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The need for solving multivariate optimization problems is
pervasive in engineering and the physical and social sciences.
The simultaneous perturbation stochastic approximation
(SPSA) algorithm has recently attracted considerable attention
for challenging optimization problems where it is difficult or
impossible to directly obtain a gradient of the objective function
with respect to the parameters being optimized. SPSA is based on
an easily implemented and highly efficient gradient approximation
that relies on measurements of the objective function, not
on measurements of the gradient of the objective function.
The gradient approximation is based on only two function
measurements (regardless of the dimension of the gradient
vector). This contrasts with standard finite-difference approaches,
which require a number of function measurements proportional
to the dimension of the gradient vector. This paper presents a
simple step-by-step guide to implementation of SPSA in generic
optimization problems:and offers some practical suggestions for

choosing certain algorithm coefficients.
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I.  BACKGROUND

Stochastic optimization algorithms are used in
virtually all areas of engineering and the physical and
social sciences. Such techniques apply in the usual
case where a closed-form solution to the optimization
problem of interest is not available and where the
input information into the optimization method (e.g.,
loss function evaluations) may be contaminated with
noise. Typical applications include model fitting
and statistical parameter estimation, experimental
design, adaptive control, pattern classification,
simulation-based optimization, and performance
evaluation from test data. Frequently, the solution
to the optimization problem corresponds to a vector
of parameters at which the gradient of the objective
(say, loss) function with respect to the parameters
being optimized is zero. In many practical settings,
however, the gradient of the loss function for use in
the optimization process is not available or is difficult
to compute (knowledge of the gradient usually
requires complete knowledge of the relationship
between the parameters being optimized and the
loss function). So, there is considerable interest in
techniques for optimization that rely on measurements
of the loss function only, not on measurements (or
direct calculations) of the gradient (or higher order
derivatives) of the loss function.

One of the techniques using only loss function
measurements that has attracted considerable
recent attention for difficult multivariate problems
is the simultaneous perturbation stochastic
approximation (SPSA) method introduced in
Spall [26] and more fully analyzed in Spall [27].
Recent applications are described, e.g., in Hill
and Fu [12, 13] (queueing systems), Rezayat [21]
(industrial quality improvement), Maeda, et al. [16]
(pattern recognition), Cauwenberghs [4] (neural
network training), Spall and Cristion [31, 32]
(adaptive control of dynamic systems), Alessandri
and Parasini [1] (statistical model parameter
estimation/fault detection), Sadegh and Spall [24]
(sensor placement and configuration), Nechyba and
Xu [18] (human-machine interface control), and
Chin and Smith [7] (traffic management). SPSA is
based on a highly efficient and easily implemented
“simultaneous perturbation” approximation to the
gradient: this gradient approximation uses only
two loss function measurements independent of the
number of parameters (say, p) being optimized. This
contrasts, for example, with the standard (two-sided)
finite-difference approximation (e.g., Dennis and
Schnabel [8]), which uses 2p function measurements
to approximate the gradient. The well-known
Kiefer-Wolfowitz [14] SA algorithm (Ruppert [22]) is
based on the finite-difference gradient approximation.
The fundamental (and perhaps surprising) theoretical
result in Spall [27, sect. 4] is:
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Under reasonably general conditions, SPSA and
Kiefer—Wolfowitz finite-difference-based SA (FDSA) achieve
the same level of statistical accuracy for a given number of
iterations even though SPSA uses p times fewer function
evaluations than FDSA (since each gradient approximation uses
only 1/p the number of function evaluations).

This theoretical result has been confirmed in many
numerical studies by the author and others (see
references), even in cases where p is on the order of
several hundred or thousand.

The genesis for this paper is the many requests
the author has received for a “cookbook” type guide
to implementation of SPSA. Existing documentation
(such as cited above) has tended to focus on specific
applications or on the methodological, theoretical, and
numerical properties of the algorithm without dwelling
on the basics of practical implementation for general
problems. Since the focus here is on implementation
(and since much other documentation is readily
available covering other aspects), this paper is not
intended as a stand-alone document for motivating
and demonstrating SPSA. In addition to the references
cited above, the reader may wish to consuit Chin
[6], Wang and Chong [34], and Spall [28] for such
information. It is hoped that this paper will help the
potential user in developing software and choosing
the kind of application-specific algorithm parameters
(e.g., algorithm gain sequences) that all stochastic
optimization algorithms (including techniques such as
simulated annealing, genetic algorithms, evolutionary
search, adaptive random search, etc.) need.

Since we are considering the stochastic
optimization context (allowing for noisy
measurements of the objective function), it is
difficult to make general statements about the
relative efficiency of SPSA with well-known
deterministic algorithms that are oriented to the case
of perfect measurements of the objective function
(such as the many variations of the Nelder-Mead
[19] algorithm). It is even more difficult to make
meaningful comparisons with algorithms such as
conjugate gradient and Newton—Raphson since those
deterministic algorithms require direct gradient
information. Such comparisons must be done on
a case-by-case basis, reflecting the relative cost of
obtaining the information required by the competing
algorithms with the cost of obtaining a (possibly
noisy) measurement of just the objective function. The
above-mentioned comparison with finite-difference
methods (FDSA) was performed on an equal basis
of using the same type of information for both
algorithms.

Section II summarizes the problem setting and
introduces some notation. Section III presents a
step-by-step guide to implementation that is aimed
at helping the reader code the algorithm for his or
her specific application. This section also offers
suggestions regarding the choice of algorithm gain

sequences. These suggestions were developed based
on many test cases conducted by the author and
others and form a reasonable basis if one has no
specific reason to follow other guidelines. Since all
stochastic optimization methods require the choice of
such problem-specific algorithm coefficients, the gain
selection issue for SPSA is not unique. Section IV
summarizes some additional implementation aspects
and related extensions of the basic SPSA algorithm.

li.  BASIC ASSUMPTIONS AND FORMULATION

The goal is to minimize a loss function
L(6), where the loss function is a scalar-valued
“performance measure” and 6 is a continuous-valued
p-dimensional vector of parameters to be adjusted.
The SPSA algorithm works by iterating from an initial
guess of the optimal §, where the iteration process
depends on the above-mentioned highly efficient
“simultaneous perturbation” approximation to the
gradient g(8) = dL(6)/d9.

Assume that measurements y(6) of the loss
function are available at any value of 6:

y(6) = L(0) + noise.

For example, in a Monte Carlo simulation-based
optimization context, L(f) may represent the
mean response with input parameters 6, and y(8)
may represent the outcome of one simulation
experiment at 6. In some problems, exact loss function
measurements will be available. This corresponds to
the noise = O setting (and in the simulation example,
would correspond to a deterministic—non-Monte
Carlo—simulation). Note that no direct measurements
(with or without noise) of the gradient are assumed
available. This measurement formulation is identical
to that of the FDSA algorithm discussed above
and most implementations of genetic optimization
algorithms and simulated annealing. It differs from
the Robbins—-Monro SA algorithm (which includes
algorithms such as backpropagation for neural
networks [White [35]] and infinitesimal perturbation
analysis for discrete-event systems [Fu [11]] as special
cases), Newton—Raphson search, and maximum
likelihood scoring, all of which require direct
measurement or calculation of g(8).

It is assumed that L(8) is a differentiable function
of # and that the minimum point §* corresponds to a
zero point of the gradient, i.e.,

OL(@0)

g0 =
00 |p_gr

=0. 1)
In cases where more than one point satisfies (1),

then the algorithm may only converge to a local
minimum (as a consequence of the basic recursive
form of the algorithm there is generally not a risk

of converging to a maximum or saddlepoint of
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L(9), i.e., to nonminimum points where g(#) may
equal zero). See Section IV below for a mention of
modifications to the basic SPSA algorithm to allow it
to search for the global solution among multiple local
solutions. Note also that (1) is generally associated
with unconstrained' optimization; however, through
the application of penalty functions and/or projection
methods, it is possible to use (1) in a constrained
problem (i.e., one where the § values are not allowed
to obtain certain values, usually as specified through
equality and mequahty constraints on the values of 4
or L(6)). Section v briefly discusses this further.

. IMPLEMENTATION OF SPSA

Subsection IITA presents the step-by-step guide
to implementation and Subsection IIIB offers some
suggestions for picking the algorithm coefficients (the
SA gain sequences) to achieve reasonable practical
performance.

A. Step-by-Step Implementation

The step-by-step summary below shows how
SPSA iteratively produces a sequence of estimates.
The Appendix presents an implementation of the steps
below in MATLAB® code.

Step 1 Imtzalzzatzon and Coefficient Selection.

Set counter index k 0. Pick initial guess 00 and
nonnegative coefﬁC1ents a, ¢, A, a, and v in the SPSA
gain sequences a4, = a/(A+k+ 1)* and ¢, = ¢/(k + 1)7.
Practically effectivé (and theoretically valid) values
for a and ~y are 0.602 and 0.101, respectively (the
asymptotically optimal values of 1.0 and 1/6 may also
be used); a, A, and ¢ may be determined based on the
practical guidelines given in Subsection IIIB.!

Step 2 Generation of Simultaneous Perturbation
Vector. Generate by Monte Carlo a p-dimensional
random perturbation vector A,, where each of the p
components of A are independently generated from
a zero-mean probablllty distribution satisfying the
conditions in Spall [27]. A simple (and theoretically
valid) choice for each component of A, is to use a
Bernoulli +1 distribution with probability of for
each +1 outcome. Note that uniform and normal
random variables are not allowed for the elements of
A, by the SPSA rejgularity conditions (since they have
infinite inverse moments).

Step 3 Loss Function Evaluations. Obtain two
measurements of the loss function L(-) based on
the simultaneous perturbation around the current

'n cases where the elements of § have very different magnitudes,
it may be desirable to use a matrix scaling of the gain g, if prior
information is available on the relative magnitudes. Section IV
below discusses a second-order version of SPSA that automatically
(asymptotically) scales for different magnitudes.
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y(0; + ¢, Ap) and y(6, — ¢, A,) with the ¢, and A,
from Steps 1 and 2.

Step 4 Gradient Approximation. Generate the
simultaneous perturbaltion approximation to the
unknown gradient g(6,):

-1

k1
A A A—l
A D y(gk +CkAk)_y(9k_ckAk) k2
81(0;) =
2Ck N
A

where A,; is the ith component of the A, vector
(which may be +1 random variables as discussed
in Step 2); note that Ehe common numerator in all
p components of g,(6,) reflects the simultaneous

perturbation of all components in §, in contrast to
the component-by-component perturbations in the
standard finite-difference approximation.?

Step 5 Updating 0 Estimate. Use the standard
SA form . . N

Ope1 = O — 8,6

to update ék to a new value ék -

Step 6 Iteration or Termination. Return to Step
2 with k + 1 replacing k. Terminate the algorithm if
there is little change in several successive iterates
or the maximum allowable number of iterations has
been reached (more formal termination guidance is
discussed e.g., in Pflug [20, pp. 297-300]).

B. Choice of Gain Sequences a,, ¢,

This subsection summarizes some additional
implementation aspects regarding the choice of
algorithm gain sequences. The reader should be
warned that the guidelines provided here are just
that—guidelines-—and may not be the best for every
application. These guidelines were developed based
on many test cases conducted by the author and others
and form a reasonable basis for starting if one has no
specific reason to follow other guidelines (theoretical
guidelines, such as discussed in Fabian [10], Chin
[6], and Dippon and Renz [9] are not generally useful
in practical applications since they require the very

2Despite the expense of the additional function evaluations, it is
sometimes useful to average several SP gradient approximations
(each with an independent value of A,) at a given ék. This is
especially the case when the noise levels in the L(#) evaluations
are high. Such averaging can often mitigate the fact that SPSA
may be more unstable in the early iterations than FDSA due to its
potentially poorer quality gradient approximation. In fact, even a
relatively low amount of averaging (say, two to four SP gradient
estimates) can sometimes make SPSA more stable than FDSA due
to the reduced effective noise contributions. In high-dimensional
systems, this averaged SP gradient estimate will still take many
fewer measurements than FDSA. Theoretical justification for net
improvements to efficiency by such gradient averaging is given in
Spall [27].
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information on the loss function and its gradients that
is assumed unavailable!). However, it is likely that in
serious applications, most users will want to refine the
gain selection from that recommended here.

The choice of the gain sequences (a; and c;)
is critical to the performance of SPSA (as with all
stochastic optimization algorithms and the choice of
their respective algorithm coefficients). With a and
~ as specified in Step 1, one typically finds that in a
high-noise setting (i.e., poor quality measurements
of L(0)) it is necessary to pick a smaller a and
larger ¢ than in a low-noise setting. Although the
asymptotically optimal values of « and +y are 1.0
and 1/6, respectively (Fabian [10} and Chin [6]), it
appears that choosing o < 1.0 usually yields better
finite-sample performance through maintaining a
larger step size; hence the recommendation in Step 1
to use values (0.602 and 0.101) that are effectively the
lowest allowable satisfying the theoretical conditions
mentioned in Section III (from Spall [27, prop. 2]).

In a setting where a large amount of data are likely to
be available, it may be beneficial to convert to o = 1.0
and v = 1/6 at some point in the iteration process to
take advantage of their asymptotic optimality.

As a rule-of-thumb (with the Bernoulli +1
distribution for the elements of A, as suggested in
Step 1), it is effective to set ¢ at a level approximately
equal to the standard deviation of the measurement
noise in y(6) in order to keep the p elements of g,(6,)
from getting excessively large in magnitude (the
standard deviation can be estimated by collecting
several y(§) values at the initial guess §,; a precise
estimate is not required in practice). In the case where
one had perfect measurements of L(§), then ¢ should
be chosen as some small positive number.

The values of a, A can be chosen together
to ensure effective practical performance of the
algorithm. (The constant A is not typically shown in
the SA literature, but we have found that including
this “stability constant” is effective in allowing for a
more aggressive, i.e., larger, ¢ in the numerator by
avoiding instabilities in the early iterations. A larger
a may enhance performance in the later iterations by
producing a larger step size when the effect of A is
small.) A guideline we have found useful is to choose
A such that it is much less than the maximum number
of iterations allowed or expected, e.g., we frequently
take it to be 10% (or less) of the maximum number
of expected/allowed iterations and choose a such that
a/(A + 1)* times the magnitude of elements in éo(éo)
is approximately equal to the smallest of the desired
change magnitudes among the elements of § in the
early iterations. To do this reliably may require several

replications of §0(é0). For example, if it were felt that
elements of 6 should typically move by a magnitude
0.1 in the early iterations, and the magnitude of the

elements in g’o(éo) (after choosing ¢ and ~ as above) is
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approximately 10, then with A = 100 and « = 0.602,
we would choose a = 0.16. These guidelines for
choosing a are similar to those mentioned in Brennan
and Rogers [3, sect. 2]. If the elements of § vary
greatly in magnitude, then these guidelines can be
modified in an obvious way to accommodate a scaling
matrix applied to g, (see footnote 1).

IV. - FURTHER RESULTS AND EXTENSIONS TO BASIC
SPSA ALGORITHM

Sadegh and Spall [25] consider the problem of
choosing the best distribution for the A, vector. Based
on asymptotic distribution results, it is shown that
the optimal distribution for the components of A,
is symmetric Bernoulli, as suggested in Section III.
This simple distribution has also proven effective
in many finite-sample practical and simulation
examples.? (Note that it is arbitrary as to whether
to assume the magnitude of ¢ or the magnitude of
each element in A, is unity since ¢, A, always appear
together. Reference [25] assumes ¢ = 1 and varies
the magnitude of the A, elements while the opposite
approach is adopted here.)

Some extensions to the basic SPSA algorithm
above are reported in the literature. For example,
its use in feedback control problems, where the
loss function changes with time, is given in Spall
and Cristion [31-33]. Reference [33] is the most
complete treatment. Reference [31] also reports on a
gradient smoothing idea (analogous to “momentum”
in the neural network literature where gradients are
averaged across iterations) that may help reduce noise
effects and enhance convergence (and also gives
guidelines for how the smoothing should be reduced
over time to ensure convergence). Simple gradient
averaging (where several SP gradient approximations
are averaged at each iteration) may also sometimes
be useful in speeding convergence, even at the
expense of the additional loss function evaluations
(see footnote 2). An implementation of SPSA for
global minimization is discussed in Chin [5] (i.e., the
case where there are multiple minimums at which
g(0) = 0); this approach is based on a step-wise
(slowly decaying) sequence c, (and possibly ay).

The problem of constrained (equality and inequality)
optimization with SPSA is considered in Sadegh [23]
and Fu and Hill [12] using a projection approach. The
“blocking” ideas in second-order SPSA (algorithm
discussed below) may also be useful in standard SPSA

31t should be noted, however, that other distributions are sometimes
desirable. Since the user has full control over this choice and

since the generation of A, represents a trivial cost towards the
optimization, it may be worth evaluating other possibilities in some
applications. For example, Maeda and De Figueiredo [17] used a
symmetric two-part uniform distribution, i.e., a uniform distribution
with a section removed near O (to preserve the finiteness of inverse
moments), in an application for robot control.
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to speed convergence and enhance stability; here an
iteration is blocked (i.e., no # update) if the new loss
function value is significantly worse than the current
loss value. This requires an extra loss evaluation at
each iteration for monitoring and requires a choice
regarding the amount of increase in a loss evaluation
that is tolerable before a step is blocked (we have
used the current loss value plus 2 x [estimated noise
standard deviation]ﬁ as a nominal threshold above
which the step is blocked).

A one (loss)-measurement form of the SP
gradient approximation is considered in Spall [29];
although it is shown in this reference that the standard
two-measurement form discussed here will usually
be more efficient (in terms of total number of loss
function mcasurenients to obtain a given level of
accuracy in the 6 iterate), there are advantages to
the one-measurement form in real-time operations
(such as adaptive olontrol or adaptive tracking) where
the underlying system dynamics may change too
rapidly to get a credible gradient estimate with two
successive measurements. This form also allows for
a so-called “one run” simulation optimization (e.g.,
Arsham [2]) by enflulating the gradient-based (e.g.,
IPA) approaches with an estimate of the gradient
using only one execution of a simulation. The major
difference, of courjse, is that the SPSA-based one-run
method does not require the detailed information
about the “inner workings” of the simulation that
is required in the %radient—based approaches (but
the gradient-based lapproaches are likely to be more
efficient if the reqﬁired information is available at
“reasonable” computational and other cost). The
use of SPSA in simulation-based optimization is
considered in detail in Kleinman, et al. [15], where
it is shown that the method of “common random
numbers” (i.e., am ng other factors, use of the same
random number seed in the two measurements for the
“standard” SPSA gradient approximation) can increase
the rate of converg}ence.

An “accelerated” form of SPSA is reported in
Spall [30]. This approach extends the SPSA algorithm
to include second-order (Hessian) effects with the aim
of accelerating convergence in a stochastic analogue
to the deterministi¢c Newton—Raphson algorithm.

Like the standard (first-order) SPSA algorithm, this
second-order algorithm is simple to implement and
requires only a sm&ll number (independent of p) of
loss function meashrements per iteration (no gradient
measurements, as in standard SPSA). In particular,
only four measurements are required to estimate the
loss-function gradient and inverse Hessian at each
iteration for any dimension p (and one additional
measurement is recommended as a check on algorithm
behavior and potential iteration “blocking”). The
algorithm is impleﬁnented with two simple parallel
recursions: one for § and one for the Hessian of
L(0). The recursion for ¢ is a stochastic analogue

of the well-known Newton—-Raphson algorithm of
deterministic optimization (which has the highly
desirable property of being “transform invariant,”
i.e., it works equally well regardless of the units
and/or relative magnitudes of the elements in 8). The
recursion for the Hessian matrix is simply a recursive
calculation of the sample mean of per-iteration
Hessian estimates that are formed using SP-type
ideas.

V. CONCLUDING REMARKS

This paper has presented some practical guidance
on the implementation of the SPSA algorithm for
stochastic optimization. Although these guidelines can
be effective, the serious user would be advised to also
become familiar with some of the theory behind SPSA
and to possibly modify the guidelines using the theory
and available prior information about the problem
together with numerical experimentation. This paper
also mentioned some extensions to the basic SPSA
form, including global and constrained optimization
forms, a version using only one loss measurement
(versus two measurements), and a form representing
a stochastic Newton—Raphson analogue.

APPENDIX. MATLAB® CODE

Fig. 1 presents MATLAB® code for performing
n iterations of the standard (two loss measurement,
first-order) SPSA algorithm in Section III. Algorithm
initialization is not shown here since that can be
handled in many ways (e.g., read from another file,
direct inclusion in the program, user input during
execution, etc.). The program calls an external
function “loss” to obtain the (possibly noisy)
measurements. The Ay, elements are generated
according to a Bernoulli 1 distribution.

Fork=1n

ak=al(k+A)*alpha;
=c/k*gamma;

delta=2*round(rand(p,1))-1;
thetapius=theta+ck*delta;
thetaminus=theta-ck*delta;
yplus=loss(thetaplus),
yminus=loss(thetaminus);
ghat=(yplus-yminus)./(2"ck"delta);
theta=theta-ak*ghat;

end

theta

Fig. 1. Sample MATLAB® Code for SPSA. (Initialization for
program variables theta, n, p, a, A, ¢, alpha, and gamma not
shown.)
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