Reprinted from PROCEEDINGS OF THE 1987 AMERICAN CONTROL

CONFERENCE, Minneapolis, MN, June 10-12, 1987

TP1 - 4:00

A STOCHASTIC APPROXIMATION TECHNIQUE FOR GENERATING
MAXIMUM LIKELIHOOD PARAMETER ESTIMATES

James C. Spall

The Johns Hopkins University
Applied Physics Laboratory
Laurel, Maryland 20707

ABSTRACT

This paper shows how stochastic approximation (SA) can be used
to construct maximum likelihood estimates of system parameters.
The procedure described here relies on a derivative approximation
other than the usual finite-difference approximation associated with
a Kiefer-Wolfowitz SA procedure. This alternative derivative ap-
proximation requires fewer, by a factor equal to the dimension of
the parameter vector being estimated, computations than the stan-
dard finite-difference approximation. Numerical evidence presented
in the paper indicates that this SA procedure is, relative to a Kiefer-
Wolfowitz procedure, most efficient when considering large-scale
systems.

1. INTRODUCTION

Stochastic approximation (SA) is a widely applicable recursive
technique for finding roots of equations. SA algorithms are guaran-
teed to converge under generally weaker conditions on the shape
of the function being optimized and the choice of the initial condi-
tion than many other iterative techniques. SA has been used exten-
sively in the field of control for dynamic model parameter estimation
(e.g., Ljung and Soderstrom [1983], pp. 42-48, Saridis [1974], and
El-Sherief and Sinha [1977]). The estimates so generated are not
generally optimal in the usual statistical sense (that is, they are not
necessarily minimum variance or unbiased). The purpose of this
paper is to show how, in contrast to those suboptimal SA estimates,
SA can be used to generate maximum likelihood estimates (MLEs)
(which, of course, do have certain optimality properties) when it
is either not feasible or very difficult to implement a steepest de-
scent, Newton-Raphson, or scoring procedure. The key to the SA
algorithm here is a gradient approximation that differs from the
usual finite-difference approximation.

We will assume here that, as usual, the MLE is found by deter-
mining the (consistent) root of the score equation:

_ AL

0, (1.1)

where L(9) is the likelihood or log-likelihood function for the pa-
rameter vector § € R?. To implement a steepest descent, Newton-

"This work has been partially supported by U.S. Navy Contract N00039-
87-C-5301. The author is most grateful to D. C. Chin of JHU/APL for
his assistance in producing the numerical results of Section 4.
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Raphson, or scoring technique, it is required that s(§) and 3s/067
(Newton-Raphson) or E(3s/307) (scoring) be evaluated at differ-
ent values of 8 as the algorithm proceeds to convergence near the
consistent root of (1.1), say 8*. When it is difficult to evaluate these
quantities (perhaps because each evaluation requires numerous
Kalman filter runs as in Goodrich and Caines [1979] or Porter et
al. [1983]), a Kiefer-Wolfowitz [1952] SA (KWSA) procedure can
be used to estimate 6*, which only requires that L(6) be evaluated.
The key quantity in the implementation of KWSA is the usual finite-
difference approximation to the derivative, s(§), at each value of
6 arising in the iterations. Each such approximation requires 2p
evaluations of L(6).

The goal of this paper is to show how SA can be used to form
MLEs with a derivative approximation other than the standard
finite-difference approximation used in KWSA. In particular, this
alternative derivative approximation requires only two evaluations
of L(6), instead of 2p evaluations. We will evaluate the trade-off
between the reduced computation per iteration associated with the
alternative derivative approximation and the (expected) increased
number of iterations to converge (relative to KWSA). As discussed
later, numerical experience indicates that this trade-off is favorable
when p is moderately large.

Section 2 presents the SA algorithm of this paper with its alter-
native derivative approximation and associated regularity conditions.
Section 3 presents two theorems that justify the use of the alterna-
tive derivative approximation given in Section 2. Section 4 gives
several numérical studies that illustrate the effectiveness of the SA
procedure here relative to a KWSA procedure. Section 5 contains
some concluding remarks.

2. OVERVIEW OF SA TECHNIQUE FOR FINDING MLEs

This section is divided into two subsections. Subsection 2.1 is a
brief description of the SA algorithm that is of interest here, to-
gether with the key regularity conditions that are to be satisfied.
Subsection 2.2 discusses the estimate for s(6) that will be used in
the SA algorithm.

2.1 The SA Algorithm and Associated Regularity Conditions

As pointed out in Section 1, SA is an interative root-finding tech-
nique. Since we are interested in finding the root 6* of s(§) = 0,
we will discuss the SA algorithm in this context. SA applies when
the function for which a zero is to be found (s(f) our case) is not
known precisely. Of course, in ML estimation, s(-) is known pre-
cisely for any fixed 6. Our goal here is to replace the precisely cal-



culated s(-) (which, as mentioned in Section 1, can be computation-
ally very burdensome) with a much simpler-to-compute approxima-
tion, §(-). Relative to steepest descent or scoring, this will lower
the per-iteration computational burden significantly, albeit at the
likely expense of an increased number of iterations.

Letting §(k) denote the estimate for §* at the kth iteration, where
d(k) € A(k) © R” a.s., the standard SA algorithm has the form

(k) = 6k — 1) — atk — 1) 50k - 1)), 2.1
where the gain sequence {a (k) } satisfies the following conditions:
limy_oafk) = 0, L% a(k) = o, LF., a(k)? < o . A simple
example of an a(k) that satisfies these conditions is a(k) =
1/(k + D%, ¥ < a = 1. Note also the close relationship of (2.1)
to the method of steepest descent, the difference being that in
steepest descent s(-) replaces §(-).

There are a number of techniques for accelerating the conver-
gence of the standard SA algorithm given in (2.1), but they will
not be considered in detail in this paper. Rather we will focus on
the performance of (2.1) with $(-) as defined below, and contrast
(in Section 4) this performance with that of the closely related KWSA
and steepest descent algorithms. We believe, however, that this
“baseline’’ study will provide insight into the potential usefulness
of §(-) as it might apply in an accelerated algorithm.

The main conditions on §(-) that are generally ir}lposed for the
SA a[gorithm in (2.1) are, in terms of the error e(6(k)) = $(6(k))
- s(6(k)) ,

Ele(@(k)|6(k)1 =0 vk, 2.2)
E[le(0(k)I5I0(K)] = c <= VK, 23
{e(0(k))|6(k)} .,  mutually independent,  (2.4)

where || - ||, denotes the L? (Euclidean) norm. Under these and the
above-mentioned conditions on a(k), together with certain other
regularity conditions (see, e.g., Blum [1954] or Kushner and Clark
[1978]), B(k) %:5-9* as k — oo. Note that all expectations and proba-
bilities in this paper are conditioned on the data appearing in the
likelihood function (x in L(8) = L(8|x), say) being fixed.

2.2 The Estimate, 5(-)
We now define our estimate for s(-). Let A(k) € k) = Rf ass.

be a vector of p mutually independent random variables
{A((K), ..., A,(k)). Furthermore let {A(k)}%-, be a mutually in-

"The “‘second-order’’ methods for SA acceleration replace the gain a (k)
by a matrix related to the Hessian of L(f)—see, e.g., Ruppert [1985],
Ljung and Soderstrom [1983], pp. 46-47. These accelerated SA proce-
dures involve a trade-off between greater computational burden per iter-
ation and fewer iterations, and tend to be especially effective near 9*
where the algorithm defined in (2.1) can be very slow. There are also
non-second-order methods for increasing the convergence rate; e.g.,
Kesten [1958] gives an adaptive scheme for choosing the a(&), and Koch
and Spall [1986] present a ‘“multistep’ procedure that involves a certain
reuse of data (which increases the effective convergence rate in terms of
available data).
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dependent sequence. Our estimate, $(+), at the kth iteration of the
SA algorithm will then be

[CLI6(k) + A — LI — A |
24, (k)

5(6(k)) = .(2.5)

LIB(k) + A(k)) — LIB(k) — A(K)]
24, (k)

Note that this estimate differs from the usual finite difference gra-
dient approximation arising in KWSA since the numerator is the
same for all elements of the vector. Conditions under which §(-)
is an appropriate estimator for s(-) (i.e., satisfies (2.2) —(2.4)) are
given below and in Section 3.

Consider conditions (2.3) and (2.4). (2.4) is clearly satisfied since
the A(k) are mutually independent. Now let us consider the second-
moment condition, (2.3). For now, let & be fixed (and thus the ar-
gument k is suppressed). Let I' € R’ be the subspace in which
§ + Alies (a.s.). Then, assuming that s(f) is continuous and bound-
ed on T, the mean value theorem indicates that

LG £4a) =L@ +s(E*)T(x4)

where §* denotes a point on the line segment between § and x4
(as appropriate). Thus the ith component of § satisfies

F4y _ og—T
5(6) = [s(67) —s(67)]'A ’
A;

<

so |5:0)] = ¢’ L2, |A;/8;| where ¢’ = 2max; supgr |s;(0)],
which is well-defined (bounded) since s(f) is bounded on I'. Thus

by the Minkowski inequality,
» 2% 2
Bl eo

=1

which, of course, is bounded when E(4; /8;)? = ¢” < oo for all
i, j (e.g., when A; are Bernoulli distributed with nonzero out-
comes). Now, (2.3) is satisfied at any k if the bound in (2.6) is fi-
nite for the specified 6 = é(k) (recall that s(é(k)) is considered a
constant relative to the measure P(- |6(k)). Thus (2.3) is satisfied
if s(f) is continuous (and bounded) on U7_, T'(k) and if
E(Aj(k)/A,-(k))2 <c¢’" <wovij=12 ..,p k=12 .. o

Section 3 is devoted to establishing conditions under which the
unbiasedness condition, (2.2), is satisfied to within a certain small
error term.

i

f 3 L4 A
EQsiin = @ £{E (2
i=1 i

3. THE BIAS IN §(-)
3.1 Introduction

This section presents two theorems that give conditions under
which §(-) as given in (2.5) is an unbiased estimator of s(-) to with-
in a certain O(3%) error term, where § is some positive constant that
can be made arbitrarily small subject to computer accuracy limita-
tions in forming a 0/0 type quantity.? These theorems (and as-
sociated corollaries) are presented in Subsection 3.2. In Subsection



3.3, a brief discussion is included that compares the bias in §(-) with
that in the usual finite difference derivative approximation.

The following notation will be employed. T7¢"(§ + A) will de-
note an mth-order Taylor expansion of L(§ + A) about 8, while
A" = A ® A ® ... ®A (mth-order Kronecker product). M(5)
and B(m) will denote some functions of é and m satisfying condi-
tions given in the theorem statements. For any functions f{-) and
g(+), f(x) ~ g(x) implies that f(x)/g{x) — 1 as x approaches a
given limiting value. Finally, L " = 6’"L/(80 Ty with individual
components L7} , = 8"L/30;39,,...00;  for 1 < ij,i,, ..

< p. Note that LU ¢ R?",

o b

3.2 Theorems and Corollaries

Theorem 1 below presents a bound for the bias E[e(f)|0] =
E[$(8) — s(6)|6] under the assumption that L(8) is of class C™
in a region about 8. Two corollaries follow the theorem; they con-
sider important special cases for the key condltlons ((3.1)and (3.2))
in the theorem statement.

Theorem 1. Suppose that A, is symmetrically distributed about

0, |A| das.,and [A;] 7! <M(6) O Yas. (6—-0)V,)j =
1,2, ..., p. Furthermore, suppose that L ")(§ + A) exists ¥ m =
1,2, ..., and
ILR. i, (6 = A)| = B(m) 3.1
a.s. on © for any § € A where
B(m) = O(m!/(6p + &)™) (m — =) 3.2)
foranye > 0. Thenvj = 1,2, ..., p,
|Ele; (6)161] < b;(8)
> . B(2i+1)
=6 [ S 2+t —~ 16 2I+l]
§<p> ((p — 1)5) 2!
(3.3a)
= 0(8%) ©® -0 . (3.3b)

Proof. (3.1) and (3.2) Aimply that the remainder of an mth-order
Taylor expansion of L(f + A) about 6 satisfies

(p6)1n+l

T (6 £ A)| <

B(m+ 1) -0

as m — oo, which implies that
® o LD () A1/ (244 1)1

4
Now, since E(A;/A)) = 0V j # |,

5(0) =

El$;()|6) = s,(6) + Ele;()|6] ,

2]t is also of interest to know the effect of the O(5?) bias on the conver-
gence properties of #(k). The author has not had an opportunity to ex-
plore this issue thoroughly, but believes that a martingale difference
sequence approach such as that of Solo [1982] might be useful in this
regard. The numerical studies of Section 4 indicate that the bias appears
to have negligible effect.
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where

£y L0 (6) AP 2i4 1)1
&

Ele, (6)|6) = E [ | é] . (3.9

Note that for any m € {3,5,7, ...}, (p — 1) (out of a total of p™)
terms will not contain a A;. Thus, using (3.1) and the fact that the

A,’s are symmetrically distributed, we know that for 1 < i,i;, ...,
im 5 ps
(m)
E I:Lll”;z Ail A,-Z Aim | é:l
4

0 for (p — 1)" terms

A

B(m)8"~" in magnitude for p” — (p — 1) terms

(where the point of evaluation 6 has been suppressed in L ™),
which implies that?

IE(L(/n) Alm]/A/Ié‘” . l)l"] B(m) 5/11—] . (35)

< [pm — (p

Now define

D(8) = M(8) Y, B(2i + 1) (p&)¥ "'/ (2i + 1)1,

i=1

which is finite by (3.2). Then from (3.1) and the fact that
|4/ 7" = M(5), we know that

T LD AR ) 4+ 1)1
= =< D(§) (3.6)
4y
vm = 1,2, ... . Furthermore, L’Hopital’s rule applied to D(8)
yields D(6) = O(1) (6 — 0), and so D(9) is integrable (fg D(5) dP,

= D(6)) as 6—0. Thus from (3.6) and Lebesgue’s Dominated Con-
vergence Theorem, the expectation and sum on the r.h.s. of (3.4)
can be interchanged, which by (3.5) yields (3.3a).

Now, to show (3.3b), L’Hopital’s rule can be applied to (3.3a),
where we find that

b(3) ~ [p* — (p — 1)’1B(3) 8°/6 3.7

= 0@ ,

which completes the proof since / was chosen arbitrarily. Q.E.D.
The corollaries below give closed-form expressions for the bound
in (3.3a) for two important special cases. Both corollaries assume
that all conditions of Theorem 1 hold.
Corollary 1-1. Suppose that

B(m) = cp™ (3.8)

3Note that combinatorics arguments could significantly reduce the bound
in (3.5) (and hence the bound in 3.3a)). These arguments would exploit
the fact that all terms of the form 4; i By A/m | = A Ay 74
(i.e., at least one /; = /) would have expectatlon 0 when any odd powers
ofA exist (1e if m—1=4 and 4; 185, 8 A = AAZAZ)
As of thls wrmng, the author has not had an opportumty to explore thls
approach in detail.




forsome 0 < c,p < o, Thenv,j=12,..,p,
b; (8) = ¢~ '[sinh(ppd) — sinh((p — 1)pd) — pd]  (3.92)

cdp® — (p - ”3]"352

~ g (3.9b)
Corollary 1-2. Suppose that
B(m) = cp’"m! (3.10)
forsome 0 < p < 6p) . Thenvj = 1,2, ..., p,
2 3 352
bj(3) =c [1 f’;():;&)z - _(p((—,,liz;av] (.11a)
~clpP - - D’ (3.11b)

Proof of Corollaries. Clearly both (3.8) and (3.10) satisfy (3.2).
The bounds in (3.9a) and (3.11a) follow immediately using (3.3a)
and standard series expansions. The asymptotic (§—0) equivalents
foliow from (3.7).

Note. For large p, the bounds in (3.7b) and (3.9b) could be fur-
ther simplified by noting that p* — (» — 1)} ~ 3p”.

Theorem 1 and its corollaries require that L() be of class C*.
Theorem 2 below relaxes this condition at the expense of a condi-
tion that is more difficult to check regarding the remainder term
in an rth-order Taylor expansion.

Theorem 2. Suppose that the conditionson 4;, v j = 1,2, ...,
p, given in Theorem 1 are satisfied. Furthermore, suppose that for
some odd integer r = 3 there exist 8(1), B8(2), ..., 8(r) and
0 < K < oo such that for 8 € A,

N>
(A

B(m)

k=
3
A

=K m=12..,r

TOW@+A) — L@ +A)=TD@ -4y — L - 4)

(3.12)
a.s. on Q for the § above, thenv j = 1,2, ..., p,
|Ele; (6)16]] = b/ (8)
(r=1)/72 . . 6(21+1)
E(SAI 62’+I— _162l+1—__=062 .
El [(pd) (=D& 1 oy (8%)
(3.13)

Note. The condition that r be odd is, in fact, not a restriction
since any given even order term in 7" (§ + A) equals the same
order term in TV"(§ — A) for any m.

Proof. From (3.12), arguments analogous to those leading to (3.4)
imply that E[e,(0)|] is given by the expression in (3.4) with the up-

per limit of o in the sum within E}- |6] on the r.h.s. replaced by
(r — 1)/2. Then, using arguments identical to those following (3.4)
in the proof of Theorem 1, (3.13) follows. Finally the fact that
b(6) = 0(52) follows by the bound on 3(m) and L’Hopital’s rule.
Q.E.D.

The corollary below considers an important special case for 8(m).

Corollary 2-1. Suppose that f(m) = cp”"m! for any 0 < ¢,p
< o, Thenv; =12, ..,p,

(ppd)? — (,,,,5>r+l]

b0 = Cp"[ I~ (pod)’

el - l)p[“l’ — 1pd)? = (b - l)pa)'“]
1= ((p - 1)pd)?

~cp® = (p - 1)1 .

Proof. The proof is straightforward using (3.13) and standard
geometric series arguments.

3.3 Comparison with Bias in Usual Finite Difference Approximation

We close this section with a brief discussion of the bias in the
usual discrete difference approximation to s(+), say $(), that would
be used in KWSA (see Section 1) and contrast this with the bias
in §(-). Here

L6+ AT) — L(§ — AL
24,

§i (é) =

foralli = 1,2, ..., p where I; is the ith column of a p X piden-
tity matrix. Under the assumptions of Corollary 1-1 (the bound B(m)
being the usual sufficient condition for L(-) to be analytic), we find
(using arguments identical to those of the proof of Theorem 1)

. E!,); L(2!+l)(é)(A 1 )[2i+l]
5(6) = 0 ] .
Ly

We then obtain the following bound for |E[5(f) — s(§)|4]] :

. o (p6)21+1
=it

= ¢ ![sinh(pd) — pd]

3
cp
- 8.

Contrasting cp>862/6 with the error bound in (3.9b), we see that
the bias in §(-) is less than that of §(-) by a factor of p -
(0 — 1) ~ 3p>. As mentioned in Section 1, however, §(-) requires
p times more computations than $(-). Also note that in light of foot-
note 3, the ‘‘real”’ bias in §(-) is somewhat less than that given in
(3.9b), while the bias bound given above for §(-) is somewhat closer
to the “‘real’’ bias in §(-) since the issue in footnote 3 is not rele-
vant for §(-). Thus the factor of p> — (p — 1)* given above over-
estimates the relative differences in the biases of 5(-) and §(-).

The practical effects of using §(-) and $(-) in a problem of find-
ing MLEs will be illustrated in the next section.



4. NUMERICAL STUDIES
4.1 Introduction

This section presents several numerical studies that illustrate how
(2.1) with the input given in (2.2) can be used to calculate MLEs.
For convenience, we will refer to this algorithm as ADSA (Alter-
native Derivative SA). The goals of these studies are threefold:

1. To gain insight into how ADSA compares with KWSA (which

is closely related to steepest descent (SD));

2. To examine the performance of ADSA as é (see Subsection

3.2) and p (dimension of 8) vary;

3. To suggest ideas for practical implementation of ADSA.

Note that we are nof comparing ADSA with scoring or Newton-
Raphson. The reason for this was given in Subsection 2.1, where
it was pointed out that there are second-order (and other) proce-
dures for accelerating the convergence of the SA algorithm. These
second-order algorithms are the SA analog of scoring or Newton-
Raphson. The author believes, however, that the preformance of
3(-) (from (2.2)) in the first-order algorithm considered here (vis-
a-vis KWSA) provides insight into the potential applicability of §(+)
in a second-order algorithm.

The MLE problem we consider pertains to the estimation of the
‘‘signal’’ covariance matrix in a signal-plus-noise problem with in-
dependent nonidentically distributed noise. In particular, we assume
that data x; distributed N(O, Z + P;), i = 1,2, ..., N, are ob-
tained, and L is to be estimated with the { P;} known. Such prob-
lems pertain, for example, to the estimation of initial state
parameters in a Kalman filter model (see, e.g., Shumway, Olsen,
and Levy [1981] or Haley, Garner, and Levine [1984]) and have
a number of interesting characteristics (see, e.g., Smith [1985] or
Spall [1986]). In the nonidentical P; case, no closed-form solution
tos(-) = Oexists, and thus a numerical algorithm must be applied.

For the numerical studies here, L will be a diagonal matrix and
6 will represent the vector of diagonal elements, i.e., L = diag[8,,
65, ...,0,),and 8 = (8, 8,, ..., 8,)7. The form for the gain a (k)
appearing in (2.1) is

a(k) = A ,
(kK + 1)«
where A > 0 and « is as given below. The {A;(k)} will be gener-
ated as independent Bernoulli random variables with outcomes +86,
Prob() = Prob(—8) = %2, forallj=1,2,...,pand k = 1,
2, ... . Inthe KWSA algorithm, (2.1) will be used with $(-) replac-
ing §(-), where each of the p elements in §(-) is given by the finite
difference approximation:

LG+ AL/ (k+ D)) —L(§ — AL/ (k+ 1))

5 (00k)) = 24,/ (k + 1)7

>

@.1

where v > 0 and @ represents the KWSA estimate. (Note that this
definition for § differs by the factor of (k + 1)* from that given
in Subsection 3.3. The reason for not including (k + 1) in Sub-
section 3.3 was that the goal there was to compare §(-) and §(-)
for the same §; the ““effective 8’ in (4.1) is 8/(k + 1)7.)* Letting
o =% +¢0<e=< Y%,andy = Y satisfies the conditions given
after (2.1) and in Kiefer and Wolfowitz [1952] or Blum [1954] for
the KWSA algorithm. In the studies below, we set ¢ = 0.0001 (we
found that making « as near % as possible tended to speed con-
vergence).

Note that under the Bernoulli assumptions, the conditions in The-
orem 1 of Section 3 on the A;(k)’s are satisfied. Moreover, based

on calculations for the p = 1 case, it appears that the derivative
bound in Corollary 1-2, (3.10), applies to this setting.> The author
has not had the opportunity to carefully establish that the deriva-
tive bound of (3.10) holds in the p = 2 case but is confident that
a bound analogous to that of the p = 1 case can be established since
there is no essential difference in the form of L(-) (as shown in Spall
[1985], the calculation of L can get onerous for multivariate §
and m = 3).

There are two remaining subsections in this section. Subsection
4.2 considers the p = 15 case and compares ADSA with KWSA.
Subsection 4.3 considers the p = 3 case and, in addition to com-
paring ADSA with KWSA, reports on several related sensitivity
studies.

4.2 The p = 15 Case

Our goal here is to compare ADSA with KWSA for the case where
8 € R". However, as can be seen from the form for §(-) (relative
10 s(-)) and as will be illustrated in Subsection 4.3, the performance
of KWSA is close to that of SD; thus, these studies can also be
thought of as providing insight into the relative performance of
ADSA and SD.

The data {x;} were generated using an IBM 3083 (and associat-
ed pseudorandom number generator) according to the N(O,
L + P;) distribution with

£ =225/
N = 60

P, = AAT
A eR15><30

with each element of A; generated uniformly (and independently)
on(—1, —0.001) U (0.001, 1), and all 4;,/ = 1, 2, ... Nindepen-
dently generated. Note that with the P,’s generated in this man-
ner, the P;’s will be nonidentical, with no particular pattern.

As a way to compare ADSA and KWSA, we will work with the
quantity

L) = L(6*) — L(B)

at values of § corresponding to § (ADSA) and § (KWSA). The val-
ue §* was determined by the application of a scoring algorithm (cor-
roborated by the results of a Newton-Raphson algorithm). L(-) is
convenient to work with here in that it compensates for the fact
that L(-) is flat in a wide range about 6* relative to the baseline
value L(0*) (= 6578.3) and is nonnegative with Z(§*) = 0.

“Note that 5(-) in ADSA could have also included the (kK + 127 damp-
ing of KWSA. We chose not to do this here so that the O(5~) bias in
$(-) would manifest itself without being damped (thus helping us see its
effect). In fact, however, there was no difference in the performance of
ADSA with and without (k + 1)” damping for the one case where both
approaches were compared—see Subsection 4.2.

For the p = 1 case, L(8) = — %I [logd + P;) + x2/(6 + P,
+ constant, from which it is easily derived that

IL"(8)] = cm!p”,

where ¢ = VsNmax;{(§ + P, + x2)/(6 + P))] and p = [min;(6 +
P)) ~!. Thus (3.10) is applicable when 8 + P; > Ov § ¢ I.
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Fig. 1 Comparison of ADSA and KWSA for iteration pairs
requiring equal number of L (-) evaluations.

Figure 1 contrasts the performance of ADSA and KWSA for the
scenario described above. We took 6(0) = §(0) = (400, 400, ...,
400)” and generated the A;(k)’s for both algorithms from the same
seed with 6 = 0.01. Also A = 1000. Since p = 15, each iteration
of KWSA requires 30 evaluations of L(-), in contrast to the two
evaluations required for ADSA. Thus, at each point along the
horizontal axis the iterations indicated represent an equivalent num-
ber of L(-) evaluations (which represent essentially all of the com-
putations required) for the ADSA and KWSA procedures.

Based on its ability to minimize L(-) (i.e., maximize L(-)), ADSA
performs significantly better than KWSA at all iteration pairs con-
sidered. It also performs significantly better in terms of accuracy
of the estimate. For example, at the terminal iteration pair in Fig. 1,

6¢450) — 6%,  339.3
- = = 0.316 ,
16(30) — 6+, 1074
where |- {|; represents L' norm (for comparison, [|6* ||, = 2893.5
and (0) — 6* ||, = [|6(0) — 6% ||, = 3106.5).

The ADSA algorithm was also tested under several scenarios
different from that of Fig. 1. In one case 6(0) was set very near
0* with other SA parameters (4, «, ) as in Fig. 1. The algorithm
was then tested to make sure it would not diverge, given the real-
tively large values of a(0), a(1), etc. compared to the gain values
near a(450) in Fig. 1; no such divergence occurred and ADSA con-
verged within a relatively few iterations. We also tested the algorithm
withd = 0.1 and 6 = 0.001 (versus & = 0.01 above). The estimate
(and, of course, the likelihood) values were the same for all itera-
tions to within the four decimal points considered. Thus ADSA does
not appear to be sensitive to 3, at least within the range considered.
Finally, ADSA was run with the (¢ + 1) damping of KWSA (so
S0k = L@ + A/ + 1)) — L — A/k + DNI/[28,/
(k + D], and it was found (again) that there was no difference
in the estimate or likelihood values for all iterations considered.

4.3 The p = 3 Case

A study similar to that above was performed for the p = 3 case
to see if the dimension of # had a significant effect on the relative
performance of ADSA and KWSA. In this study the P; matrices
were generated in the same manner as above, and L = diag (4, 9,
16). We let N = 30, A = 1, and, as above, took o = 0.7501,

v = 0.25, and § = 0.01. The starting point for both ADSA and
KWSA (§(0) and #(0)) was taken as (3, 8, 15).

The relative performance of ADSA and KWSA here was qualita-
tively the same as described in Subsection 4.2 for the p = 135 case.
For example, at 180 ADSA and 60 KWSA interations (180/60 = p),
we find that L(6(180)) = 0.011 versus L(f(60)) = 0.042; likewise
we find

§6(180) — 6*f, _ 0.610
- = = 0.49
|6(60) — 8* |, 1.25
(for comparison, |[8*]), = 24.40 and ||6(0) — 0*|, = ||6(0) — 6* ||,

= 3.21). Similar behavior was seen for other iterations considered
(=180 for ADSA, =60 for KWSA).

We also compared the performance of KWSA and SD. The pur-
pose of this was to gain insight into how representative the KWSA
results are of SD (we would expect good agreement since §(-) = s(-)
for small 8). For all iterations considered, the estimates of 6 and
corresponding values of L(-) were close. For example, with Bsp
denoting the SD estimate, we have L(fsp(60)) = 0.039 versus
L@(60)) = 0.042, and ||fsp(60) — H(60) |, = 0.053 relative to
baseline values ||fsp (60) |, = 25.27 and ||§(60) ||, = 25.29. Thus,
it appears that the relative performance of ADSA and KWSA giv-
en above is indicative of the relative performance of ADSA and SD.

One comment should be made regarding the p = 3 case. It some-
times happened that L(8(k)) < LBk — 1)) G.e., LK) >
L@k — 1)) for k = 10. We found that ADSA performed better
when 6 was not updated when L(-) decreased. The results reported
above reflect this fact (an iteration was still counted when no up-
date occurred). This suggests that in the practical implementation
of ADSA it might be valuable to evaluate L(-) at values of 6 for
at least the first few iterations to ensure that the algorithm is proceed-
ing in a ““good”’ direction. This will increase the computational bur-
den (albeit by a small amount) since ADSA will require three (instead
of two) evaluations of L(-) during the first few iterations. Interest-
ingly, in the p = 15 case, it never happened that L(-) decreased
as 6 was updated, even for small & (the author believes that this
is due to the fact that it is less likely that a specified large propor-
tion of §;(+)’s within §(-) will be ““bad”’ when p is large than when
p is small.

5. CONCLUDING REMARKS

A procedure has been presented for using SA to find the root
of the score equation that arises in maximum likelihood estimation.
(The technique would also apply, of course, in finding zeros of gra-
dients in other [non-MLE] settings.) The SA procedure here differs
from the well-known Kiefer-Wolfowitz procedure in that a gradient
approximation other than the usual finite difference approxima-
tion is used. This alternative derivative approximation requires few-
er, by a factor equal to the dimension of the parameter vector being
estimated, likelihood function evaluations. The technique was il-
lustrated in a signal-plus-noise estimation problem and performed
significantly better than KWSA in all cases considered.

The implementation discussed in this paper was restricted to a
standard (i.e, ‘“first-order’’) form for the SA algorithm. This is anal-
ogous to the steepest descent method. For the SA procedure to be
a viable competitor to Newton-Raphson or scoring (which are gener-
ally faster than steepest descent), it would be required that an ac-
celerated (i.e., “‘second-order’’) SA algorithm be used. Efforts will
be taken in this direction by the author. A promising application
for the present first-order form is to use it to bring the estimate
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to within a- neighborhood of the root and then use a scoring or
Newton-Raphson procedure to complete the convergence to the root.
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