

•	 moving target defense (MTD).20–23

MTD can be a key component of an active resilience 
architecture. As Doug Britton states: “This strategy 
introduces a dynamic, constantly evolving attack sur-
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Figure 2. Cyber resilience constructs. Constituting just one example of recently developed cyber 
resilience frameworks, these constructs are based on NIST Special Publication 800-160, Vol. 2.18

Figure 3. Resilience mechanisms25 in a system that includes a critical TT&C application for a space vehicle. The applica-
tion’s integrity is monitored (A). Measurements are verified against “known-good” measurements provided by a trusted 
platform module, or TPM (B). If a loss of integrity is indicated, the measurement module alerts the defensive space control 
workstation (C). In some cases the operator (D) raises the network’s Information Operations Condition (INFOCON) level, 
which may invoke other resilience mechanisms (E). In any event, the TT&C application and certain data files are reloaded 
from a read-only memory, returning them to a known-good state (F).
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•	 allow use of possibly compromised components by 
using techniques such as (1) homomorphic encryp-
tion to execute functions in untrusted processing 
environments without disclosing the functions 
or the data that they process, and (2) deploying a 
small set of trusted components on which missions 
can depend; and

•	 include out-of-band functionality to monitor the 
system and restore mission-critical capabilities.

For the next 2 years, APL will emphasize the devel-
opment of mission threads that demonstrate the end-
to-end SCOCI (Secure Computation on Compromised 
Infrastructures) approach. The technologies supporting 
the aspects of the Cyber-Resilient Ship architecture are 
currently immature and have been developed largely 
independently. Combining these elements into an end-
to-end system will require solving many system compati-
bility challenges. In addition, applying the techniques to 
a mission problem will require raising the maturity and 
abstraction levels of the technologies. Specific research 
areas aim to achieve the following:

•	 Reduce the gap between theoretical capabilities and 
practical, mission-focused application SCOCI prim-
itives such as secure function evaluation (discussed 
further below) and verifiable computation.

•	 Develop algorithms and protocols that leverage par-
allel and distributed computation to provide scal-
able, asymmetric trade-offs between performance 
characteristics and increasing the difficulty on the 
adversary’s part in compromising the entire system.

•	 Migrate endpoint processing and control logic from 
special-purpose, physical systems to software-defined 
components executing on commodity infrastructure.

the measurement module alerts the defensive space 
control workstation (C). Depending on the situation, 
the operator (D) may raise the Department of Defense 
INFOCON26 level of the network (E), which itself may 
trigger invocation of other resilience mechanisms (e.g., 
network disconnection). In any event, TT&C files are 
reloaded from read-only memory to reestablish a known-
good state (F).

An extension of the architecture shown in Figure 3 is 
the partitioning of a system into different modes of oper-
ation to enhance resilience. Modes can help ensure mis-
sion survival. For example, in 2015, a command loading 
error caused the New Horizons spacecraft to enter a spe-
cial “safe mode” used to diagnose and address problems. 
Operators at APL resolved the issue and brought the 
spacecraft out of safe mode to resume full operation.27 
This extended space example illustrates that resilience 
architectures can themselves become complex. Thus, 
just as with other cybersecurity-related tools, resilience 
mechanisms add their own complexity and attack sur-
face to a system, and thus must be considered with care.

A final consideration is the use of noncyber mecha-
nisms to cover for cyber-enabled systems in case those 
systems fail or become distrusted. For example, the US 
Naval Academy reintroduced celestial navigation train-
ing to provide future officers with an alternative means 
of navigation should cyber-enabled navigation systems, 
such as GPS, fail.28

Cyber Resilience Quantification
While frameworks and implementation mechanisms 

provide a broad range of resilience options, quantifying 
the value of any given architecture remains a challenge. 
Work is proceeding in this area, including ongoing resil-
ience estimation efforts underway at APL.29–33

For example, one of the APL approaches32 is a sto-
chastic discrete-event simulation that computes an 
overall Resilience Index (RI) for a target system. The 
simulator executes a large number of trials in which 
simulated ACEs occur across a mission timeline. The 
approach defines any trial in which an MEF performance 
falls below its related threshold as a failed trial. The RI 
is the ratio of successful trials to total trials attempted.

CYBER RESILIENCE IN THE FUTURE
APL is actively engaged in research on resilience 

mechanisms and frameworks/architectures that com-
bine them. An example is the Cyber-Resilient Ship 
research area (Figure 4). Borrowing ideas from zero trust 
architectures34–36 and the “Orange Book” concept of 
the trusted computing base,37 the Cyber-Resilient Ship 
research area focuses on exploring ways to

•	 provide computing architectures that can operate 
through and recover from cyberattacks;
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Figure 4.  Cyber-Resilient Ship architecture. This research area 
focuses on investigating ways to provide computing architec-
tures that can operate through and recover from cyberattacks, 
allow use of possibly compromised components, and include 
out-of-band functionality to monitor the system and restore 
mission-critical capabilities.
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•	 using virtualized programmable logic controllers to 
respond and recover from cyberattack, faulty behav-
ior, and physical damage.

CONCLUSION
This article concludes with a speculation on the state 

of cyber resilience 25 years in the future. This is a natu-
rally hazardous endeavor, but one can begin by noting 
that the US government and others now consider cyber 
a distinct domain of battle39 in which cyber resilience 
takes on added urgency.

Cyber resilience is expected to grow more sophisti-
cated, supported by a nonlinear increase in machine 
intelligence over time.40 Areas such as threat modeling, 
formal methods, and detection/response capabilities may 
experience considerable improvements. Quantum com-
puting and machine learning methods may have outsize 
impacts.41 For example, one might imagine machine 
learning capabilities that predict adversary actions at a 
stage early enough to mount preemptive semi- or fully 
automated actions.

Ultimately, cyber systems may begin to take on 
characteristics of biological systems. Similar to ant 
colonies, armies of nanoscale Internet of Things (IoT) 
agents may cooperate to achieve resilience goals; of 
course, the reverse may also be true. Bio-inspired cyber 
systems may possess digital immune systems,42 with 
immune “cells” constantly on patrol, learning and 
adapting as they encounter pathogens. Autoimmune 
conditions may result from improperly tuned immune 
agents. Researchers may develop cyber vaccines for 
particularly virulent “microbes,” an idea that hear-
kens back to today’s antivirus software but in a more 
“evolved” setting.

The asymmetric advantage that attackers enjoy 
today may begin to erode as cyber systems evolve novel 
defenses under selective pressure. Here we may see 
the emergence of a new professional job category for 
humans: cyber husbandry, a field where automation-
assisted specialists manage the selective breeding of 
ever-more resilient cyber organisms. More outland-
ishly, the tables may take a dystopian turn, with now-
dominant, highly intelligent cyber systems adopting a 
resilience strategy —Matrix43 style— that incorporates 
humans bred for lethality and obedience. One can only 
hope that such a scenario remains squarely in the realm 
of science fiction.
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