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Introduction

T HE need for addressing optimization problems that are charac-
terized by the presence of a large number of design variables,
complex constraints, and discrete design parameter values exists in
many fields including engineering design. A variety of local and
global optimization algorithms have been developed for addressing
such problems. Besides deterministic methods, stochastic methods
such as genetic algorithm (GA) and simulated annealing (SA) al-
gorithm have recently found applications in many practical engi-
neering design optimization problems. These algorithms are easily
implemented in robust computer codes as compared with deter-
ministic methods because they do not depend on direct gradient
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information, which most deterministic methods do. However, SA
and GA methods require a large number of function evaluations and
relatively longer computation time than deterministic methods, es-
pecially in the case of complex design problems. Although the use
of parallel GA and parallel SA as outlined in Wang and Damodaran’
offers a way to reduce the large computational time, an attractive
alternative to SA and GA could be the simultaneous perturbation
stochastic approximation (SPSA) method described in Spall.? The
SPSA method has been applied to numerous difficult multivariate
optimization problems in many diverse areas such as statistical pa-
rameter estimation, feedback control, simulation-based optimiza-
tion, signal and image processing, and experimental design. The
essential feature of SPSA, which accounts for its power and relative
ease of implementation, is the underlying gradient approximation,
which requires only two measurements of the objective function re-
gardless of the dimensions of the optimization problem. This feature
allows for a significant decrease in the cost of optimization, espe-
cially for problems with a large number of variables to be optimized.

The aim of this Note is to compare performance of SPSA with
SA and GA and to explore any advantages that SPSA might offer
to overcome the large computational efforts of SA and GA when
applied to wing-design problems. These methods are briefly cutlined
following the statement of the wing-design optimization problem,
which will form the application problem to assess and compare the
performance of SPSA in relation to SA and GA.

Wing-Design Problem

The application concerns the design of wing shape such that the
aerodynamic efficiency of the wing or the lift L to drag D ratio
reaches a maximum value during cruise with the wing weight act-
ing as a constraint, that is, the goal is to determine the wing geom-
etry by either minimizing D/L or maximizing L/ D with the wing
weight as a constraint. The D'/L ratio can be formulated in detail
using the analytic formulas for acrodynamic analysis as defined in
Raymer.® The lift L is defined as L =C_q§, where g=4£pV2is
the dynamic pressure, p is the density of air, V is the flight speed,
Cp = Cy,o is the the Lift coefficient where « is the angle of attack
andCpo =27 Ap /(24 {4 + (AgB/m)*(1 + tan? A/ 82)]) is the lift
curve slope. In the expression for lift curve slope, Ag(=b2/8) is
the wing aspect ratio, where b is the wing span, A is the wing
sweep angie, n (value of which lies in the range 0.95-1.0) is the
airfoil efficiency factor, B=1— M? is the compressibility fac-
tor, and M is the Mach number. The total drag is defined as
D =CpqS$, where the total drag coefficient is Cp = Cp; + Cpo,
which consists of the induced drag coefficient Cpy; = Cl/(wAge)
and the zero-lift drag coefficient Cpy = C £ F Q. In these expressions
e=4.61(1-0.045A3)(cos 1)*'* —3.1 is the wing planform
efficiency factor, C;=0.455/[(log,, Re)>%B(1 + 0.144M2)065)
is the surface skin-friction coefficient, which is a func-
tion of the Reynolds number Re, F ={l +1{0.6/(x/c)p](t /) +
100¢¢ /c)*}[1.34M " ®¥(cos 1)®®] in which t/c is the airfoil
thickness-to-chord ratio, (x/c),, is the chord-wise location of the
maximum thickness-to-chord ratio, taken as 0.3 in the present
study, and @ is a factor accounting for interference effects on
drag taken as 1.0 in the present study. The weight of the wing (in
pounds) is Wying =0.0106(W4, N, )" 59622 A% (1 1¢) 94 (cos 1)),
where Wygis the design gross weight in pounds and N, 1s the ultimate
load factor, which is assumed to be 13.5 for subsonic flow.

The design variables for the wing design optimization, that is,
@, b, ¢, &, and W, represent the angle of attack, wing span, mean
aerodynamic chord, sweep angle, and wing weight, respectively. The
objective function to be optimized is F(X)=D/L and is defined
as follows:

Minimize F (X) n

subject to six constraints on the design variables defined as follows:
1.0deg < o < 10.0deg, 10.0 = b < 50.0
3.5 <c¢ < 10.0, 0.0deg < A < 35.0deg

0.5 < Ap < 15.0, Weing < 2473 (Ib) (2)
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Table 1 Comparison of optimal results from SA, GA, and SPSA

Algorithm  «, deg b, ft e ft 2, deg W, b D/L NEE

SPSA 3432 44994 5986 18115 244393 00319 1,149
GA 3199 43861 4955 19912 244403 00324 13,040
SA 3199 44987 5947  18.002 244393 00319 9,601

An external penalty function method is used to incorporate the
constraints so that the composite function to be minimized can be
defined as : ‘

D
FOO =7+ max©, g, 3

where X is the vector of the six design variables and the design con-
straints g;(X) <0, which are represented as inequality constraints.

Optimization Algorithms

The optimization algorithms used in this study are stochastic
global search methods. SPSA is relatively easy to implement and
does not require gradient information. It is 4 fairly robust method
and has the ability to find a global minimum when multiple minima
exist. SPSA is an algorithm that is based on a “simultaneous per-
turbation™ gradient approximation. The simultaneous perturbation
approximation uses only two function measurements independent
of the number of parameters (say, p) being optimized. The SPSA
algorithm works by iterating from an initial guess of the optimal
vector X;. First, the counter index £ is initialized to a value of
0, an initial guess of the design variable vector X, is made, and
nonnegative empirical coefficients are set. Next a p-dimensional
random simultaneous perturbation vector A; is constructed, and
two measurements of the objective function, namely, g(X; + ¢ Ap)
and g(X; — ey Ay), are obtained based on the simultaneous pertur-
bation around the given vector X,. The parameter c; = co/(k™),
where ¢g is a small positive number taken as 0.01 in this swdy, &
is the loop index, and m is a coefficient taken as é in this study.
The term A, represents the random perturbation vector generated

by Monte—Carlo approaches, and the components of this pertur-
* bation are independently generated from a zero-mean probabjlity
distribution; a simple distribution that has been used in this study is
the Bernoulli &1 distribution with probability of % for each of the
£1 outcome. This is followed immediately by the calculation of the
gradient approximation based on two measurements of the fanction
based on the simultaneous perturbation around the current value of
the design variable vector and the updating of the design vector X
to a new value X, | using standard SA form. Finally the algorithm
is terminated when insignificant changes in several successive iter-
ations occur or if the maximum allowable number of iterations has
been reached. The details of the step-by-step implementation of the
SPSA algorithm can be found in Spall.*> The SA method used is
described in Deb.® For this problem SA is implemented by setting
the initial temperature to 5, and the cooling schedule is algebraic of
the form T}, ., = ¢ T, where y takes a value of 0.5. The GA method
used in this study is outlined in Deb® and essentially follows the
method in Goldberg.” For this problem GA method is implemented
with a population size of 80; a crossover probability of 0,90 and
mutation probability of 0.05 have been used to arrive at optimal
values.

Results and Discussions

For the wing-design optimization problem the values of the pa-
rameters used are M =0.7,¢t/c=0.12, @ =1.0, (x /), =0.3, and
n=0.95, and the same termination criterion | f (x; ;. |) — f(x)| <
107 was used to terminate the optimization methods. Table 1 shows
the optimum values of the objective function and design variables
reached by the two optimization algorithms. In this table NFE refers
to the number of fanction evaluations required to reach the global
minima. Figure 1 shows the variation of the objection function with
the number of function evaluations required using the SPSA method
to reach the optimal value. It also shows the variation of the com-
puted objective function (D /L) with wing weight. Figure 2 shows
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Fig. 1 Convergence of ohjective function vs design iterations and the

variation of objective function vs wing weight toward global optimal -
values.
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Fig. 2 Projected routes of design variables angle of attack ox and sweep
angle A vs wing weight toward the global optimal values,

the variation of angle of attack and wing sweep with wing weight,
It can be seen that the optima] values of the objective function and
design variables subject to the same constraints from SA and GA
are very similar to those attained by SPSA. It can be scen that SPSA
attained optimal design values in 383 iteration steps, that is, 1149
measurements of objective function. At the same time GA took more
than 13,000 iterations, and SA took more than 9,000 iterations to
reach the optimal results. The SPSA method is a significantly faster
method than either GA or SA as a global optimization method for
this wing-design problem and can serve as a potential cost effective
stochastic global optimization design tool than either SA or GA for
similar classes of design problems. :

Conclusion

A wing-design optimization problem was performed using SPSA,
SA, and GA methods in this study. It can be seen that SPSA is more
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efficient than SA and is also relatively easy to implement. SPSA re-
quires only two measurements of the objective function regardless
of the dimensions of the design space corresponding to the optimiza-
tion problem and the cost of optimization decreases. Although SA
and GA can avdid getting trapped in local optima, they require a large
number of function evaluations and a long computation time to reach
the optima. Future work to assess the performance of SPSA for con-
strained and unconstrained aerodynamic shape design studies will
be carried out in the near future to establish the cost benefits and to
investigate the extent to which SPSA offers comparative advantages
over GA or SA for aerodynamic design optimization problems.
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