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Abstract

Modeling human control strategy (HCS) is becoming an increasingly popular paradigm in a number of different research
areas, ranging from robotics and intelligent vehicle highway systems to expert training and virtual reality computer games.
Usually, HCS models are derived empirically, rather than analytically, from real-time human input–output data. While these
empirical models offer an effective means of transferring intelligent behaviors from humans to robots and other machines,
there is a great need to develop adequate performance criteria for these models. It is our goal in this paper to develop several
such criteria for the task of human driving. We first collect driving data from different individuals through a real-time graphic
driving simulator that we have developed, and identify each individual’s control strategy model through the flexible cascade
neural network learning architecture. We then define performance measures for evaluating two aspects of the resultant HCS
models. The first is based on event analysis, while the second is based on inherent analysis. Using the proposed performance
criteria, we demonstrate the procedure for evaluating the relative skill of different HCS models. Finally, we propose an iterative
algorithm for optimizing an initially stable HCS model with respect to independent, user-specified performance criteria, by
applying the simultaneously perturbed stochastic approximation (SPSA) algorithm. The methods proposed herein offer a
means for modeling and transferring HCS in response to real-time inputs, and improving the intelligent behaviors of artificial
machines. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

HCS models, which accurately emulate dynamic
human behavior, find application in a number of re-
search areas ranging from robotics to the intelligent
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vehicle highway system. Because human control
strategy (HCS) is a dynamic, nonlinear, stochastic
process, developing good analytic models of human
actions, however, tends to be quite difficult, if not
impossible. Therefore, recent work in modeling HCS
has focused on learning empirical models, through,
for example fuzzy logic [7,16], and neural network
techniques [1,8,11]. See [2,4,6,8], for detailed surveys
of the human modeling literature.

0921-8890/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0921-8890(02)00169-0



20 Y. Xu et al. / Robotics and Autonomous Systems 39 (2002) 19–36

Since most HCS models are empirical, few if any
guarantees exist about their theoretical performance.
In previous work, a stochastic similarity measure,
which compares model-generated control trajectories
to the original human training data, has been proposed
for validating HCS models [9]. While this similarity
measure can ensure that a given HCS model ade-
quately captures the driving characteristics of the hu-
man operator, it does not measure a particular model’s
skill or performance. In other words, it does not (nor
can it) tell us which model is better or worse. Thus,
performance evaluation forms an integral part of HCS
modeling research, without which it becomes impossi-
ble to rank or prefer one HCS controller over another.
Moreover, only when we have developed adequate
performance criteria, can we hope to optimize the HCS
models with respect to those performance criteria.

In general, skill or performance can be defined
through a number of task-dependent as well as task-
independent criteria. Some of these criteria may con-
flict with one another, and which is most appropriate
for a given task depends in part on the specific goals
of the task. Overall, there are two approaches for
defining performance criteria: (1) event analysis and
(2) inherent analysis.

In event analysis, we examine performance within
the context of some event. Consider the task of human
driving, for example. For this task we can define any
number of performance criteria tied to specific events.
In preliminary work [14], e.g., two such event-based
criteria were defined, one based on the HCS model’s
ability to avoid sudden obstacles, and the second based
on the HCS model’s ability to negotiate tight turns in
a safe and stable manner. Each of these performance
measures tests the HCS model’s performance outside
the range of its training data.

In inherent analysis, we examine a given model’s
behavior on a more global scale. Once again, consider
the task of human driving. For a given HCS model,
we might be interested in such measures as average
speed, passenger comfort, driving smoothness, and
fuel efficiency. These measures are not based on any
single event, but rather are aggregate measures of per-
formance. In other words, they measure the inherent
characteristics of a particular HCS model.

Performance evaluation is, however, only one part
of the solution for effectively applying models of HCS.
When performing a specified task, a human will often

commit occasional errors and deviate randomly from
some nominal trajectory. Any empirical learning algo-
rithm will necessarily incorporate those problems in
the learned model, and will consequently be less than
optimal. Furthermore, control requirements may dif-
fer between humans and robots, where stringent power
or force requirements often have to be met. A given
individual’s performance level, therefore, may or may
not be sufficient for a particular application.

Hence, in this paper, we not only consider the
problem of performance evaluation, but the additional
problem of performance optimization. We propose an
iterative optimization algorithm, based on simultane-
ously perturbed stochastic approximation (SPSA), for
improving the performance of learned HCS models.
This algorithm leaves the learned model’s structure
in tact, but tunes the parameters of the HCS model in
order to improve performance. It requires no analytic
formulation of performance, only two experimental
measurements of a user-defined performance crite-
rion per iteration. The initial HCS model serves as a
good starting point for the algorithm, since it already
generates stable control commands.

In this paper, we first introduce the dynamic graphic
driving simulator from which we collect human con-
trol data and with which we investigate the modeling
and evaluation of human control strategies. We then
show how we model a given individual’s driving con-
trol strategies using the flexible cascade neural net-
work learning architecture. Next, we develop and test
performance criteria specifically related to the task
of human driving, where we apply both event-based,
as well as inherent analysis. We then propose the
iterative optimization algorithm for improving perfor-
mance in the HCS models. Finally, we describe and
discuss some experimental results of the optimization
algorithm.

2. Experimental setup

Human control strategy, as we define the term, en-
compasses a large set of human-controlled tasks. It is
neither practical nor possible to investigate all of these
tasks comprehensively. In this paper, we therefore look
towards a prototypical control application, the task of
human driving to collect, model and analyze control
strategy data from different human subjects.
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Within the driving domain, we have a choice be-
tween simulated driving (i.e. driving through a sim-
ulator) and real driving. For our purposes, the ideal
control task should embody several desirable quali-
ties. First, during the execution of the control task, the
human subject must not be injured or harmed in any
way. Second, the human subject should have prior ex-
periences that will help him complete the control task
successfully. Third, the control task should pose a sig-
nificant challenge to the human controller. Finally, the
task should be complex enough that it allows for vari-
ations in strategy across different individuals.

Let us examine real driving in the context of these
four criteria (safety, prior experience, control difficulty
and control strategy variations). First, unless we ask
individuals to drive very conservatively, it is difficult
to guarantee the safety of our human subjects in real
driving experiments. If we do ask them to drive con-
servatively, however, the control task will not be very
challenging; moreover, variations between individuals
will be somewhat muted. Finally, with respect to prior
experience, real driving measures up to the qualities
we seek in our control task.

Simulated driving, on the other hand, differs from
real driving in a number of important respects. Most
importantly, the human subject poses no threat to
himself or others while driving in the simulator, no
matter how recklessly he chooses to drive. Conse-
quently, unlike in real driving, we can challenge
individuals to drive near the edge of their abilities.
This produces driving control strategies that are richer
and more complex than their real counterparts. Be-
cause of this increased complexity, the demonstrated
control strategies will potentially exhibit greater vari-
ations from one individual to the next. Finally, while
human subjects may not be familiar with respect to
a specific driving simulator prior to testing, they can,
as experienced drivers, transition from real driving to
simulated driving with relative ease and efficiency.

With respect to our goal of modeling and analyzing
human control strategies, simulated driving embod-
ies more of the qualities which we desire. Thus, we
choose simulated driving as our primary control task.
We emphasize that in choosing simulated driving, we
do not suggest that simulation is in general better than
reality for experimentation. We only suggest that since
the focus of this paper is the human control strate-
gies themselves, a simulated task can be appropriate if

it bears substantial resemblance to a comparable real
task. We believe that our driving simulation environ-
ment does meet that criterion.

Thus, for this work, we collect human driving
data from a real-time graphic simulator, whose inter-
face is shown in Fig. 1. In the simulator, the human
operator has independent control of the vehicle’s
steering as well as the brake and gas pedals. The sim-
ulated vehicle’s dynamics are given by the following
second-order nonlinear model [5]:

θ̈ = lfPf δ + lfFξ f − lrFξ r

I
, (1)

ν̇ξ = Pf δ + Fξ f + Fξ r

m
− νηθ̇ − (sgnνξ )cdν

2
ξ , (2)

ν̇η = Pf + Pr − Fξ f δ

m
+ νξ θ̇ − (sgnνη)cdν

2
η, (3)

[
ẋ

ẏ

]
=
[

cosθ sinθ
− sinθ cosθ

] [
νξ
νη

]
, (4)

where

θ̇ = angular velocity of the car, (5)

νξ = lateral velocity of the car, (6)

νη = longitudinal velocity of the car, (7)

Fξk =µFzk

(
α̃k − (sgnδ)α̃2

k

3
+ α̃3

k

27

)

×
√

1 − P 2
k

(µFzk)2
+ P 2

k

c2
k

, k ∈ {f , r}, (8)

α̃k = ckαk

µFzk
, k ∈ {f , r}, (9)

αf = front tire slip angle= δ − lf θ̇ + νξ

νη
, (10)

αr = rear tire slip angle= lr θ̇ − νξ

νη
, (11)

Fzf = mglr − (Pf + Pr)h

lf + lr
,

Fzr = mglf + (Pf + Pr)h

lf + lr
, (12)

ξ, η = body-relative lateral, longitudinal axis, (13)

cf , cr = 50,000 N/rad,64,000 N/rad, (14)
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Fig. 1. The driving simulator gives the user a perspective preview of the road ahead. The user has independent control of the steering,
break, and accelerator (gas).

cd = air resistance= 0.0005 m−1, (15)

µ = coefficient of friction= 1,

Fjk = frictional forces,

j ∈ {ξ, η}, k ∈ {f , r}, (16)

Pr =
{

0, Pf � 0,

kbPf , Pf < 0, kb = 0.34,
(17)

m= 1500 kg, I = 2500 kg m−2,

lf = 1.25 m, lr = 1.5 m, h = 0.5 m, (18)

and the controls are given by

−8000 N� Pf � 4000 N, (19)

−0.2 rad� δ � 0.2 rad, (20)

wherePf is the longitudinal force on the front tires,
andδ is the steering angle.

We ask each individual to navigate across several
randomly generated roads, which consist of a sequence
of (1) straight-line segments, (2) left turns, and (3)
right turns. The map in Fig. 1, for example, illustrates
one randomly generated 20 km road for which human
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driving data was recorded. Each straight-line segment
as well as the radius of curvature for each turn range
in length from 100 to 200 m. Nominally, the road is
divided into two lanes, each of which has widthw =
5 m. The human operator’s view of the road ahead is
limited to 100 m. Finally, the entire simulator is run at
50 Hz.

3. HCS modeling

In this paper, we choose the flexible cascade neural
network architecture with node-decoupled extended
Kalman filtering (NDEKF) [10] for modeling the hu-
man driving data. We prefer this learning architecture
over others for a number of reasons. First, no a priori
model structure is assumed; the neural network au-
tomatically adds hidden units to an initially minimal
network as the training requires. Second, hidden unit
activation functions are not constrained to be a partic-
ular type. Rather, for each new hidden unit, the incre-
mental learning algorithm can select that functional
form which maximally reduces the residual error over
the training data. Typical alternatives to the standard
sigmoidal function are sine, cosine, and the Gaussian
function. Finally, it has been shown that NDEKF, a
quadratically convergent alternative to slower gradient
descent training algorithms (such as backpropaga-
tion) fits well within the cascade learning framework
and converges to good local minima in less time
[10].

The flexible functional form which cascade learning
allows is ideal for abstracting human control strate-
gies, since we know very little about the underlying
structure of each individual’s internal controller. By
making as few a priori assumptions as possible in mod-
eling the human driving data, we improve the likeli-
hood that the learning algorithm will converge to a
good model of the human control data.

In order for the learning algorithm to properly
model each individual’s HCS, the model must be pre-
sented with those state and environmental variables
upon which the human operator relies. Thus, the in-
puts to the cascade neural network should include:
(1) current and previous state information{νξ , νη, θ̇},
(2) previous output (command) information{δ, Pf },
and (3) a description of the road visible from the
current car position. More precisely, the network

inputs are

{νξ (k − ns), . . . , νξ (k − 1), νξ (k),

νη(k − ns), . . . , νη(k − 1), νη(k), θ̇ (k − ns), . . . ,

θ̇ (k − 1), θ̇ (k)}, (21)

{δ(k − nc), . . . , δ(k − 1), δ(k),

Pf (k − nc), . . . , Pf (k − 1), Pf (k)}, (22)

{x(1), x(2), . . . , x(nr),

y(1), y(2), . . . , y(nr)}, (23)

wherens is the length of the state histories andnc
is the length of the previous command histories pre-
sented to the network as input. For the road descrip-
tion, we partition the visible view of the road ahead
into nr equivalently spaced, body-relative(x, y) coor-
dinates of the road median, and provide that sequence
of coordinates as input to the network. Thus, the total
number of inputs to the networkni is

ni = 3ns + 2nc + 2nr. (24)

The two outputs of the cascade network are{δ(k +
1), Pf (k+ 1)}. For the system as a whole, the cascade
neural network can be viewed as a feedback controller,
whose two outputs control the vehicle.

4. Performance criteria based on event analysis

Once we have abstracted models of driving control
strategies from the human control data, we would like
to evaluate the skill or performance exhibited by these
models. The first set of performance measures that
we develop is based on the observation that, in real
driving, obstacles such as rocks and debris can unex-
pectedly obstruct a vehicle’s path and force drivers to
react rapidly. In order to gauge how well our learned
models would deal with these types of events, we
define two related performance criteria. The first mea-
sures a model’s ability to avoid obstacles, while the
second measures a model’s capacity for negotiating
tight turns.

4.1. Obstacle avoidance

Obstacle avoidance is one important measuring
stick for gauging a model’s performance. Since our
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HCS models receive only a description of the road
ahead as input from the environment, we reformulate
the task of obstacle avoidance asvirtual path follow-
ing. Assume that an obstacle appears a distanceτ

ahead of the driver’s current position. Furthermore,
assume that this obstacle obstructs the width of the
road (2w) and extends for a distanced along the
road. Then, rather than follow the path of the actual
road, we wish the HCS model to follow the virtual
path illustrated in Fig. 2. This virtual path consists of
(1) two arcs with radius of curvatureγ , which offset
the road median laterally by 2w, followed by (2) a
straight-line segment of lengthd, and (3) another two
arcs with radius of curvatureγ which return the road
median to the original path.

By analyzing the geometry of the virtual path, we
can calculate the required radius of curvatureγ of the

Fig. 2. Virtual path for obstacle avoidance.

virtual path segments as [14]

γ = τ2

8w
+ w

2
, (25)

and the corresponding sweep angleρ as

ρ = sin−1
(
τ/2

γ

)
= sin−1

(
τ

τ2/4w + w

)
. (26)

As an example, consider an obstacle locatedτ = 60 m
ahead of the driver’s current position. For this ob-
stacle distance andw = 5 m, γ evaluates to 92.5 m.
This is less than the minimum radius of curvature
(100 m) that we allow for the roads over which we
collect our human control data. Hence, a particu-
lar HCS model may deviate significantly from the
center of the road during the obstacle avoidance
maneuver.
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Below, we derive the important relationship be-
tween the obstacle detection distanceτ and a model’s
corresponding maximum lateral deviationψ . First,
we takeN measurements ofψ for different values of
τ , where we denote theith measurement as(τi, ψi).
Next, we assume a polynomial relationship of the
form

ψi = αpτ
p
i + αp−1τ

p−1
i + · · · + α1τi + α0 + ei

= Γ T
i α + ei, (27)

whereei is the additive measurement error. We can
then write

ψ1 = Γ T
1 α + e1,

ψ2 = Γ T
2 α + e2,

...

ψN = Γ T
Nα + eN ,

(28)

or, in matrix notation,

Ψ = Γ α + e, (29)

whereΨ = [ψ1, ψ2, . . . , ψN ]T is the observation vec-
tor, Γ = [Γ1, Γ2, . . . , ΓN ]T is the regression matrix,
ande = [e1, e2, . . . , eN ]T is the error vector.

Assuming white noise properties fore (E{ei} = 0
andE{eiej } = σ 2

e δij for all i, j ), we can minimize the
least-squares error criterion,

V (α̂)= 1

2
εTε = 1

2

N∑
k=1

ε2
k

= 1

2
(Ψ − Γ α̂)T(Ψ − Γ α̂) (30)

with the optimal, unbiased estimateᾱ,

ᾱ = (Γ TΓ )−1Γ TΨ (31)

assuming that (Γ TΓ ) is invertible.
In this relationship, as the obstacle detection dis-

tance τ decreases, the maximum lateral offset in-
creases [14]. Consequently, for a given model and
initial velocity vinitial , there exists a valueτmin below
which the maximum offset error will exceed the lane
width w. We define the driving control for obstacle
distances aboveτmin to be stable; likewise, we de-
fine the driving control to be unstable for obstacle
distances belowτmin.

Now, we define the following obstacle avoidance
performance criterionJ1:

J1 = τmin

vinitial
, (32)

wherevinitial is the velocity of the vehicle when the
obstacle is first detected. TheJ1 criterion measures to
what extent a given HCS model can avoid an obsta-
cle while still controlling the vehicle in a stable man-
ner. The normalization byvinitial is required, because
slower speeds increase the amount of time a driver has
to react and therefore avoiding obstacles becomes that
much easier.

4.2. Tight turning

Here we analyze performance by how well a partic-
ular HCS model is able to navigate tight turns. First,
we define a special road connection consisting of two
straight-line segments connected directly (without a
transition arc segment) at an angleζ . For small val-
ues ofζ , each HCS model will be able to success-
fully drive through the tight turn; for larger values of
ζ , however, some models will fail to execute the turn
properly by temporarily running off the road or losing
complete sight of the road.

Fig. 3 illustrates, for example, how one HCS model
transitions through a tight turn forζ=5π/36 rad.
Fig. 3(a) plots the two straight-line segments con-
nected at an angleζ . The solid line describes the
road median, while the dashed line describes the ac-
tual trajectory executed by Harry’s HCS model. The
length of the initial straight-line segment is chosen
to be long enough (150 m) to eliminate transients
by allowing the model to settle into a stable state.
This is equivalent to allowing the vehicle to drive on
a straight road for a long period of time before the
tight turn appears in the road. Fig. 3(b) plots the lat-
eral offset from the road median during the tight-turn
maneuver. Here, Harry’s model maximally deviates
about 8 m from the road center. Both before and after
the turn, the lateral offset converges to zero. Fig. 3(c)
plots the commanded steering angle for Harry’s HCS
model, and Fig. 3(d) plots the corresponding change
in velocity. Models for other drivers yield similar
results.

Now, define the maximum lateral offset error cor-
responding to a tight turn with angleζ to be ψ .
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Fig. 3. Example model driving behavior through a tight turn.

We can determine a functional relationship between
ψ and ζ for a given HCS model. First, we takeN
measurements ofρ for different values ofζ where
we denote theith measurement as(ζi, ψi). Then, we
assume a polynomial relationship betweenψ and ζ
such that,

ψi=αpζpi +αp−1ζ
p−1
i + · · · + α1ζi + α0 + ei, (33)

The least-squares estimate of the model (α̂) is given
by

α̂ = (ζ̂Tζ̂ )−1 · ζ̂T · ψ̂, (34)

where

ψ̂ = [ψ1, ψ2, . . . , ψN ]T, (35)

ζ̂ =




ζ
p

1 ζ
p−1
1 · · · ζ1 1

ζ
p

2 ζ
p−1
2 · · · ζ2 1

...
...

...
...

ζ
p
N ζ

p−1
N · · · ζN 1


 , (36)

α̂ = [αp, αp−1, . . . , α0]T. (37)

Previously, we have observed that the linear coef-
ficient α1 dominates the polynomial relationship in
Eq. (33) [14]. Hence, as a first-order approximation,
we define the following tight-turning performance
criterionJ2:

J2 = α1. (38)
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5. Performance criteria based on inherent analysis

In the previous section, we introduced performance
criteria based on specific events. In this section, we
now will investigate other performance criteria which
evaluate the inherent characteristics of HCS models
through analysis of the whole driving process.

5.1. Passenger comfort

Passenger comfort is one important criterion for
evaluating driving control strategies. Suppose a person
were sitting in a car driven by a learned HCS model.
His/her comfort, while a combination of many fac-
tors, would be primarily influenced by the forces that
that passenger experiences while in the car. Everytime
the HCS model would change the applied forcePf on
the car, the passenger would feel a longitudinal force.
Similarly, everytime the HCS model would change the
steeringδ, the passenger would experience a lateral
force. Below we quantify passenger comfort as a func-
tion of the applied forces on the vehicle under HCS
model control.

Consider the vehicle shown in Fig. 4. Let the con-
figuration of the system be described by the mass
center of the vehicle(x, y), the angleθ between the
positiveY -axis and the axis of symmetry of the car,
and the location of the passengerS (xs, ys). Fur-
thermore, define the distance fromS to the axis of
symmetry ass2 and define the distance fromS to the
center of mass along the axis of symmetry ass1.

Fig. 4. The coordinate configuration of the vehicle and passenger.

The velocity of the pointS as a function of the
coordinate velocities is given by

v2
s = ẋ2

s + ẏ2
s

= (ẋ + s1θ̇ cosθ + s2θ̇ sinθ)2

+(ẏ − s1θ̇ sinθ + s2θ̇ cosθ)2

= ẋ2 + s2
1 θ̇

2 cos2θ + s2
2 θ̇

2 sin2θ + 2ẋs1θ̇ cosθ

+2s2ẋθ̇ sinθ + 2s1s2θ̇
2 cosθ sinθ + ẏ2

+s2
1 θ̇

2 sin2θ + s2
2 θ̇

2 cos2θ − 2s1ẏθ̇ sinθ

+2s2ẏθ̇ cosθ − 2s1s2θ̇
2 sinθ cosθ

= ẋ2 + ẏ2 + s2
1 θ̇

2 + s2
2 θ̇

2

+2s1θ̇ (ẋ cosθ − ẏ sinθ)

+2s2θ̇ (ẋ sinθ + ẏ cosθ). (39)

As we described in Section 2, the longitudinal accel-
eration of the vehicle is given by

v̇η = Pf + Pr − Fξ f δ

m
+ vξ θ̇ − (sgnvη)cdv

2
η, (40)

and the lateral acceleration of the vehicle is given by

v̇ξ = Pf δ + Fξ f + Fξ r)

m
− vηθ̇ − (sgnvξ )cdv

2
ξ . (41)

Now, the accelerations experienced by the passenger
include not only the vehicle’s acceleration, but also
the centrifugal force, given by

v2
s

R
= 1

R
[ẋ2 + ẏ2 + s2

1 θ̇
2 + s2

2 θ̇
2

+2s1θ̇ (ẋ cosθ − ẏ sinθ)

+2s2θ̇ (ẋ sinθ + ẏ cosθ)]. (42)

The centrifugal force generally points in the direction
of the negative lateral acceleration of the vehicle. By
combining the vehicle and centrifugal accelerations,
we then arrive at the following expression for the total
acceleration at pointS:

a =

√√√√
v̇2
η +

(
v̇ξ − v2

0

R

)2

. (43)

In defining a “comfort” performance criterionJ3, we
will normalize this acceleration felt by the passenger,
by the speed of the vehicle, since higher speeds gen-
erate higher accelerations through a given curve:

J3 = amean

vmean
. (44)
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Table 1
The statistic of the acceleration

Data name a > g (9.8 m/s2) a > 2g (19.6 m/s2) a > 3g (29.4 m/s2) ρ = amean

Vmean

Tom1-A 28.20% 3.85% 0.39% 0.2411
Tom1-B 20.99% 0.79% 0 0.2101
Tom2-A 19.11% 0.74% 0 0.2142
Tom2-B 18.00% 0.63% 0 0.2185
Tom3-A 22.15% 0.21% 0 0.2117
Tom3-B 25.76% 0.31% 0 0.2196

Dick1-A 36.43% 8.69% 1.63% 0.2938
Dick1-B 36.85% 6.79% 0 0.2625
Dick2-A 37.73% 8.87% 2.19% 0.2956
Dick2-B 37.25% 7.31% 0.43% 0.2721
Dick3-A 43.20% 15.17% 5.13% 0.3367
Dick3-B 43.35% 14.97% 4.61% 0.3307

Harry1-A 5.93% 0.48% 0 0.1662
Harry1-B 8.13% 1.30% 0.013% 0.1941
Harry2-A 1.16% 0 0 0.1302
Harry2-B 2.69% 0 0 0.1267
Harry3-A 4.93% 0 0 0.1552
Harry3-B 11.49% 1.28% 0 0.1757

Thus,J3 is defined as the ratio of average acceleration
over average speed for a given road.

Let us now look at how different HCS models per-
form with respect to this performance criterion. First,
we collect driving data from three human operators—
Tom, Dick and Harry. After training an HCS model
for each individual, we then run that person’s model
over three different roads (1, 2, and 3). Each run takes
approximately 15 minutes over the 20 km roads. That
means that at a data collection rate of 50 Hz, each run
consists of approximately 45,000 time-sampled data
vectors. In other words, for each model run, we collect
approximately 135,000 data vectors. After data col-
lection, we split the three runs for each driver into two
groups A and B, where group A represents the first half
of each run, while group B represents the second half
of each run. Thus, for example, ‘Tom1-A’ represents
the first half of Tom’s HCS model’s run over road 1.

Table 1 gives some aggregate statistics for each of
these model-generated data sets. Specifically, the ta-
ble lists the percentage of time that the acceleration in
a particular data set is larger than oneg, 2g and 3g,
respectively. These percentages give us a rough idea
about the comfort level of each model driver. If we
average the percentages for each HCS model, we find
that Tom’s model generates accelerations above one

g 22.36% of the time, accelerations above 2g 1.09%
of the time, and accelerations above 3g 0.065% of the
time. The same statistics for Dick’s model are 39.14%,
10.30% and 2.33%, respectively. Similarly, for Harry’s
model the statistics are 5.72%, 0.51% and 0.00%, re-
spectively. From these results, we would expect that
Harry’s HCS model offers the smoothest ride of the
three models, since it generates the smallest forces.
Driving with Dick’s model, on the other hand, would
prove to be quite uncomfortable. Calculating theJ3
performance criterion for each model confirms these
qualitative observations. For Tom’s model,J3 varies
from 0.2101 to 0.2411, and the average is given by

J3Tom = 0.2192. (45)

For Dick’s model,J3 varies from 0.2625 to 0.3367,
and the average is given by

J3Dick = 0.2986. (46)

Finally, for Harry’s model,J3 varies from 0.1303 to
0.1941, and the average is given by

J3Harry = 0.1508. (47)

We observe thatJ3 is the smallest for Harry’s model,
and that that value is much smaller thanJ3 for Dick’s
model.
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5.2. Driving smoothness

Another way to evaluate the smoothness of a given
driver’s control strategy is through frequency analysis
of the instantaneous curvature of the road and the cor-
responding instantaneous curvature of the vehicle’s
path. As an HCS model steers the car along the road,
the vehicle’s curvature will in general not be the
same as the that of the road. Below, we will use this
difference between the two curvatures to evaluate the
driving smoothness of a given model in the frequency
domain. We will show that the resulting performance
measure yields consistent results with theJ3 pas-
senger comfort performance criterion defined in the
previous section.

Let us defineu(k) as the instantaneous curvature of
the road at time stepk, and letz(k) be the instanta-
neous curvature of the vehicle’s path at time stepk.
We can view the road’s curvatureu(k) as the input to
the HCS model, andz(k) as the output of the HCS
model.

To calculate the frequency response fromu to z, we
first partition the complete data intoN groups, where
each group is of lengthL. Hence, thekth element of
groupi is given by

ui(k) = u[k + (i − 1)L],

zi(k) = z[k + (i − 1)L],

i = 1,2, . . . , N; 1 � k � L. (48)

We also define the following convolutions for each
group of datai:

Iui ,L(w) = 1

L
Ui( jw)U∗

i ( jw) = 1

L
||Ui(jw)||2,

Iuizi ,L(jw) = 1

L
Ui(jw)Z

∗
i ( jw),

i = 1,2, . . . , N, (49)

where

Ui(jw) =
L∑
k=1

ui(k)Hk e−jwk, (50)

Zi(jw) =
L∑
k=1

zi(k)Hk e−jwk (51)

define the discrete Fourier transform [13] and,

Hk = 0.54− 0.46 cos

[
2π(k − 1)

L− 1

]
,

k ∈ {1,2, . . . , L} (52)

defines the Hamming coefficients, which we include
to minimize the spectral leakage effects of data
windowing.

By summing up the terms in Eq. (50),

Su,L(w) = 1

N

N∑
i=1

Iui ,L(w), (53)

Suz,L(jw) = 1

N

N∑
i=1

Iui ,L(jw), (54)

we define the frequency responseG(jw) for a given
HCS model as

G(jw) = Suz,L(jw)

Su,L(w)
. (55)

Fig. 5 plots|G(jw)| for the HCS models correspond-
ing to Tom, Dick and Harry. Each group of data cor-
responds to 40 seconds (L = 2000 at 50 Hz), and the
data for each model was collected over road 1. In Fig. 5
the solid line corresponds to Tom, the dash-dotted line
corresponds to Dick, and the dashed line corresponds
to Harry.

Given the plots of|G(jw)|, we now define the fol-
lowing smoothness performance criterion:

J4 = fdomain, (56)

wherefdomaincorresponds to the domain frequency of
each|G(jw)| curve.

We get the following smoothness results for the
three models:

JHarry = 0.52 Hz, (57)

JTom = 0.66 Hz, (58)

JDick = 0.72 Hz. (59)

Note that these results agree with theJ3 passenger
comfort criterion defined in the previous section.
Harry’s model was found to offer the best passenger
comfort, and here, his model is found to offer the
smoothest ride. Similarly, Dick’s model was found to
be the least comfortable and here, his model is found
to be the least smooth.
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Fig. 5. PSD analysis with Harry (dashed), Dick (dash-dot), and Tom (solid).

6. Performance optimization

In Sections 4 and 5, we introduced performance
measures for evaluating the performance of our driv-
ing models. Below, we develop an algorithm for opti-
mizing a learned control strategy model with respect
to one of those (or for that matter, any other) perfor-
mance criterion. There are two primary reasons why
this may be necessary in order to successfully transfer
control strategies from humans to robots.

First, while humans are in general very capable
of demonstrating intelligent behaviors, they are far
less capable of demonstrating those behaviors with-
out occasional errors and random (noise) deviations
from some nominal trajectory. The cascade learning

algorithm will necessarily incorporate those in the
learned HCS model, and will consequently be less than
optimal. Second, control requirements may differ be-
tween humans and robots, where, e.g., stringent power
or force requirements often have to be met. Thus, a
given individual’s performance level may or may not
be sufficient for a particular application.

Since an HCS model does offer an initially stable
model, however, it represents a good starting point
from which to further optimize performance. Let

ω = [w1, w2, . . . , wn] (60)

denote a vector consisting of all the weights in the
trained HCS modelΓ (ω). Also let J (ω) denote
any one performance criterion (e.g.,J1 or J2 in the
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previous sections). We would now like to determine
the weight vectorω∗ which optimizes the perfor-
mance criterionJ (ω). This optimization is difficult
in principle because: (1) we have no explicit gradient
information

G(ω) = ∂

∂ω
J (ω), (61)

and (2) each experimental measurement ofJ (ω)

requires a significant amount of computation. We
lack explicit gradient information, since we can
only compute our performance measures empirically.
Hence, gradient-based optimization techniques, such
as steepest descent and Newton–Raphson [13], are
not suitable. And because each performance measure
evaluation is potentially computationally expensive,
genetic optimization [3], which can require many
iterations to converge, also does not offer a good al-
ternative. Therefore, we turn to SPSA to carry out the
performance optimization.

Stochastic approximation (SA) is a well-known
iterative algorithm for finding roots of equations
in the presence of noisy measurements. SPSA [15]
is a particular multivariate SA technique which re-
quires as few as two measurements per iteration and
shows fast convergence in practice. Hence, it is well
suited for our application. Denoteωk as our esti-
mate ofω∗ at thekth iteration of the SA algorithm,
and let ωk be defined by the following recursive
relationship:

ωk+1 = ωk − αkḠk, (62)

where Ḡk is the simultaneously perturbed gradient
approximation at thekth iteration,

Ḡk = 1

p

p∑
i=1

Gik ≈ ∂

∂ω
J (ω), (63)

Gik = J
(+)
k − J

(−)
k

2ck




1

∆kw1

1

∆kw2
...

1

∆kwn



. (64)

Eq. (63) averagesp stochastic two-point measure-
mentsGik for a better overall gradient approximation,

where

J
(+)
k = J (ωk + ck∆k), (65)

J
(−)
k = J (ωk − ck∆k), (66)

∆k = [∆kw1,∆kw2, · · · ,∆kwn ]
T, (67)

and where∆k is a vector of mutually indepen-
dent, mean-zero random variables (e.g., symmetric
Bernoulli distributed), the sequence{∆k} is indepen-
dent and identically distributed, and the{αk}, {ck}
are positive scalar sequences satisfying the following
properties:

αk → 0, ck → 0 as k → ∞, (68)

∞∑
k=0

αk = ∞,

∞∑
k=0

(
αk

ck

)2

< ∞. (69)

The weight vectorω0 is of course the weight repre-
sentation in the initially stable learned cascade model.
Larger values ofp in Eq. (63) will give more accurate
approximations of the gradient. Fig. 6 illustrates the
overall performance optimization algorithm.

7. Experiment

7.1. Results

Here, we test the performance optimization algo-
rithm on control data collected from two individuals,
Harry and Dick. In order to simplify the problem
somewhat, we keep the applied force constant at
Pf = 300 N. Hence, the user is asked to control only
the steeringδ.

For each person, we train a two-hidden-unit HCS
model withns = nc = 3, andnr = 15; because we
are keepingPf constant, the total number of inputs for
the neural network models is thereforeni = 42.

Now, we would like to improve the tight-turning
performance criterionJ2 defined in Eq. (38) for each
of the trained models. In the SPSA algorithm, we em-
pirically determine the following values for the scaling
sequences{αk}, {ck}:
αk = 0.000001

k
, k > 0, (70)

ck = 0.001

k0.25
, k > 0. (71)
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Fig. 6. Stochastic optimization algorithm.

We also set the number of measurements per gradient
approximation in Eq. (63) top = 1. Finally, denoteJ k2
as the criterionJ2 after iterationk of the optimization
algorithm; hence,J 0

2 denotes the performance measure
prior to any optimization.

Fig. 7 plots 100×J k2 /J 0
2 ,0 � k � 60, for the HCS

models corresponding to Dick and Harry. We note that
for Dick, the performance indexJ2 improves from
J 0

2 = 25.5 toJ 60
2 = 12.5. For Harry, the improvement

is less dramatic; his model’s performance index im-
prove fromJ 0

2 = 17.7 to J 60
2 = 16.1. Thus, the per-

formance optimization algorithm is able to improve
the performance of Dick’s model by about 55% and
Harry’s model by about 9% over their respective ini-
tial models. In other words, the optimized models ne-
gotiate tight turns better without running off the road.
From Fig. 7, we observe that most of the improve-
ment in the optimization algorithm occurs in the first
few iterations. Then, ask → ∞, J k2 converges to a
stable value sinceαk, ck → 0. Clearly, the extent to
which we can improve the performance in the trained
HCS models depends on the characteristics of the
original models. Dick’s initial performance index of

J 0
2 = 25.5 is much worse than Harry’s initial perfor-

mance index ofJ 0
2 = 17.7. Therefore, we would ex-

pect that Dick’s initial model lies further away from
the nearest local minimum, while Harry’s model lies
closer to that local minimum. As a result, Harry’s
model can be improved only a little, while Dick’s
model has much larger room for improvement.

7.2. Discussion

Below we discuss some further issues related to per-
formance optimization including: (1) the effect of per-
formance optimization on other performance criteria,
and (2) the similarity of control strategies before and
after performance optimization.

First, we show how performance improvement with
respect to one criterion can potentially affect perfor-
mance improvement with respect to a different cri-
terion. Consider Dick’s HCS model once again. As
we have already observed, his tight turning perfor-
mance criterion improves fromJ 0

2 = 25.5 to J 60
2 =

12.5. Now, letJ 0
1 denote the obstacle avoidance per-

formance criterion for Dick’s initial HCS model, and
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Fig. 7. Performance improvement in stochastic optimization algorithm.

let J 60
1 denote the obstacle avoidance performance cri-

terion for Dick’s HCS model, optimized with respect
to J2. Fig. 8 plots the maximum offset from the road
median as a function of the obstacle detection distance
τ for Dick’s initial model (solid line) and Dick’s op-
timized model (dashed line), wherevinitial = 35.

From Fig. 8, we can calculateJ 0
1 andJ 60

1 :

J 0
1 ≈ 42

35 = 1.20, (72)

J 60
1 ≈ 36

35 = 1.03. (73)

Thus, Dick’s optimized HCS model not only improves
tight turning performance, but obstacle avoidance per-
formance as well. This should not be too surprising,
since the tight turning and obstacle avoidance behav-
iors are in fact tightly related. During the obstacle

avoidance maneuver, tight turns are precisely what is
required for successful execution of the maneuver.

Second, we would like to see how much per-
formance optimization changes the model’s control
strategy away from the original human control ap-
proach. To do this we turn to a hidden Markov
model-based similarity measure [9] developed for
comparing human-based control strategies. LetHx
denote the human control trajectory for individualx,
letMx denote control trajectories for the unoptimized
model corresponding to individualx, and let Ox
denote control trajectories for the optimized model
(with respect toJ2) corresponding to individualx.
Also let 0� σ(A,B) � 1 denote the similarity mea-
sure for two different control trajectoriesA andB,
where larger values indicate greater similarity, while
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Fig. 8. Maximum lateral offset for original (solid) and final (dashed) HCS models.

smaller values indicates greater dissimilarity between
A andB.

For each individual, we can calculate the following
three similarity measures:

σ(Hx,Mx), (74)

σ(Hx,Ox), (75)

σ(Mx,Ox). (76)

Table 2 lists these similarities for Dick and Harry.
From our experience with this similarity measure, we
note that all the values in Table 2 indicate significant
similarity. Specifically, the similarities forσ(Hx,Ox)
(0.434 and 0.469) suggest that even after performance
optimization, a substantial part of the original HCS

is preserved. Furthermore, the other similarity mea-
sures are consistent with the degree of performance
improvement in each case. For Dick, where a substan-
tial performance improvement of 55% was achieved,
the similarity between the initial and optimized mod-
els is far less than Harry, where the performance im-
provement was more incremental.

Table 2
Control strategy similarity

x = Dick x = Harry

σ(Hx,Mx) 0.762 0.573
σ(Hx,Ox) 0.434 0.469
σ(Mx,Ox) 0.544 0.823
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We conclude with one final observation. Pomer-
leau’s work on vision-guided autonomous driving
[11], while impressive and ground-breaking, does
not directly address the issues we have investigated
here. Pomerleau learned to map the view of the
road ahead to an appropriate steering direction, first
through a neural network [11] and later with a statis-
tical algorithm known as RALPH [12]. He does not
model or analyze the dynamics inherent in human
control strategies; rather, he very successfully solves
the computer-vision problem of correctly estimating
the position of the road in a video stream of data.
Therefore, we view our work as complementary to
Pomerleau’s work, in that both research aspects are
desirable in an eventual autonomous driving system.

8. Conclusion

Modeling human control strategy analytically is
difficult at best. Therefore, an increasing number of
researchers have resorted to empirical modeling of
HCS as a viable alternative. This in turn requires that
performance criteria be developed, since few if any
theoretical guarantees exist for these models. In this
paper, we develop several such criteria for the task of
human driving, including criteria based on event anal-
ysis and criteria based on inherent analysis. We model
human driving using the cascade neural network ar-
chitecture, and evaluate the performance of driving
models derived from different individuals using the
developed performance criteria. Based on the criteria,
we have proposed an iterative optimization algorithm
for improving the performance of learned models of
HCS. The algorithm keeps the overall structure of the
learned models in tact, but tunes the parameters (i.e.
weights) in the model to achieve better performance. It
requires no analytic formulation of performance, only
two experimental measurements of a defined perfor-
mance criterion per iteration. We have demonstrated
the viability of the approach for the task of human
driving, where we model the HCS through cascade
neural networks. While performance improvements
vary between HCS models, the optimization algo-
rithm always settles to stable, improved performance
after only a few iterations. Furthermore, the optimized
models retain important characteristics of the original
HCS.
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