688 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 3, MAY 2003

FPGA Implementation of a Pulse Density Neural Network With Learning
Ability Using Simultaneous Perturbation

Yutaka Maeda and Toshiki Tada

Abstract—Hardware realization is very important when con- the learning rule [6]-[8]. At the same time, the merit of the
sidering wider applications of neural networks (NNs). In partic- |earning rule was demonstrated in VLS| implementation of
ular, hardware NNs with a learning ability are intriguing. In these analog NNs [9], [10].

networks, the learning scheme is of much interest, with the back- 1, ' 4\ antage of the simultaneous perturbation optimization
propagation method being widely used. A gradient type of learning hod is i imolici h hod - h di
rule is not easy to realize in an electronic system, since calcula- Method is its simplicity. The method can estimate the gradient
tion of the gradients for all weights in the network is very diffi- ~Using only values of the error function. Therefore, implementa-
cult. More suitable is the simultaneous perturbation method, since tion of this learning rule is relatively easy compared to that of
the learning rule requires only forward operations of the network other learning rules, because it does not have to take the error
to modify weights unlike the backpropagation method. In addi- hackpropagation circuit into account.

tion, pulse density NN systems have some promising properties, as g rain pulse techniques, such as pulse width or pulse stream,

they are robust to noisy situations and can handle analog quanti- . . . o
ties based on the digital circuits. In this paper, we describe a field- have also been investigated to implement artificial NNs. For ex-

programmable gate array realization of a pulse density NN using @mple, El-Masryet al. reported an efficient implementation of
the simultaneous perturbation method as the learning scheme. We artificial NNs using a current-mode pulse width modulation ar-
confirm the viability of the design and the operation of the actual tificial NN [11]. Moreover, Murrayet al. proposed a VLSI NN

NN system through some examples. using analog and digital techniques [12].

Index Terms—Field-programmable gate array (FPGA), learning In particular, pulse density NNs have fascinating properties.
ability, neural networks (NNs), pulse density, simultaneous pertur- For example, pulse systems are invulnerable to noisy conditions.
bation. Moreover, pulse density systems can handle quantized analog

values based on the digital circuit [13]. Based on these features,
Hikawa reported a frequency-based NN using the backpropaga-
tion [14]. In [14], the ordinary backpropagation method is ap-

EURAL NETWORKS (NNs) are widely used in anumberplied to a pulse density NN.

of applications in which the NNs are usually implemented However, it seems difficult to employ the backpropagation
as a software program on an ordinary digital computer. Howhethod for a pulse density system. Actually, NN system de-
ever, software implementations cannot utilize the essential pregribed in [14] has to complete the error propagation mechanism
erty of parallelism found in biological NNs. In this respecthased on the pulse density, in which case the circuit design be-
implementation of NNs using hardware elements such as vemes complex compared with the simultaneous perturbation
large-scale integration (VLSI) is beneficial. method.

When considering the hardware implementation of an NN, Recently, field programmable gate arrays (FPGAs) have been
realization of the learning mechanism as a hardware systgged in many commercial fields because of their reconfiguration
is an important and difficult issue [1]. As we well know, theproperties and flexibility [15]. FPGAs also seem to be promising
backpropagation method is commonly used. However, realizievices for implementing NNs, in comparison with ordinary
tion of the backpropagation method as an electronic systensisftware implementations.
very difficult, considering wiring for modifying quantitiesto all VvHDL is a very popular hardware description language
weights, calculation of the derivative of the sigmoid functionyHDL) for describing or designing digital circuits. In the
and so on. fundamental design of this research, HDL is used.

Thus, itis particularly difficult to implement large-scale NNs Combining a pulse density system with the simultaneous per-
with learning ability via the gradient method because of th@rbation method, we can easily design analog hardware NN
complexity of the mechanism that derives the gradient. Frogystems with learning capability. Some of the features of a pulse
this point of view, we must try to find a learning rule that is easgiensity NN system using FPGA can be summarized as follows:
to realize. 1) Hardware can take advantage of parallelism; 2) simultaneous

The simultaneous perturbation method was introduced B¥rturbation learning rule is very simple; 3) analog NN system
Spall [2], [3], Alespectoret al. [4], and Cauwenberghs [5]. js realized based on digital circuits; 4) digital design technology
Maeda also independently proposed a learning rule of NNsed is supported by electronic design automation; and 5) pulse
using simultaneous perturbation and reported a feasibility @nsity NNs are not affected by noisy situations.

I. INTRODUCTION

Manuscript received October 18, 2001; revised March 4, 2002 and January 3, Il. SIMULTANEOUS PERTURBATION LEARNING RULE
2003. This work was supported in part by Kansai University High Technology
Research Center. _ o Details of the simultaneous perturbation method as a learning
The authors are with the Department of Electrical Engineering, Faculty ofI fNNs h b d ibed . v [61=I9] 113 d
Engineering, Kansai University, Osaka 564-8680, Japan. rule of NNs have been described previously [6]-[9], [13] and are

Digital Object Identifier 10.1109/TNN.2003.811357 reiterated in this section.

1045-9227/03%$17.00 © 2003 IEEE

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 3, MAY 2003 689

The simultaneous perturbation learning rule with a sign FTTTT T Neural network -+
vector is described as follows: Inputs | | Outputs
S ——>
Wty =W — aAw, (1) E
o J(wy +csy) — J(wy) '
auf = et o) = Tm) @ E
1

C

wherew; is the weight vector including the threshold of all neu-
rons in a network at theth iteration.c is the magnitude of the
perturbationa is a positive constant to scale a modifying quan- Modifying quantity
tity, called the learning coefficienf\w; is a modifying vector
andAw: represents thih element of the vectakw;. s; ands:
denote a sign vector and itth element that is 1 or 1, respec-
tively. Therefore, if the sign} is +1, a positive perturbatiofc]]])]
is added to theth weight, if it is —1, a negative perturbation operations of the NN in order to obtain estimators of the first
—cis used. The coefficient controls the magnitude of the per_diff_erenti_al coefficients of the error function with respect to all
turbations. The sign of: is randomly determined with a zeroWeights in the network. N _ N

mean for every iteration. Moreover, the signspfs independent ~ From the point of view of realizing the learning ability of
of the sign of thejth elemem’s{ of the sign vector. This meansNNSs, the simplicity and ease of the simultaneous perturbation

that a different sign is used for a different weight. That is method is highly beneficial. If we use the ordinary backpropaga-
tion method, we have to include the so-called error-propagation

Learning i eachin Sigll
U Illt I als
g

Fig. 1. Pulse density NN via simultaneous perturbation.

E(s))=0, E(sis])=0(i#) (3) circuits for all weights in the network. The error-propagation

) through the weights, the wiring for all weights in the network,

where £ denotes the expectation. and the overall circuit design becomes difficult. The simulta-
The error function/(w) is defined by an output of the NN a5 perturbation learning rule does notinvolve the error-prop-
and a corresponding teaching sigrias follows: agation, and only values of the error function are required to
J(w) = o — d|.) update all the weights. Therefore, only one circuit realizing the

learning mechanism is used to update all the weights, even if the
Ordinarily, the error function is defined by a squared error. Howsumber of weights is large.
ever, we use the absolute error for circuit simplification. Moreover, a pulse density system assists in simplifying the
In this learning rule, the modifying quantities for all weightglesign. In pulse density NNs, the number of pulses denote out-
in the network are calculated using two values of the error funguts of the neurons and, hence, output of the network. Therefore,
tion J(w) and.J(w + cs). Two forward operations of the net-ordinary up—down counters can implement addition or subtrac-
work give J(w + cs) — J(w). Multiplying this by s?/c yields tion. For example, counting up for the output of the network and
(2). This quantity is an estimated gradient of the error functigipunting down for a teaching signal yields the error of (4). Simi-

with respect tav’. Repeating this fof = 1, ..., n, we update larly, the denominator of the right-hand side of (2) can be easily
all the weights. realized with a counter. The main part of the learning mecha-

When we expand the errdi{(w; + cs;) at the poiniw;, there nism can be implemented with ordinary logical elements used
existw,; such that in common digital circuits.

p 2 2
J(w;+cs;)=J(w;)+cs] (Ua(wt) % s} M St lIl. BASIC ARCHITECTURE ANDIMPLEMENTATION
) w) w
) Itis crucial to implement NNs using suitable media in order
to take advantage of some ideas of real biological nerve systems.
Therefore, (2) becomes The overall configuration of our NN is shown in Fig. 1. In this

figure,W andN denote a single weight unit and a single neuron

< 7 2
0J(w:) | csi sT 9J (u(ws1)) s (6) unit, respectively. Basically, the system consists of three kinds

i 0T
Awy = s;s;

“ f - - .
ow 2™ ow? of units: weight units, neuron units, and a single learning unit.
We take an expectation of the above quantity. From the condire NN itself is composed of multiple weight units and multiple
tions of the sign vectos; in (3), we have neuron units. Only one learning unit generates the basic quantity
of modification for all weights and conveys it to all weight units.
i 8J('ll]t)
Wy A. Weight Unit

That is, Aw; approximate$).J,(w;)/dw;. Since the right-hand The weight unit is shown in Fig. 2. This unit calculates the

side of (2) is an estimated value of the first-differential coeffiproduct of the input signals and the weight value. At the same

cient, the learning rule is a type of a stochastic gradient methtache, the unit updates the weight value.

[81, [9]- The weight unit consists of a weight modification part and a
An important point is that this learning rule requires only twoandom-number generation part. The weight modification part

values of the error function. That is, it requires only two forwardpdates the weight value based on the quantity from the learning

690 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 3, MAY 2003

Input positive inputs from
the weight units

Positive output
Negative output

Random-numbers
generation part |—
(LFSR)

I.IQ UI‘COJ

in+ | Comparator
IN+>IN- then 1 [Output

IN-

negative inputs from
the weight units IN+=<IN- then 0
from learning unit | 'eight Comparator
EE—

modification
part

|

Fig. 2. Weight unit. . .
Fig. 4. Neuron unit.

sign control
—> FF FF > output of the NN
from ; : with perturbation
up/down
control

Error

—>
up/down 3] calculation | J(w+cs)
control teaching signal part N

Learning
unit

to comparator Jwtcs)- J(w)

output of the NN Jw)
C Counter > Counter without perturbation Error
—

modify quantity

5| calculation
teaching signal part

Fig. 3. Weight modification part.

unit and carries out addition or subtraction of the perturbatiofig. 5. Learning unit.
Atthe same time, it stores the weight value. The random-number
generation part generates a random number using a linear fegdneuron Unit

back shift register.
If the sign of the result of the unit is positive, the outputis sent F19: 4 Shows the neuron unit which consists of counters and

to the positive side of the neuron unit. If the sign is negative, tifecomparator and calculates the weighted sum of inputs. The
output is sent to the negative side. counters sum _the numbe_r of pulses given by the w¢|ght_ units
1) Weight Modification: Fig. 3 depicts the weight modifica- as shown in Fig. 4. The first counter (upper counter in Fig. 4)

tion part. The first counter (eight bits) and the first Flip Flop (FFzOunts the number of positive inputs, and the second counter
in this part (left counter and FF in Fig. 3) store an initial valugOWer counter in Fig. 4) counts the number of negative inputs.

of a weight and its corresponding sign, respectively. The badidhe number of positive pulses is larger than the number of

modifying quantitye(.J (w+ cs) — J (w)) /¢ in (2) is common to pegative pulses, thg neuron unit gener.atefs a single pulse. The
all weights. This quantity is sent from the learning unit, and Con_pUt_O_Ungt behawor_of ourneuron units is charact_erlzed by a
nected to the first counter. The sign of the quantity is connectBt?CE_W'se'“n?ar func_t|on de_termlned by the saturat_lon of pulse
to the first FF. The sigi in (2), which is generated by the lineard€nSity. Thatis, even if aweighted sum for a neuron is extremely
feedback shift register, is also connected to the FF which decid®@9€ the maximum number of pulses per unit time is limited.

whether counting up or down should be performed. These 3}59 pulse indicates the weighted sum of a neuron is less than the

erations modify the weights as represented in (2). lowest I.imit of the output. .Otherwise, thg number of the output
Another role of the weight modification partis to add a pertupql_ses_ is equal to the vv_mghted sum O_f inputs. That is, the am-
bation to the weight. This is simultaneously done for all weighfification factor of the linear function is assumed to be unity.
in each weight modification part. The second counter and tf}8US: instead of the sigmoid function, the system uses a linear
second FF (right counter and FF in Fig. 3) are used for trﬁgnchon wnhgrgstrlctlon apphed. A similar idea for pulse den-
purpose. That is, the perturbatiopwhich is constant, is addedSIty neurons is discussed in [14].
by the counter, and the sign of the perturbation is stored in the .)
second FF. C. Learning Unit
2) Pulse Generation:The weight values calculated in the The learning unit achieves the so-called learning process
weight modification part must be converted into a pulse seriassing simultaneous perturbation and sends the basic modifying
We use a random-number generator and a comparator for thjigantitya(J(w + cs) — J(w))/c to the weight units, which is
The linear feedback shift register is used to produce randammmon to all weights. The block diagram is shown in Fig. 5.
numbers. We compare a weight value with a random value gédre of the features of this learning rule is that it requires only
erated by the linear feedback shift register. If the weight is largierward operations of the NN.
than the random number, this circuit generates a single pulse an@here is a counter in each error calculation part. Since the
if not, no pulse is generated. We repeat this procedure, and remnor function used here is defined by the absolute difference
random numbers are generated at each time step. Thereforas & (4), using the counter, this part gives the difference in the
large weight results in many pulses and a small weight resultsiamber of pulses between the output of the NN and the corre-
very few pulses. In other words, the weights in our system asponding teaching signal; counting up for the output pulses and
represented by pulse density. counting down for the teaching pulses provide the error. The

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 3, MAY 2003 691

CHRl e B f!'i:“a""f;f‘i .)
L I b &% @Qlitelh Bt | Phaad i
Tracye Moo .— W
=g Lee e 4
P

I
6]

A0 INPUT1
A1INPUT2 _
A2 TEACH ———

a3 output [EIEEIESERIH LJNIEHI | g E=EEEEE

Fig. 6. Result before learning.

IL m.LmnM S 5
U1 ebs &0 '«s, ! PR Lo TUEOLL i

iy ”u X
S it 'n;‘ F—-
Flemon "l!m fisnlog

A0 INPUT1
A1INPUT2
A2 TEACH

e
A3OUTPUT =F— ﬁ

Fig. 7. Result after learning for the exclusiee problem.

D
o

W
o

Weight

&

Error rate [%]

T
. S

sy
1 Al ,
. A\i
0 W ‘v} A xﬂn
1 250 500 750 1000 1250 1500 -200 T
Iteration [epoch]

-300 4 500 1000 1500

Fig. 8. Error rate for the exclusiver problem. Iteration [epoch]

two error calculation parts yield two values of the error fund=9- 9- Weights of the network for the exclusiog problem.

tion; J(w + ¢s) and.J(w). The next counter in Fig. 5 gives the

difference between these two valud$w + cs) — J(w). The A. Exclusiveor

learning coefficienty and the perturbationare constant. Mul- .) .
First, a three-layered NN is configured to learn exclusire

tiplying by /¢, the unit computes the basic modifying quant|tyT

which is sent to all weight units. he numbers of neurons in each layer are two, two, and one.
9 About 60 000 gates out of 250 000 gates in this FPGA are used.
The inputs, teaching signals, and the output of the NN are

IV. EXAMPLES

shown in Figs. 6 and 7. Logical representations of zero and one
In this chapter, we describe some concrete examples of exe shown in pulse density for@55(=2% — 1) pulses per unit

clusiveor learning, function learning and the TCLX problemtime denotes one, and no pulse in a unit time means zero. Initial
The networks are designed to solve these three problems. weights of the network are determined randomly in the interval
The design results were checked and configured using fhe255+255]. The magnitude of the perturbatiors 5, and the
logical synthesis software MAX PLUS. ALTERA, FLEX learning coefficienty is 1.25 in (1) and (2).
EPF10K250AGC599-3 with a 20—-MHz clock speed is used for A black region in the figures represents an area with many

these examples. pulses. Fig. 6 shows the output of the NN before learning. The

692

o i

i (e UL

el LI
{ l!l plal Hsnl ‘

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 3, MAY 2003

— R 1summmmmmmumammmmmmmmm“
wrrescn |1 0 0 ilhlffzid IR
NS T T o

Fig. 10. Result before learning for the function learning.

A0 INPUT -

A1 TEACH
A2 OUTPUT

Fig. 11. Result after learning for the function learning.

wh
o

K

Error rate[%]
&
=

“Nl
20 oy '\,‘\
10 vy
L R
0 |] 1
1 100 200 300 400

Iteration [epoch]

Fig. 12. Error rate for the function learning.

-100

2001 T

-300 ! X :
1 100 200 300 400

Tteration [epoch]

Fig. 13. Weights of the network for the function learning.

A A i }gﬂﬁtﬁﬂﬁi
T

'JMM@@W&MWWNMMMNMNMNMImlllllllllllllll
Mwﬁfﬁ H&Mi“ﬂLi LALLM
L

AR -
L |

I

2 gl oo
213 |79
456
71819 23

5|6

Fig. 14. Characters T, C, L, and X.

signal. After sufficient learning, we notice close agreement be-
tween the output and the teaching signals in Fig. 7. The NN
learns the logical relation of exclusieR in the form of pulse
density.

The change of error rate is shown in Fig. 8. The error rate
is defined by the difference between the actual number and the
desired number of pulses. The perturbatioand the learning
coefficienta are 5 and 2.5, respectively. We can see that the error
decreases as learning proceeds. It took 5p9fbr one epoch,
which represents the learning of four patterns of the exclusive
ORrelation. The learning speed was about 172.9 kCUPS.

The change of weight values in the network is shown in Fig. 9.
As the learning proceeds, all weights converge to corresponding
constant values.

In our algorithm, we have to determine the learning coeffi-

four rows show the first input, the second input, the teachirgent « and the perturbation properly. It is impossible or ex-
signal, and the output of the network, respectively. The behavioemely difficult to find optimal values forr and ¢ as these
of the output pulses is quite different from that of the teachinglues vary widely for different problems.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 3, MAY 2003 693

TS Didial |
T T {', & x',.l‘n’ FIHOS [S0P 1 |
- 4 9 o

il

Rl &
RERRTR R [kO

o e D

A0 INPUT1
A1INPUT2
A2 INPUT3
A3 INPUT4
A4 INPUTS
A5 INPUT6
A6 INPUT7
A7 INPUT8

B1 INPUT9
B2 TEACH1
B3 TEACH2 =/
B4 OUTPUT1 ===
B5 OUTPUT2 ::

Fig. 15. Result before learning for the TCLX problem.

In our experiments, these values are determined empirically.The inputs, teaching signals, and the output of the NN are
For example, different values for Figs. 7 and 8 were used to aiitown before learning in Fig. 10 and after learning in Fig. 11.
tain typical results, and from preliminary experiments, we coufdor the input in Fig. 10, there is no pulse in the first interval,
relatively easily find rough values of the learning coefficient aneorresponding to analog zero. In the second time interval, the
the perturbation. number of pulses increases, and by the final interval, the inputin

Generally, a small perturbation gives a good approximatiéhe figure is painted over. This means the analog value increases
of the derivative of the error function. However, the hardwar@s the time interval moves to the right. Actually, six unit time
system has a lower limit for the perturbation, and too smalligtervals, 0, 0.2, 0.4, 0.6, 0.8, and 1 are used. That is, we select
perturbation makes the system unstable. That is, the modifiSk |€aming points, where the corresponding ideal number of
tion quantitye(.J (w-+cs) —J (w)) /c becomes too large becausd@UlSes aré(=0 x 255), 51(=0.2 x 255), 102(=0.4 x 255),
of the small perturbation. 153(=0.6 x 255), 204(=0.8 x 255) and255(=1 x 255).

: S _Since the function ig = 1 — «, corresponding teaching sig-
The larger the learning coefficientis, the faster_the conver nals are 1, 0.8, 0.6, 0.4, 0.2, and 0, respectively. We can see full
gence speed. However, too large a learning coefficient leads to

o . S \ses in the leftmostinterval of the teaching signals (the second
poor modification quantity because of an estimation error of t

derivative. F thi it of Vi I ficient | rSw) in both Figs. 10 and 11. The number of pulses decreases
erivative. From this point ot view, a small Coetlicient IS Morg,g corresponding teaching signal decreases. After sufficient

reliable, at the expense of a slower convergence to an Opti%aalrning (Fig. 11), the number of pulses in the output for each
state. o . __unitinterval are close to that of the corresponding teaching sig-

There is a tradeoff in finding suitable values for the leaming, s For this result, the magnitude of the perturbation and the
coefficient and the perturbation. In these experiments, we qé%rning coefficient are five and 1.25, respectively.

heuristics to determine suitable values empirically. Next, we evaluate the results. As described above, since the
position of the pulses is not important, the error rate is the
B. Function Learning difference between the number of pulses in the actual output

Next ider th bl £ ing the funcii and the corresponding desired output. We measured the average
ext, we consider the problem of learning the Juncuor: -, yper of pulses for six learning values over 15 trials. The
1 —z. The size of the network is 1-4-1, using about 75000 gatgsy, s were zero, 51.47, 102.47, 153.00, 203.93, and 254.67
in the F'_DGA') pulses on average, which compare very closely to the ideal
For this problem we have to handle an analog quantity, whiglympers of pulses written above. The errors are all within one

is represented by the pulse densitys(=2° — 1) pulses per pyise on average.
unit time denotes one, and no pulse per unit time denotes zeroye measured the error from an initial state. The change of
For example, 26 pulses in a unit time represents 26/255, thatdfror rate is shown in Fig. 12, which indicates the error decreases
about 0.1. The position of the pulses is not important; only thg the learning proceeds. The perturbation and the learning co-
number of pulses in a unit time interval represents the analeficient are five and 2.5, respectively. It took 77,78 for one
guantity. epoch, which includes calculations of modification quantities
Initial weights of the network are determined randomly in théor six patterns. The learning speed was about 167.2 kCUPS.
interval [-255 +255], and output pulses are randomly gener- The change of weight values in the network are shown in
ated. Therefore, the pulse density of the output will be quite difig. 13. As the learning proceeds, all weights converge to cor-
ferent from the corresponding teaching signals. responding constant values.

694 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 3, MAY 2003

P10 eh-& Glitel 3 PGS [e W=ikur i
Samnte e o | e

. p—
Flonorw BRECHEIR Bl ITEETE ito LEEER ~ FON |

ed Rl a e

A0 INPUT1
A1INPUT2
A2 INPUT3
A3 INPUT4
A4 INPUTS ===
AS5INPUT6 .
A6 INPUT7 ... > S ——
A7 INPUTS8 e

B1INPUT9Y
B2 TEACH1
B3 TEACH2 e o
B4 OUTPUT1 .
B5 OUTPUT2

Fig. 16. Result after learning for the TCLX problem.

Pibtibs Plraddd
IS8 b e tdateds 3 WG Le Rty 1
by ‘ ¥

Shane be Pet 1o T £ 0
Hetnst s m@;m e Pt MM

A0 INPUT1 L mww AR

A1 INPUT2 AR SRY BRENTR IR PR RRRG
A2 INPUT3 B RRTETRTRR ERY VISR RN ISR SRR
A3 INPUT4 ORISR TSRS MG

A4 INPUTS i DTN R RSO R
AS INPUTE

A6 INPUT7] R RS SRRSO SO R R SRR R

A7 INPUTS8 SRR S NG PR SRR SRR TR SRR
B1 INPUTS] Fo

B2 TEACH1 = B

B3 TEACH2 mem fo SRRSO Y

B4 OUTPUT1 ¢ | AR 1 I |

B5 OUTPUT2 = B -

Fig. 17. Local minimum for the TCLX problem.

C. TCLX A combination of two outputs represents the characters. For

The third example is a simple character recognition proble?ﬁ(ample’ an output of zero and zero means T, of zero and one
known as the TCLX problem. A % 3 array of pixels is used means C, and so on.))
to represent the characters T, C, L, and X (see Fig. 14). TheF'g' 15 shows the output O,f th? NN before learning. !\lothe
number of neurons in each layer is 9-4-2, and the total numﬁgf“t the output. pulses are_qune different from the teaching SI9-
of weights including thresholds in the network is 50. ApproxirJ‘_"‘lS' After sufficient learning, these agree closely, as shown in
mately 230 000 gates are used for the network. Fig. 16._ Ittook 52.5:s for one epoch, making the learning speed
The inputs, teaching signals and the output of the NN a?@proxmately 952.4 kCU.PS'. .
shownin Figs. 15 and 16 with a perturbatioof 3 and a learning _In_ Some cases, leaming is suspended in so_—called local
coefficienta of 0.375. The initial weights in the network are amnima, in V\,’h'Ch the N_N cannot prqduqe th_e des're‘?' oqtputs
Zero. despite continued learning. Such a situation is shown in Fig. 17.
A black pixel and a white pixel in Fig. 14 denote one angor the first three patterns, both teaching signals are the same
zero, respectively. Nine inputs correspond to the nine pixels & the (_)utputs of the NN. However, for the f_ourth pattern_, one
the pattern. For example, if the patternis T, then 1, 1, 1, O, 1,?5ftpUt is nearly zero, and th(_a other ogtput IS one, despite the
0, 1, and 0 are applied to the network in pulse density form (sg"é:t that the two corresponding teaching signals are one and
Fig. 14). The leftmost time interval in Fig. 15 shows the input?:ne'
1,1,1,1,0,0, 1, 1, and 1, therefore the presented pattern is C.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 3, MAY 2003

695

Economizing the number of required gates or the size of the[4] J. Alespector, R. Meir, B. Yuhas, A. Jayakumar, and D. Lippe, “A par-
circuit is possible, however we have not paid attention to this.

This is a very technical aspect of digital circuit design, which

is not the main theme of this paper. Compared with the or-
dinary backpropagation learning rule, the number of required(®!
gates in our method is small, because only a single learning cir-
cuit is commonly used to generate the modifying quantity for
all weights.

V. CONCLUSION

(6]

(71
(8]

In this paper, we designed a pulse density NN system on

FPGA using the simultaneous perturbation learning rule. VHDL

[9]

was used for the design of the networks, and we confirmed the
system worked well for the exclusive OR, function learning, and
TCLX problems.
There is another class of pulsed NNs in which the positions of
the pulses have certain meaning [16]. In addition, another typg1]
of simultaneous perturbation method called time difference si-
multaneous perturbation [17] has been proposed. Using a simo)
ilar approach to that described in this paper, we could easily
implement these types of networks as well.

(1]

REFERENCES

B. J. Sheu and J. ChoiNeural
VLSL Boston, MA: Kluwer, 1995.

Information Processing and

(10]

(13]

[14]

[2] J.C. Spall, “A stochastic approximation technique for generating max-{15]

(3]

imum likelihood parameter estimates, ®noc. American Control Conf.
1987, pp. 1161-1167.

——, “Multivariable stochastic approximation using a simultaneous
perturbation gradient approximationlEEE Trans. Automat. Contr.
vol. 37, pp. 332-341, 1992.

[16]

(17]

allel gradient descent method for learning in analog VLSI neural net-
works,” in Advances in Neural Information Processing Systens. 5.
Hanson, J. D. Cowan, and C. Lee, Eds. San Mateo, CA: Morgan Kauf-
mann, 1993, pp. 836-844.

G. Cauwenberghs, “A fast stochastic error-descent algorithm for super-
vised learning and optimization,” iAdvances in Neural Information
Processing SystemsS. J. Hanson, J. D. Cowan, and C. Lee, Eds. San
Mateo, CA: Morgan Kaufmann, 1993, pp. 244-251.

Y. Maeda and Y. Kanata, “Learning rules for recurrent neural networks
using perturbation and their application to neuro-control” (in Japanese),
Trans. Inst. Electr. Eng. Japarol. 113-C, no. 6, pp. 402—-408, 1993.
——, “Alearning rule of neural networks for neuro-controller,®noc.

1995 World Congr. Neural Networkeol. 2, 1995, pp. 11-402—11-405.

Y. Maeda and R. J. P. de Figueiredo, “Learning rules for neuro-controller
via simultaneous perturbation|EEE Trans. Neural Networksol. 8,

pp. 1119-1130, Sept. 1997.

Y. Maeda, H. Hirano, and Y. Kanata, “A learning rule of neural networks
via simultaneous perturbation and its hardware implementatieytal
Networks vol. 8, no. 2, pp. 251-259, 1995.

G. Cauwenberghs, “An analog VLSI recurrent neural network learning
a continuous-time trajectorylEEE Trans. Neural Networksol. 7, pp.
346-361, Mar. 1996.

E. I. EI-Masry, H. Yang, and M. A. Yakout, “Implementations of artifi-
cial neural networks using current-mode pulse width modulation tech-
nique,”IEEE Trans. Neural Networksol. 8, pp. 532-548, May 1997.

A. F.Murray, D. D. Corso, and L. Tarssenko, “Pulse-stream VLSI neural
networks mixing analog and digital techniquel2EE Trans. Neural
Networks vol. 2, pp. 193—204, Mar. 1991.

Y. Maeda, A. Nakazawa, and Y. Kanata, “Hardware implementation of
a pulse density neural network using simultaneous perturbation learning
rule,” Analog Integrated Circuits and Signal Processingl. 18, no. 2,

pp. 1-10, 1999.

H. Hikawa, “Frequency-based multilayer neural networks with on-chip
learning and enhanced neuron characteristl&EE Trans. Neural Net-
works vol. 10, pp. 545-553, May 1999.

S. Hauck, “The role of FPGA's in reprogrammable systeni&dc.
IEEE, vol. 86, pp. 615-638, Apr. 1998.

W. Maass and C. M. Bishop, Eds., Pulsed
Networks Cambridge, MA: MIT Press, 1998.

Y. Maeda, “Time difference simultaneous perturbatideigctron. Lett,
vol. 32, no. 11, pp. 1016-1018, 1996.

Neural

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

