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A b s t r a c t  

The minimization of a convex function defined over the grid 
Z p is considered. A t runcated fixed gain SPSA method 
is proposed and investigated in combination with devices 
borrowed from the Markov-Chain Monte-Carlo literature. 
In particular the performance of the proposed method is 
improved by choosing suitable acceptance probabilities. A 
new Markovian optimization problem is formulated to get 
the best rejection probability and gain. A simulation result 
is presented. 

1 I n t r o d u c t i o n  

In this paper we consider the possibility of applying the 
SPSA method (see [2], [4], [8]) to discrete optimization 
problems. In particular we consider optimization problems 
where the cost function is defined only for p-dimensional 
integer-valued variables, denoted by P~P. Such problems 
arise in resource allocation problems, where 0 denotes an 
allocation scheme (cf. [1]). 

We use a t runcated fixed gain SPSA method. The stability 
of the method is ensured by a resetting mechanism. The 
performance of the method is enhanced by a device bor- 
rowed from the Markov-Chain Monte-Carlo literature. 

Consider the following discrete optimization problem: given 
a smooth, convex cost-function L: 1R p --+ P~, find its mini- 
mum over ~E p using function-value evaluations only on Z p. 
A benchmark problem that  we will consider in detail is the 
quadratic problem when 

I (O--x*)TA(O x* n ( o )  - -~ - ) (1) 

where x*elR p is such that  not all of its coordinates are in- 
tegers, and A is a symmetric positive definite matrix. 

2 S P S A  ove r  a d i s c r e t e  set  

To approximate the gradient of L we use simultaneous ran- 
dora perturbat ions (see [8]). Let 0 be the current approx- 
imation of 0* and let k be the iteration time. We take a 
random vector A = Ak = (Akl , . . . ,Akp)  T, where Aki is 
a double sequence of i.i.d, random variables. A s tandard 
choice is to take a Bernoulli-sequence, taking values +1 or 
- 1  with equal probability 1/2. We take two measurements 
at L(O + A) and L ( O -  A), and define 

H(O) -- 1-A-~ (L(O + A) - L(O - A)) (2) 
2 

where A -~ is the vector with components A~ -~ Then the 
fixed gain t runcated SPSA method is defined by: 

0~+~ =0~ -[aH(n,O~)],  

where [] is the integer part  coordinatewise. 

A simple variant of the above method is obtained if our 
start ing point is a second order SPSA method developed 
in [9]. Another alternative method is obtained if we use a 
different truncation procedure, say 

0~+~ = O~ - sgn(aH~(O~)), (3) 

where sgn is a generalized sign function. 

3 M a r k o v - C h a i n  M o n t e - C a r l o  m e t h o d s  

An alternative approach to minimizing L is to use Markov- 
Chain Monte-Carlo (MCMC) methods, such as Metropolis 

or Metropolis-Hastings, cf. [I0]. They are applicable for 
general problems where Z p is replaced by an abstract set. 
Let c > 0 and index the points of Z p by integers and set 

rri - e-eL(O~ E e-cL(J) (4) 

J 

For large c the probability distribution (rr) will be concen- 
t ra ted  around points of ~E p where L is small. Let 

-~L(i) 



be the unnormalized probabilities. In MCMC we construct 
an ergodic Markov-chain with invariant distribution (Tri) 
based on ai-s  without actually performing the normaliza- 
tion in (4). 

In the Metrolpois-Hastings method we start with an initial 
Markov-chain with transition probabilities (qij) and then 
define pij for i :fi j so that  

o~iPij = min(o~iqij , o~jqji ) 

is satisfied. Writing P i j  = q i j T i j ,  7"ij is called the acceptance 
probability. 

A natural  candidate for the q-chain is the Markov-chain 
defined by the SPSA method, but then qij is not known 
explicitely. A possible way out of this difficulty is to chose 
the acceptance probability in a heuristic manner. Thus we 
come to the following method: let 0 < v < 1 be a fixed 
acceptance probability and let T~j = T if L(j)  > L(i) and 
vii = 1 otherwise. Modify the Markov-chain defined by 
the fixed gain SPSA method using the above acceptance 
probability. The resulting Markov-chain will be denoted by 
8~(T). To find the best T define 

~(w) = EL(O~(T)) 

assuming that  8~(w) has stat ionary distribution, and then 
minimize ~ (w) over w. 

A general methodology for solving similar problems has 
been given in [7]. However, this procedure requires the 
explicit knowledge of the transition probabilities which is 
not available. Thus minimization of A(v) requires further 
research. 

4 S i m u l a t i o n  r e s u l t s  

Simulations have been carried out for randomly generated 
quadratic function in dimensions p = 20, 50. We found, 
that  the choice of the stepsize a is critical for the SPSA- 
method method: the performance depends largely on the 
right choice of the gain. This influence is less dramatic in 
the case of the signed second order SPSA-method method. 
We have developed a simple adaptive scheme for choosing 
the gain which significantly improves convergence proper- 
ties. The most efficient and reliable method seems to be 
the adaptive signed second order SPSA-method.  

In the figure below we plot the value of the cost function vs. 
the iteration time. The purpose of this experiment was to 
see the effect of the rejection probability v. The dimension 
was 20. The figure contains three graphs for three different 
values of v for a second order SPSA method. The best 
result is plotted by dotted line, while the two other weaker 
results are plotted by solid and dash-dot lines, respectively. 
We choose the best gain a = 0.05 and the values: 

v = 0.95, 0.1, 0.8. 

It is seen that  the choice of v is critical for the performance 
of the second order SPSA method. 
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F i g u r e  1: Newton method with different v-s. 
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