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Abstract—Multidimensional stochastic optimization plays an important role in analysis and
control of many technical systems. To solve the challenging multidimensional problems of
optimization, it was suggested to use the randomized algorithms of stochastic approximation
with perturbed input which are not just simple, but also provide consistent estimates of the
unknown parameters for observations in “almost arbitrary” noise. Optimal methods of choosing
the parameters of algorithms were motivated.

1. INTRODUCTION

Let us consider by way of example the problem of determining the stationary point θ∗ (of local
minimum or maximum) of some function f(·), provided that for each value of θ ∈ R, that is, input
to the algorithm or controllable variable, one observes the random variable

Y (θ) = f(θ) + V

which is the value of the function f(·) polluted by noise at the point θ. To solve this problem under
some additional constraints, J. Kiefer and J. Wolfowitz [1] proved that the recurrent sequence
obeying the rule (algorithm)

θ̂n = θ̂n−1 − αn
Y (θ̂n−1 + βn)− Y (θ̂n−1 − βn)

2βn
,

where {αn} and {βn} are some given decreasing numerical sequences with certain characteristics,
converges to the point θ∗.

The requirement that the observation noise be conditional centered is the main condition which
constrains its properties and usually is assumed to be satisfied. It can be formulated as follows.
For the statistics

z(θ, β) =
Y (θ + β)− Y (θ − β)

2β

whose sampled values are precisely observed or calculated and for small β, the conditional expec-
tation is close to the derivative of the function E{z(θ, β) | θ} ≈ f ′(θ).

Behavior of the sequence of estimates determined by the algorithm of stochastic approximation
(SA) depends on the choice of the observed statistic functions z(θ, β). In some applications, in-
formation about the statistic characteristics of the measurement errors may be insufficient or they
may be defined by a deterministic function which the experimenter does not know. In this case, one
encounters appreciable difficulties in motivating applicability of the conventional Kiefer–Wolfowitz
(KW) procedure whose estimate often does not converge to the desired point. However, this does
not suggest that in dealing with these problems one must abandon the easily representable SA
algorithms. Let us assume that the function f(·) is twice continuously differentiable and given is
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an observed realization of the Bernoulli sequence of independent random variables {∆n} that are
equal to ±1 with the same probability and not correlated at the nth step with the observation
errors. We modify the KW procedure using the randomized statistics z̃(θ, β,∆) = z(θ, β,∆). By
expanding the function f(θ) by the Taylor formula and making use of the fact that ∆n and the
observation noise are not correlated, we obtain for this new statistics that

E {z̃(θ, β,∆) | θ} = f ′(θ) + E
{

1
∆
V

}
+O(β) = f ′(θ) +O(β).

If the values of the numerical sequence {βn} in the algorithm tend to zero, then in the limit it
coincides “in the mean” with the value of the derivative of f(·). A simpler statistics

z(θ, β,∆) =
∆
β
Y (θ + β∆)

that at each iteration (step) uses only one observation has the same characteristics. The observation
sequence can be enriched by adding to the algorithm and observation channel a new random process
{∆n} called the simultaneous trial perturbation. The trial perturbation in essence is an exciting
action because it is used mostly to make the observations nondegenerate.

In the multidimensional case of θ ∈ Rr, the conventional KW procedure based on finite-difference
approximations at each iteration of the function gradient vector makes use of 2r observations (two
observations for approximation of each component of the r-dimensional gradient vector) to construct
the estimate sequence. The randomized statistics z̃(θ, β,∆) and z(θ, β,∆) admit a computationally
simpler procedure of generalization to the multidimensional case which at each iteration employs
only two or one measurement(s) of the function. Let {∆n} be an r-dimensional Bernoulli random
process. Then,

z̃(θ, β,∆) =



1
∆(1)

1
∆(2)

...
1

∆(r)


Y (θ + β∆)− Y (θ − β∆)

2β
,

and for z(θ, β,∆) the formula is the same as in the scalar case. J.C. Spall [2] proposed to use the
statistics z̃(θ, β,∆) and demonstrated that for large n the probabilistic distribution of appropriately
scaled estimation errors is approximately normal. He used the formula obtained for the asymptotic
error variance and a similar characteristic of the conventional KW procedure to compare two
algorithms. It was found out that, all other things being equal, the new algorithm has the same
convergence rate as the conventional KW procedure. Despite the fact that in the multidimensional
case appreciably less (by the factor of r for n → ∞) observations are used. The present author
was the first to use the statistics z(θ, β,∆) in the scalar case [3] for constructing a sequence of
consistent estimates for almost arbitrary observation errors.

Convergence rate of the estimates of the SA algorithms seems to be the main stimulus to modify
the original algorithms. The properties of estimates of the conventional KW procedure and some of
its generalizations were studied in detail in many works [4–11]. The estimate convergence rate de-
pends on the smoothness of f(·). If it is twice differentiable, then the rms error of the conventional

KW algorithm decreases as O
(
n−

1
2

)
; if it is thrice differentiable, as O

(
n−

2
3

)
[4]. V. Fabian [12]

modified the KW procedure by using, besides an approximation of the first derivative, higher-order
finite-difference approximations with certain weights. If the function f(·) has ` continuous deriva-

tives, then the Fabian algorithm provides the rms convergence rate of the order O
(
n−

`−1
`

)
for
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odd `’s. In computational terms, Fabian’s algorithm is overcomplicated, the number of observations
at one iteration growing rapidly with smoothness and dimensionality; also, at each step one has
to invert a matrix. The asymptotic rms convergence rate can be increased without increasing the
number of measurements of the function at each iteration if in problems with sufficiently smooth
functions f(·) the randomized SA algorithms are used. For the case where some generalized mea-
sure of smoothness of f(·) is equal to γ (γ = `+1 if all partial derivatives of orders up to ` inclusive
satisfy the Lipschitz condition), B.T. Polyak and A.B. Tsybakov [13] proposed to use a statistics
of the form

z̃γ(θ, β,∆) = K(∆)
Y (θ + β∆)− Y (θ − β∆)

2β
,

zγ(θ, β,∆) =
1
β

K (∆)Y (θ + β∆),

where K (·) is some vector function with finite support (differentiable kernel) determined by means
of the orthogonal Legendre polynomials of a degree smaller than γ. Two corresponding randomized

algorithms provide the rms convergence rate O
(
n
−γ−1

γ

)
of the estimate sequence. The same

paper demonstrated that for a wide class of algorithms this convergence rate is optimal in some
asymptotically minimax sense, that is, cannot be improved either for any other algorithm or for
any other admissible rule of choosing the measurement points. For odd `, this fact was earlier
established by H.F. Chen [14].

Polyak and Tsybakov [13] also noted that the algorithm with one measurement asymptotically
behaves worse than that with two measurements. As will be shown below, this is not quite true
if one compares the algorithms in terms of the number of iterations multiplied by the number of
measurements. Additionally, in many applications such as optimization of the real-time systems,
the dynamic processes underlying the mathematical model can be too fast to enable two successive
measurements. In some problems, at one step of the algorithm it is merely impossible to make two
measurements such that the observation errors are uncorrelated with ∆n at both points θ̂n−1+βn∆n

and θ̂n−1 − βn∆n, which is one of the main conditions for applicability of the algorithm.
The reader is referred to [15] for the conditions for convergence of the randomized SA algorithms

for “almost arbitrary” noise and for the corresponding references. Deterministic analysis of conver-
gence of the randomized algorithms of stochastic approximation was done in [16, 17]. Convergence
rate of the algorithms was considered also in [18, 19].

2. FORMULATION OF THE PROBLEM AND BASIC ASSUMPTIONS

Let F (w, θ) : Rp × Rr → R1 be a function differentiable with respect to the second argument,
x1, x2, . . . be the sequence of the measurement points (plan of observation) chosen by the experi-
menter where at each time instant n = 1, 2, . . . the value of the function F (wn, ·) is observable with
additive noise vn:

yn = F (wn, xn) + vn,

where {wn} is a noncontrollable sequence of random variables (wn ∈ Rp) having identical and,
generally speaking, unknown distribution Pw (·) with finite support.

Formulation of the problem. Needed is to construct from the observations y1, y2, . . . the sequence
of estimates {θ̂n} of the unknown vector θ∗ minimizing the function

f(θ) =
∫
Rp
F (w, θ)Pw(dw)
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of the kind of mean-risk functional. The same formulation was considered in [15] which also aimed
at optimizing the convergence rate of the sequence of estimates.

To formulate the basic assumptions, we make use of the notation ‖ ·‖ and (·, ·) for the Euclidean
norm and the scalar product in Rr, respectively.

(A.1) The function f(·) is strongly convex, that is, has a single minimum in Rr at some point
θ∗ = θ∗(f(·)) and (

x− θ∗,∇f(x)
)
≥ µ‖x− θ∗‖2, ∀x ∈ Rr

with some constant µ > 0.
(A.2) The Lipschitz condition for the gradient of the function f(·)

‖∇f(x)−∇f(θ)‖ ≤ A‖x− θ‖, ∀x, θ ∈ Rr

with some constant A > µ.
(A.3) The function f(·) ∈ C` is ` times continuously differentiable and all its partial derivatives

of the order up to ` inclusive satisfy on Rr the Hölder condition of the order ρ, 0 < ρ ≤ 1:∣∣∣∣∣∣∣f(x)−
∑
|`|≤`

1
`!
D`f(θ)(x− θ)`

∣∣∣∣∣∣∣ ≤M‖x− θ‖γ ,
where γ = ` + ρ ≥ 2, M is some constant, ` =

(
`(1), . . . , `(r)

)T
∈ Nr is a multiindex, `(i) ≥ 0,

i = 1, . . . , r, |`| = `(1) + . . . + `(r), `! = `(1)! . . . `(r)!, x ∈ Rr, x` =
(
x(1)

)`(1)

. . .
(
x(r)

)`(r)
, D` =

∂|`|/
(
∂x(1)

)`(1)

. . .
(
∂x(r)

)`(r)
. For γ = 2, we assume that M = A/2.

3. TRIAL PERTURBATION AND THE BASIC ALGORITHMS

Let ∆n, n = 1, 2, . . . be the observed sequence of mutually independent and identically dis-
tributed random variables in Rr which below is referred to as the simultaneous trial perturbation.
All components of the vector ∆n are mutually independent and have identical scalar distribution
function P∆(·) with finite support.

We fix some initial vector θ̂0 ∈ Rr, choose the positive numbers α and β and two scalar bounded
functions (kernels) K0(·) and K1(·) satisfying∫

uK0(u)P∆(du) = 1,
∫
ukK0(u)P∆(du) = 0, k = 0, 2, . . . , `,∫

K1(u)P∆(du) = 1,
∫
ukK1P∆(du) = 0, k = 1, . . . , `− 1.

(1)

Two algorithms are proposed for constructing the sequence of measurement points {xn} and esti-
mates {θ̂n}. At each step (iteration), the first algorithm uses two observations

x2n = θ̂n−1 + βn
− 1

2γ ∆n, x2n−1 = θ̂n−1 − βn
− 1

2γ ∆n

y2n = F (w2n, x2n) + v2n, y2n−1 = F (w2n−1, x2n−1) + v2n−1

θ̂n = θ̂n−1 − αn
−1+

1
2γ K (∆n)

y2n − y2n−1

2
,

(2)

and the second algorithm, one observation
xn = θ̂n−1 + βn

− 1
2γ∆n, yn = F (wn, xn) + vn

θ̂n = PΘn

(
θ̂n−1 − αn

−1+
1

2γ K (∆n)yn
)
.

(3)
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In both algorithms, K (·) is the vector function with the components obeying

K(i)(x) = K0(x(i))
∏
j 6=i

K1(x(j)), i, j = 1, . . . , r, x ∈ Rr. (4)

In algorithm (3), PΘn(·), n = 1, 2, . . . , denotes the operators of projection on some convex closed
bounded subsets Θn ⊂ Rr containing the point θ∗ starting from some n ≥ 1. If the bounded
closed convex set Θ including the point θ∗ is known in advance, then one can assume that Θn = Θ.
Otherwise, the sets {Θn} can dilate to infinity.

We follow V.Ya. Katkovnik [7] and Polyak and Tsybakov [13] and show one of the possible
methods of constructing the kernels K0(·) and K1(·) satisfying conditions (1). We note that in the
scalar case one function K0(x) suffices to define K (x). Let {pm(·)}`m=0 be a system of polynomials
that is defined on the support of the distribution P∆ (·) and is orthogonal to the measure generated
by it. By analogy with the proofs of [13], one can readily verify that the functions

K0(u) =
∑̀
m=0

ampm(u), am = p′m(0)
/ ∫

p2
m(u)P∆(du),

K1(u) =
`−1∑
m=0

bmpm(u), bm = pm(0)
/ ∫

p2
m(u)P∆(du)

satisfy conditions (1).

It was proposed in [13] to take a distribution that is uniform over the interval
[
−1

2
,
1
2

]
as the

probabilistic distribution of the components of the trial perturbation P∆(·) and to construct over
this interval the kernels K0(·) and K1(·) by the orthogonal Legendre polynomials. In this case,
we obtain K0(u) = 12u and K1(u) = 1 for the initial values of ` = 1, 2, that is, 2 ≤ γ ≤ 3,
K0(u) = 5u(15 − 84u2) and K1(u) = 9/4 − 15u2 for the subsequent values of ` = 3, 4, that is,
3 < γ ≤ 5, and for |u| > 1/2 both functions are equal to zero.

Attention to a type of probabilistic distributions of the trial perturbation that is more general
than that considered in [13] is due to the fact that in practice the statement of the problem itself
defines a certain type of the distribution of the trial perturbation P∆(·) that can be conveniently
modelled, whereas in some cases it is more suitable to use distributions only from some narrow
fixed class. The possibility of choosing among various systems of orthogonal polynomials enables
one to get estimation of appropriate quality for the same asymptotic order of the convergence rate.

4. CONVERGENCE RATE

We denote by W = sup(Pw(·)) ⊂ Rp the support of the distribution Pw(·), by Fn−1 the
σ-algebra of probabilistic events generated by the random variables θ̂0, θ̂1, . . . , θ̂n−1 obtained using
algorithm (2) (or (3)):

vn = v2n − v2n−1, wn =

(
w2n

w2n−1

)
, dn = 1

if algorithm (2) is used or

vn = vn, wn = wn, dn = diam (Θn)

if the estimates are constructed by algorithm (3); here diam (·) is the Euclidean diameter of the
set.

The following theorem establishes the sufficient conditions for optimality of the asymptotic
convergence rate of algorithms (2) and (3).
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Theorem 1. If the following conditions are satisfied:
(1) for the functions K0(·), K1(·), and P∆(·);

(A.1, 3) for γ ≥ 2, αβ >
γ − 1
2µγ

for the function f(θ) = E {F (w, θ)};

(A.2) for the functions F (w, ·) ∀w ∈W;
for any θ ∈ Rr the functions F (·, θ) and ∇θF (·, θ) are uniformly bounded on W;

dnn
−1+

1
2γ → 0 for n→∞;

for any n ≥ 1, the random vectors wn and ∆n are independent of v1, . . . , vn, w1, . . . , wn−1 and
the random vector ∆n is independent of wn;

E{(v2n − v2n−1)2/2} ≤ σ2
2 (E {v2

n} ≤ σ2
1),

then for n→∞

E
{∥∥∥θ̂n − θ∗∥∥∥2

}
= O

(
n
−γ−1

γ

)

is asymptotically satisfied for the rms convergence rate of the sequence of estimates {θ̂n} generated
by algorithm (2) (or (3)).

Theorem 1 is proved in the Appendix.
The present author proved [15] that if the additional condition

∑
n
n−2+1/γE

{
v 2
n | Fn−1

}
< ∞

is satisfied with unit probability, then the sequence of estimates converges with probability one:
θ̂n → θ∗ for n→∞.

The resulting estimates of the order of the rms convergence rate are optimal. As was shown
in [13], for the class of all functions satisfying conditions (A.1)–(A.3), there exists no algorithm
which is asymptotically more efficient in some minimax sense. For a special case, the rules for
choosing the corresponding optimal randomized algorithms estimating the unknown parameters of
a linear regression can be found in [20].

In Theorem 1, the observation noise vn can be conditionally called “almost arbitrary” noise
because it can be nonrandom, but unknown and bounded or be a realization of some stochastic
process with arbitrary structure of dependences. In particular, there is no need to assume something
about the dependence between vn and Fn−1 in order to prove Theorem 1.

The condition for independence of the observation noise of the trial perturbation can be relaxed.
It suffices to require that for n → ∞ the conditional mutual correlation between vn and K (∆n) :

‖E {vnK (∆n) | Fn−1}‖ = O
(
n
−1+

1
2γ

)
tends to zero with unit probability.

For convenient notation of the formulas below, we define the constant χ as equal to one if
the observation noise {vn} is independent and centered or two in all other cases. We denote

K̂ =
∫
‖K (x)‖2P (dx), K =

∫
‖x‖γ‖K (x)‖P (dx), P (x) =

r∏
i=1

P∆(x(i)). The quantities K̂ and K

are finite owing to boundedness of the vector function K (·) and finiteness of the support of the
distribution P∆(·). The optimal values of the parameters

α∗ = 1/(µβ∗), β∗ =
(
2χ(ν1 + σ2

i /i)K̂
) 1

2γ
(√

γ(γ − 1)MK

)− 1
γ
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and quantitative estimates of the asymptotic convergence rate of algorithms (2) and (3)

E
{∥∥∥θ̂n − θ∗∥∥∥2

}
≤ n−

γ−1
γ κiK̂

γ−1
γ K

2
γ + o

(
n
−γ−1

γ

)
,

κi = γ
1+γ
γ (γ − 1)

1−γ
γ µ−2

(
χ(νi + σ2

i /i)
) γ−1

γ M
2
γ , i = 1, 2,

where ν1 = sup
w∈W

(
F (w, θ∗) +

1
2

(∇θF (w, θ∗))2

)2

corresponds to the one-measurement algorithm (3)

and ν2 = sup
w1,w2∈W

(
2|F (w1, θ

∗)− F (w2, θ
∗)| + (∇θF (w1, θ

∗))2 + (∇θF (w2, θ
∗))2

)2
/8, to (2), will be

established when proving Theorem 1 for M > 0. If F (w, x) = f(x), then, as can be seen from the
comparison of κ1 and κ2, the asymptotic convergence rate for the iterations of the estimate sequence
as generated by the two-observation algorithm (2) is always superior to that of algorithm (3). For
comparison with regard for the number of observations, the advantage of algorithm (2) is no more

indisputable. By comparing κ1 and 2κ2, one can readily see that for 2
1

γ−1σ2
2 − σ2

1 > ν1 − 2
1

γ−1 ν2

and with account for the number of measurements the asymptotic convergence rate is better for
algorithm (3) than (2).

In the scalar case, for F (w, x) = f(x) with the simultaneous trial perturbation {∆n} generated

by independent and identically distributed random variables from the interval
[
−1

2
,

1
2

]
and inde-

pendent centered observation noise {vn} : E {v2
n} ≤ σ2

v , γ = 2, and K (x) = 12x, |x| ≤ 1/2, we
obtain on the strength of the established estimates of the convergence rate for algorithm (2) that

E
{∥∥∥θ̂n − θ∗∥∥∥2

}
≤ 9Aσv

4
√

3µ2
n−1/2 + o(n−1/2), α∗ =

1
µβ∗

, β∗ =
4
√
σv√

A 4
√

3
,

and for (3), E
{∥∥∥θ̂n − θ∗∥∥∥2

}
≤ 4.5

√
f(θ∗)2 + σ2

v/(
√

6µ2)n−1/2 + o(n−1/2). Hence, if f(θ∗)2 < σ2
v ,

then algorithm (3) is preferable.

5. EXAMPLE

Several computer simulations were run to illustrate the typical behavior of the estimates of the
randomized SA algorithms. Consideration was given, in particular, to the elementary example
of [17]. Let F (w, x) = f(x) = x2 − 4x− 2. This function is smooth and has a single minimum for
x = 2. Its constants A and µ are equal to two. The function was measured in unknown additive

Trajectories of the estimates of algorithms (5) and (6).
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noise that is uniformly distributed over the interval
[
−1

2
,
1
2

]
: E {v2

n} = 1/12. The figure depicts

typical trajectories of estimates for two algorithms of the type of (2) corresponding to γ = 2
y2n−i = f

(
θ̂n−1 + (−1)i

2√
3
n−

1
4 ∆n

)
+ v2n−i, i = 0, 1

θ̂n = θ̂n−1 − 1.5
√

3n−
3
4 ∆n(y2n − y2n−1)

(5)

and γ = 5 
y2n−i = f

(
θ̂n−1 + (−1)i2n−

1
10 ∆n

)
+ v2n−i, i = 0, 1

θ̂n = θ̂n−1 −
5
16
n−

9
10 (15∆n − 84∆3

n)(y2n − y2n−1).
(6)

The initial approximation θ̂0 = 3. Both algorithms used realizations of independent random variable

uniformly distributed over the interval
[
−1

2
,
1
2

]
as the simultaneous trial perturbation.

6. CONCLUSIONS

Retention of simplicity, operability, and optimal convergence rate with increased dimensionality
of the vector of estimated parameters is a striking characteristic of the considered randomized SA
algorithms. Since this is not accompanied by an increase in the number of measurements required
for each iteration, application of these algorithms in the systems with infinite-dimensional and
distributed parameters can be an important further step of their development. To the author’s
opinion, the replacement in the multidimensional case of numerous finite-difference approximations
of the gradient of objective function by only one or two measurements at randomly chosen points
is intuitively much closer to the behavioral model of highly organized living systems. It seems that
the algorithms of this kind could be naturally used of design the artificial intelligence systems.
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APPENDIX

Proof of Theorem 1. Let us first consider algorithm (3). For sufficiently great n for which
θ∗ ∈ Θn, one can readily obtain by using the property of projection that

∥∥∥θ̂n − θ∗∥∥∥2
≤
∥∥∥∥θ̂n−1 − θ∗ − αn

−1+
1

2γK (∆n)yn
∥∥∥∥2

.

By applying to this inequality the operation of conditional expectation relative to the σ-algebra
Fn−1, we obtain

E
{∥∥∥θ̂n − θ∗∥∥∥2

| Fn−1

}
≤
∥∥∥θ̂n−1 − θ∗

∥∥∥2

−2αn−1+
1

2γ
(
θ̂n−1 − θ∗,E {ynK (∆n) | Fn−1}

)
+α2n

−2+
1
γE
{
y2
n‖K (∆n)‖2 | Fn−1

}
. (7)
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One can readily get from (4) and condition (1) that
∫

K (x)P (dx) = 0. Therefore, by virtue of
independence of ∆n with vn, we obtain E {vnK (∆n) | Fn−1} = 0 and, consequently,

E{ynK (∆n) | Fn−1} =
∫∫

F

(
w, θ̂n−1 + βn

− 1
2γ x

)
K (x)P (dx)Pw(dw).

We note that also by virtue of (4) and (1)

β−1n
1
2γ

∫ ∑
|`|≤`

1
`!
D`f(θ̂n−1)β|`|n−

|`|
2γ x`K (x)P (dx) = ∇f(θ̂n−1).

We obtain from the definition of the function f(·) that

β−1n
1

2γE {ynK (∆n) | Fn−1} = ∇f(θ̂n−1) + β−1n
1

2γ

∫ (
f

(
θ̂n−1 + βn

− 1
2γ x

)

−
∑
|`|≤`

1
`!
D`f

(
θ̂n−1

)
β|`|n

− |`|2γ x`
)

K (x)P (dx).

If condition (A.3) is satisfied, then the following inequality is valid:∣∣∣∣∣∣∣
∫ f (θ̂n−1 + βnx

)
−
∑
|`|≤`

1
`!
D`f

(
θ̂n−1

)
β|`|n

− |`|2γ x
`

K (x)P (dx)

∣∣∣∣∣∣∣
≤M

∫ ∥∥∥∥xβn− 1
2γ

∥∥∥∥γ ‖K (x)‖P (dx) ≤MKβγn−
1
2 .

By using the inequality

∥∥∥θ̂n−1 − θ∗
∥∥∥ ≤ ε−1n

−γ−1
2γ MKβγ−1 + ε

(
n
−γ−1

2γ MKβγ−1

)−1

‖θn−1 − θ∗‖2

2
,

which is valid for any ε > 0, and substituting the above relations into the second term of the
right-hand side of (7), we successively obtain from condition (A.1) that

E
{∥∥∥θ̂n − θ∗∥∥∥2

| Fn−1

}
≤
∥∥∥θ̂n−1 − θ∗

∥∥∥2
− 2αβn−1

(
θ̂n−1 − θ∗,∇f

(
θ̂n−1

))
+2αβn−1−γ−1

2γ MKβγ−1
∥∥∥θ̂n−1 − θ∗

∥∥∥+ α2n
−2+

1
γE{y2

n‖K (∆n)‖2 | Fn−1}

≤
∥∥∥θ̂n−1 − θ∗

∥∥∥2 (
1− αβ(2µ − ε)n−1

)
+ n

−2+
1
γ

(
αβ2γ−1ε−1M2K

2

+α2K̂χ

(∫∫
F

(
w, θ̂n−1 + βn

− 1
2γ x

)2

P (dx)Pw(dw) + E {v2
n | Fn−1}

))
.

As it was the case with the proof of Theorem 1 in [15], it is possible to obtain from condition (A.2)
that ∣∣∣∣F (w, θ̂n−1 + βn

− 1
2γ x

)∣∣∣∣ ≤ √ν1 + (2A+ 1)

(∥∥∥θ̂n−1 − θ∗
∥∥∥2

+
∥∥∥∥βn− 1

2γ x

∥∥∥∥2
)
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uniformly over w ∈ W. We take this fact in account and conclude by taking the unconditional
expectation and bearing in mind the condition of theorem for {dn} that

E
{∥∥∥θ̂n − θ∗∥∥∥2

}
≤ E

{∥∥∥θ̂n−1 − θ∗
∥∥∥2
}(

1− ψn−1 + o(n−1)
)

+ C1n
1
γ−2 + o

(
n

1
γ−2

)
,

where ψ = αβ(2µ − ε), C1 = αβ2γ−1ε−1M2K
2 + α2K̂χ(ν1 + σ2

1). According to the Chung lemma
(see [8], p. 51), if ψ > (γ − 1)/γ, then

n
1− 1

γE
{∥∥∥θ̂n − θ∗∥∥∥2

}
≤ C1

(
αβ(2µ− ε)− γ − 1

γ

)−1

+ o(1). (8)

It remains to note that since ε > 0 is arbitrary, satisfaction of the inequality ψ > (γ − 1)/γ is
equivalent to the condition 2µαβ > (γ − 1)/γ.

The proof for algorithm (2) differs only in some technicalities. In particular, one needs to use
the estimate

1
2
(
F (w1, θ + x)− F (w2, θ − x)

)2 ≤ ν2 + 2(2A+ 1)2
(
‖x‖2 + ‖θ − θ∗‖2

)2

which is uniform in w ∈W and can be easily obtained if the conditions of Theorem 1 are satisfied.
The proof provides an asymptotic estimate of the rms convergence rate that is similar to (8),

but has the constant C2 = αβ2γ−1ε−1M2K
2 + α2K̂χ(ν2 + σ2

2/2) instead of C1. It is of interest to
note the relationship between the constants C1 and C2 : C1 = C2 + K̂α2χ(ν1 + σ2

1 − σ2
2/2 − ν2).

If F (w, x) = f(x), then the asymptotic convergence rate in iterations of the algorithm using two
observations is always superior to that of algorithm (3). In the general case, one has to compare
ν1 + σ2

1 and ν2 + σ2
2/2.

The right-hand side of (8) is a function of α, β, and ε. Optimization in these parameters provides
the values of α∗, β∗, and ε∗ = 2µ/γ. Similarly, by optimizing in α, β, and ε the upper bound of the
asymptotic convergence rate for the estimates of algorithm (2), one establishes the optimal values
of its parameters, which completes the proof of Theorem 1 and remark to it.
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