

Modeling Disease Surveillance and Assessing Its Effectiveness for Detection of Acute Respiratory Outbreaks in Resource-Limited Settings

L. Ramac-Thomas¹, T. Philip¹, H. Burkom¹, J. Coberly¹, S. Happel Lewis¹, J.P. Chretien²

¹The Johns Hopkins University Applied Physics Laboratory ²Walter Reed Army Institute of Research, Global Emerging Infections System

7th Annual Conference of the International Society for Disease Surveillance Track 1: Surveillance Innovations (2) – Evaluation of Detection Approaches

Raleigh, NC

December 4, 2008

This presentation was supported by funding from DoD Global Emerging Infections System (GEIS).

- Objectives
- Background
- Approach and Methods
- Validation and Study Design
- Results
- Conclusions

Acute Respiratory Infection Epidemic Simulator (ARIES)

Develop model to

- Evaluate acute respiratory illness surveillance in resourcelimited settings
- Measure potential benefit of policy decisions and countermeasures

Required features

- Focus on early outbreak stages
- Restrict demographic modeling to features relevant to disease spread
- Include knowledge of existing surveillance capability
- Portability

A U.S. Department of Defense program is underway to assess health surveillance in resource-poor settings and to evaluate the Early Warning Outbreak Reporting System (EWORS)

This program has included several informationgathering trips, including a trip to Lao PDR in September 2006

Challenges of Surveillance in Resource-Poor Regions

Healthcare access is limited by

- Available transportation
- Lack of trained care providers or insurance/ability to pay for care
- Preference for herbal, spiritual healers
- Lack of modern communication technology

Magnified Threat of Major Epidemics

- Infectious disease outbreaks not uncommon
- Many workers at human-animal interface
- Vaccine, antiviral supplies scarce if available

EWORS Systems

- 35 sites in 4 countries in SE Asia and in 2 sites in Peru
- Daily transfer of patient records from network hospitals to national hub
- Popular at each installation

Initial Application in Lao PDR

- Investigative trip by 6-member EWORS International Working Group
- Interviews at hospitals, National Center for Laboratory and Epidemiology, Ministry of Health, and other government agencies
- Collection of healthcare-seeking behavior information
- Discussions of both theoretical and actual surveillance practices

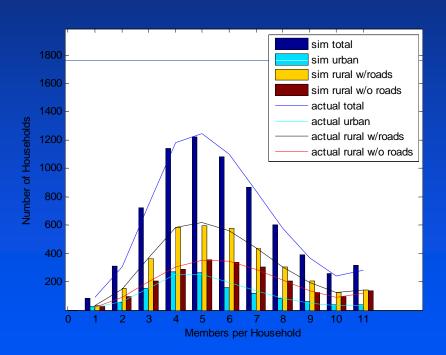
- Model is individual-based, but includes only infected and exposed
- Attention limited to the stages of the event before population behavior radically changes
- Assumptions of near-instantaneous detection in published research are unrealistic, especially in resource-limited settings
- Goal is to implement realistic surveillance modeling

Components of ARIES

- Demographic model generates features relevant to outbreak spread.
- Disease model simulates progression of disease in infected agents.
- *Travel model* simulates agent travel patterns to mimic geographic spread.
- Surveillance model simulates delays in detection, data entry, data transmission, and epidemiologic investigation.

Information basis

census data, population survey reports, site-visit interviews, acquired data from EWORS, area geography, disease model


Household Model

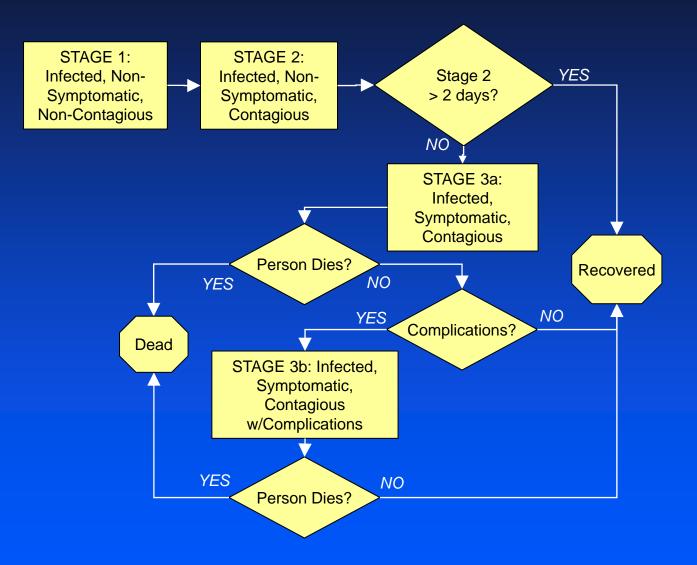
Accurately estimate household makeup of specified province in Lao

Considerations

- Household size
- Age group and sex
- Preserve census dependency ratios
- Sex of household head for comparison to census distributions
- Pregnancy status

Disease Model

Disease stages model [Feighner]


- Stage lengths
- Probability of complications
- Percentage of asymptomatic

Disease transmission model [Glass]

- Susceptibility and infectivity are functions of disease stage and age
- Transmission is also dependent on type of contact (household, peer, random)

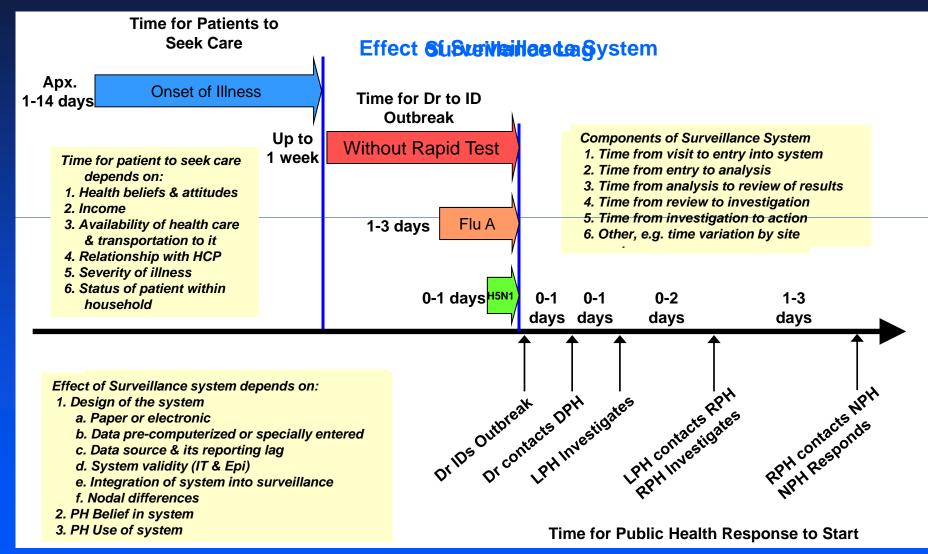
APL Disease Stage Model

Establish location of an infected individual throughout course of infection

Considerations

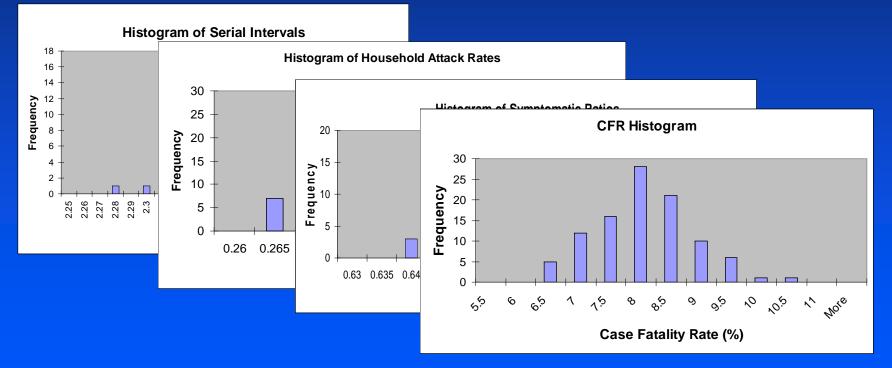
- Subdivide province into rural and urban districts
- Update agent locations on time scale of days
- Movement is district-to-district
- Occupation and age influence agent itinerary
- For each new agent location, recompute probabilities of travel to other districts
- Multi-day trips are allowed

Surveillance Model



- To include surveillance in a disease model need to consider both surveillance lag and the effect of surveillance system on surveillance lag
- Model both traditional surveillance and EWORS
- Investigate advantage of proposed EWORS expansion
 - Additional provincial EWORS hospitals
 - EWORS systems in chosen district hospitals
 - Other interventions
- EWORS hospital currently in Luang Prabang District
- Simulations will also be run with an additional EWORS system at Nam Bak

Surveillance Model



Target vs. Simulated Values

- Serial Interval: 2.6 days (for an effective reproductive rate of about 1.6)
- Household Attack Rate: 0.25
- Fraction of symptomatic cases: 0.67
- Overall case fatality rate: 6%

Study Design

Three scenarios

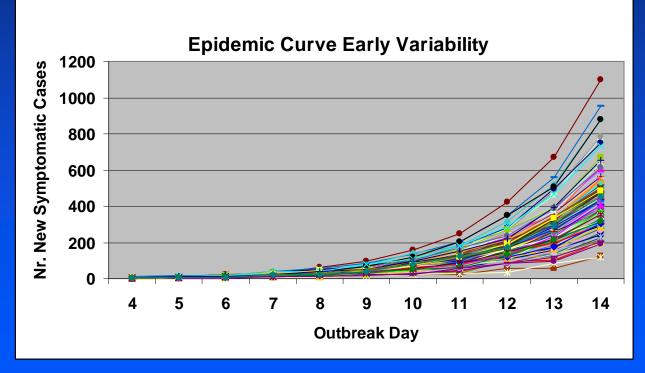
APL

- No EWORS system
- EWORS in Luang Prabang
- EWORS in Luang Prabang and Nam Bak

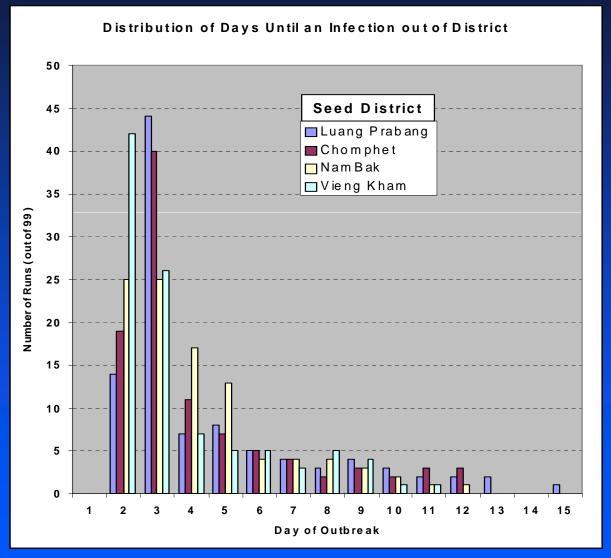
Each scenario - 5 seed cases in single province

- Luang Prabang
- Chomphet
- Nam Bak
- Vieng Kham

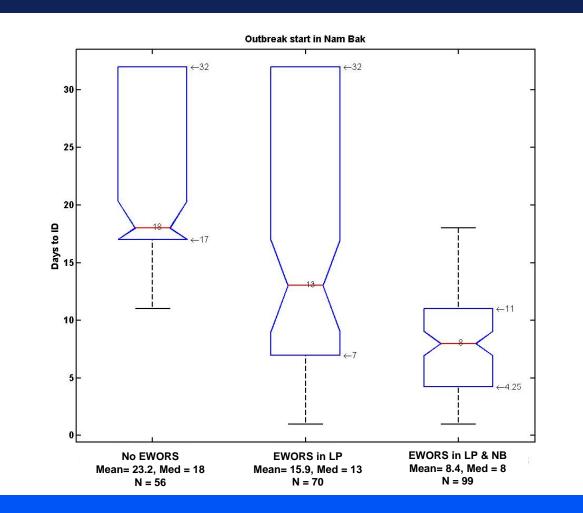
100 runs for each scenario/seed province

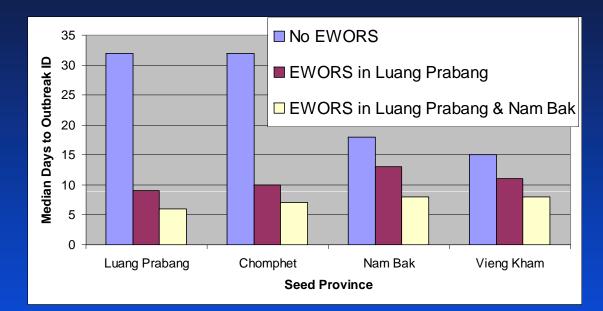


Epidemic Curve Variability



- Curves show number of new symptomatic cases by day for one of the simulated epidemics.
- Runs start with 5 seed cases in Luang Prabang to increase likelihood of spread.


Rate of Epidemic Spread


Time to Outbreak Identification

Outbreak Identification & Reporting

Report Delay to National Public Health		an Number of Da	ays to Report	Mean Number of Days to Report							
Seed Province	No EWORS	WORS EWORS in EWORS in Luang Luang Prabang Prabang & Nam Bak		No EWORS	EWORS in Luang Prabang	EWORS in Luang Prabang & Nam Bak					
Luang Prabang	32	3	2	24.35	6.77	3.76					
Chomphet	32	3	2	23.62	9.71	3.98					
Nam Bak	18	4	2	22.33	12.86	4.43					
Vieng Kham	15	4	2	15.85	11.14	6.27					

Conclusions

- Outbreak identification time
 - up to 2-week improvement in median identification time with EWORS system
 - Additional few days' advantage with district-level system in Nam Bak
- Rate of epidemic spread
 - Probability of out-of-district infection within 3 days > 50% in every scenario
 - Infection reaches town of Luang Prabang within 4 days, regardless of seed district
- Variability among runs
- Effect of rapid test capability at provincial hospital: the median dropped below 6 days, even without EWORS, in each scenario
- Modeling surveillance capability is important

References

- Lao PDR, M. (2001). Report on National Health Survey, health status in Lao PDR. Vientiane.
- Ferguson, N., et al. (2005). "Strategies for containing an emerging influenza pandemic in Southeast Asia." Nature 437: 209-14
- Glass, R., et al. (2006). "Targeted Social Distancing Design for Pandemic Influenza Emerging Infectious Diseases." Emerging Infectious Diseases 12(11).
- Feighner, B. (2007). Pandemic influenza policy model, 2007 comprehensive project report. Laurel, MD, Johns Hopkins University Applied Physics Laboratory and the Department of Defense Global Emerging Infections System (DoD-GEIS).

Included Modeling Elements

- Population details for "agents"
- Age group and sex
- Statistics for rural/urban, north/south/central
- Occupation category from census data
- Travel survey information
- Provincial geography
- SES surrogates
 - Occupation
 - Literacy, education
 - Clean water availability
 - Household income

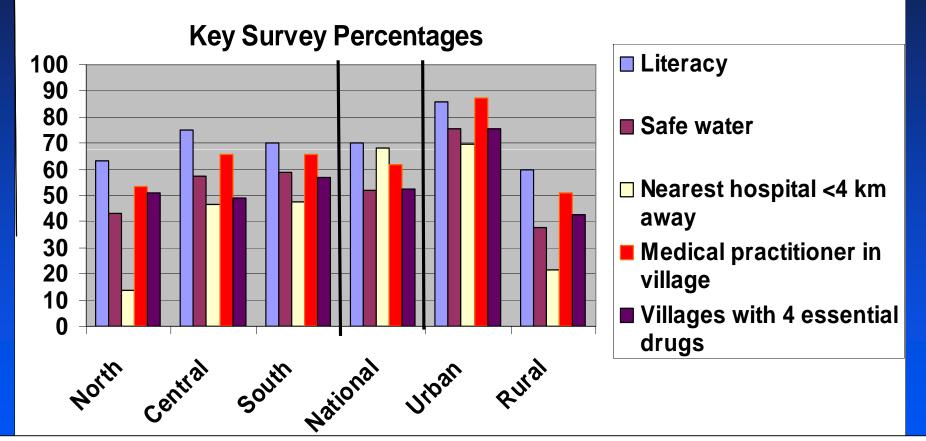
- **Disease spread**
- Health-care-seeking behavior
- Travel patterns (interregional spread)
- Immunocompetence, based on statistics for:
 - Age
 - Pregnancy
 - Nutrition
 - Vitamin A intake

Infected Agent Attributes

- Static attributes (drawn from population data)

- Age
- Sex/pregnancy status
- Family size
- Peer group size
- Region / Location (Province)
- Rural Access to Road, Rural No Access to Road, Urban
- Occupation
- Type of Health Care Access
- Dynamic Attributes
 - Disease State
 - Ambulatory
 - Infectiousness

Modeling Person-to-Person Transmission


	Contact frequency of link (per day)	3.00			C	nance of Inf	fection fo	r Link Gi	ven Con	stant
	Glass Parameters: (between 0 and 1)					fectivity/Su				
ID	Disease infectivity	0.50		1.00	1			-		-
I _R	Relative infectivity of disease state	1.00		0.90	+					
IA	Relative infectivity of person	0.50		0.80	+				-	-
SP	Overall susceptibility to disease	0.50	Probability	0.70	+			_	<u> </u>	
SA	Relative susceptibility of person	0.50	obat	0.60			_	×		
	Overall Transmissivity Factor	0.06					<hr/>			
	exp. dist. mean for transmission time	5.33	Infection	0.40						
	median for transmission time	3.70	fec	0.30						
	Length of disease state (days)	5.00	-			1				
	Attack rate (%) for link & disease state	60.84		0.10	1	/				
				0.00	+	1	1	1		
	Days	Infection Probability		(0.0	2.0	4.0 Da	6.0 ys	8.0	10.0
	0.0	0.0000								
	1.0	0.1710								
	2.0	0.3127								
	3.0	0.4302								
	4.0	0.5276								
	5.0	0.6084								
Δ	dapted from: Glass RJ, Glass LM, Beveler WE	. Min HJ.	Tar	raete	ds	ocial dist	ancing	design	for	

Adapted from: Glass RJ, Glass LM, Beyeler WE, Min HJ. Targeted social distancing design for pandemic influenza. Emerg Infect Dis. 2006 Nov;12(11):1671-81.

Lao PDR Statistics Related to SES

Ministry of Health, National Institute of Public Health, Lao State Planning Committee, National Statistical Center, Report of National Health Survey: Health Status of the People In Lao P.D.R., Vientiane, 2001.

Inference of Reporting Delays from Data

	< 40%	
Comparison by year:	40-60%	
Ratio of (Visits sent by day)/All Visits	60-80%	
Develeter	> 80%	

Days Late:

	EWORS Data Reporting for 2004																			
Hosp	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	Total
H001	0.02	0.12	0.23	0.34	0.45	0.52	0.56	0.60	0.62	0.64	0.65	0.67	0.69	0.70	0.72	0.73	0.74	0.76	0.78	18313
H002	0.13	0.30	0.41	0.49	0.53	0.57	0.60	0.64	0.66	0.67	0.68	0.69	0.70	0.71	0.73	0.74	0.74	0.75	0.75	6921
H003	0.10	0.28	0.40	0.46	0.50	0.53	0.54	0.54	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	9769
H004	0.09	0.21	0.27	0.30	0.33	0.36	0.37	0.38	0.39	0.39	0.39	0.39	0.40	0.40	0.41	0.41	0.41	0.42	0.42	5104
H005	0.04	0.25	0.30	0.35	0.37	0.38	0.40	0.42	0.42	0.43	0.43	0.44	0.44	0.45	0.45	0.46	0.46	0.46	0.46	3616
H006	0.10	0.19	0.22	0.25	0.27	0.29	0.30	0.31	0.32	0.32	0.32	0.33	0.33	0.33	0.34	0.34	0.35	0.35	0.36	5253
H007	0.07	0.17	0.20	0.23	0.26	0.28	0.30	0.31	0.33	0.34	0.35	0.36	0.37	0.38	0.39	0.39	0.39	0.40	0.40	5442
All	0.07	0.20	0.29	0.36	0.42	0.46	0.48	0.51	0.52	0.53	0.54	0.55	0.55	0.56	0.57	0.58	0.59	0.59	0.60	54418

EWORS Data Reporting for 2005

Hosp	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	Total
H001	0.00	0.15	0.31	0.44	0.52	0.59	0.62	0.66	0.69	0.73	0.76	0.79	0.80	0.82	0.85	0.87	0.88	0.90	0.92	16661
H002	0.29	0.59	0.72	0.81	0.86	0.88	0.91	0.94	0.96	0.97	0.98	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	7978
H003	0.07	0.42	0.66	0.80	0.89	0.92	0.93	0.95	0.97	0.98	0.99	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	16095
H004	0.20	0.48	0.57	0.63	0.65	0.69	0.72	0.75	0.77	0.79	0.80	0.81	0.82	0.85	0.87	0.89	0.90	0.92	0.92	6067
H005	0.05	0.60	0.73	0.89	0.92	0.94	0.96	0.98	0.98	0.99	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	3595
H006	0.23	0.48	0.62	0.73	0.77	0.80	0.82	0.84	0.85	0.87	0.88	0.89	0.90	0.90	0.91	0.92	0.93	0.94	0.94	4584
H007	0.16	0.36	0.46	0.54	0.60	0.65	0.71	0.76	0.81	0.84	0.87	0.90	0.91	0.92	0.93	0.94	0.95	0.95	0.96	5687
All	0.11	0.39	0.55	0.66	0.72	0.77	0.80	0.82	0.85	0.87	0.89	0.90	0.91	0.92	0.93	0.94	0.95	0.95	0.96	60667