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Abstract

Adaptive tunings adjust the pitches of notes in a musical per-
formance based on some criterion such as fidelity to a desired
set of intervals, or minimization of a measure of dissonance
(or maximization of consonance) of the currently sounding
notes. This paper presents a real-time implementation of an
adaptive tuning algorithm that changes the pitches of notes
in a musical performance so as to minimize sensory disso-
nance. The algorithm operates in real time, is responsive to
the notes played, and can be readily tailored to the timbre (or
spectrum) of the sound. One issue with adaptive retunings is
that the pitches may wander; the pitch of a “C” note one time
may differ from the pitch of the “same C” at another time.
This is addressed in Adaptun by the use of a context, an
(inaudible) collection of partials that are used in the calcula-
tion of dissonance within the algorithm, but that are not
themselves adapted or sounded. Several sound examples are
presented that highlight both strengths and weaknesses of the
implementation. The program Adaptun is written in the Max
language and is available for download.

1. Introduction

A musical scale typically consists of a fixed, ordered set of
intervals that (along with a reference frequency such as A =
440Hz) define the pitches of the notes used in a given piece.
Numerous scales have been proposed through the years
including Meantone, Pythagorean, various Just Intonations,
scales by Werkmeister, Vallotti and Young, Partch, Carlos,
and various subsets of 12-tone equal-temperament such as
the major and minor scales [28]. The use of fixed musical
scales is not confined to western music: for instance, the
pelog and slendro scales of Indonesian gamelan [8], the
(roughly) 7-tone equal division of traditional Thai music, and
the various multi-toned scales of Indian and Arabic musics.

A recent innovation is the idea of an adaptive tuning, one
that allows the tuning to change dynamically as the music is
performed. The trick is to specify criteria by which the retun-

ing occurs. Carlos [2] and Hall [5] have introduced quanti-
tative measures of the ability of fixed scales to approximate
a desired set of intervals. Since different pieces of music
contain different intervals, and since it is mathematically
impossible to devise a single fixed scale in which all inter-
vals are perfectly tuned, Hall [5] suggests choosing tunings
based on the piece of music to be performed. Polansky [15]
suggests the need for a “harmonic distance function” which
can be used to make automated tuning decisions, and points
to Wagge’s [27] “intelligent keyboard” which utilizes a logic
circuit to automatically choose between alternate versions of
thirds and sevenths depending on the musical context. More
recently, Denckla [4] has extended this idea by using sophis-
ticated tables of intervals that define how to adjust the pitches
of the currently sounding notes given the musical key of the
piece, and DeLaurentis [3] has proposed a spring-mass par-
adigm that models the tension between the currently sound-
ing notes (as deviations from an underlying just intonation
template) and adapts the pitches to relax the tension.

An alternative criterion based on the psychoacoustic
notion of sensory dissonance was proposed in [19].
Helmholtz [6] attributes the perception of sensory disso-
nance to the beating between partials of a sound. Plomp and
Levelt [14] extend this to show that regions of maximal
beating correspond to the critical band. Sethares provides a
simple computational model in [18] that gives a numerical
measure of sensory dissonance as a function of the tuning
(fundamental pitch) and timbre (spectrum) of the currently
sounding notes. This model is used to define a “cost” func-
tion for a gradient-based optimization procedure in [19].
Minimizing this cost adjusts the pitches automatically so 
as to mimize the sensory dissonance (or equivalently, to 
maximize the sensory consonance). This can be viewed as 
a generalization of the methods of Just Intonation, but it 
can operate without specifically musical knowledge such 
as key and tonal center, and is applicable to timbres with
inharmonic spectra as well as the more common harmonic
timbres.
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This paper dicusses several simplifications to the algo-
rithm that allow real time implementation, and describes the
resulting program, Adaptun, which is written in the musical
programming language Max [29]. The inputs to Adaptun are
the spectra of the sounds and a MIDI data stream. At each
moment the program calculates the amount of sensory dis-
sonance caused by the currently sounding notes and then
changes their pitches in the direction that minimizes the dis-
sonance. Over time, the pitches stabilize to form intervals
that are more consonant (less dissonant) than all surround-
ing intervals. When new notes are added or removed, the
program reacts by readapting, continuously retuning towards
intervals and chords that minimize the sensory dissonance.
Adaptun extends and modifies the original algorithm in
several ways to provide a more useful musical tool. It may
be downloaded from [1].

Section 2 reviews the Plomp and Levelt model of sensory
dissonance [14] as parameterized by Sethares [18]. The 
gradient-based algorithm for adaptive tuning is then re-
viewed in Section 3, and several alternative implementations
are suggested. The program Adaptun is discussed at length
in Section 3.2, and both its strengths and limitations are 
highlighted. One of the key new features is the addition of a
“memory,” a primitive way to implement a kind of musical
“context” (in Section 4) that may make the algorithm more
musically useful. Section 5 provides several examples that
demonstrate the performance of the algorithm. Many of the
examples are available in mp3 format on the web. Parts of
this paper were presented at the 6th annual meeting of the
Research Society for the Foundations of Music, in Ghent,
Belgium, see [22].

2. Calculation of sensory dissonance

Measures of sensory dissonance are typically stated in terms
of interactions between the sine wave partials of a sound; the
dissonance between all pairs of partials are combined addi-
tively to give the sensory dissonance of the sound. The psy-
choacoustic work of Plomp and Levelet [14] provides a basis
on which to build such a measure. (Related work can be
found in Terhardt [25,26] and Parncutt [11,12]). Leman [9]
has recently generalized the models to operate directly on
digitized sound files (rather than on the partials of the sound),
and research continues to improve the match between 
experimental results and models of sensory dissonance.

Plomp and Levelt asked volunteers to rate the perceived
dissonance of pairs of pure sine waves, giving curves such
as in Figure 1, in which the dissonance is minimum at 
unity, increases rapidly to its maximum somewhere near one
quarter of the critical bandwidth, and then decreases steadily
back towards zero. When considering sounds with spectra
that are more complex, dissonance can be calculated by
summing up all the dissonances of all the partials, and
weighting them according to their relative magnitudes. This
leads to dissonance curves such as Figure 2 which shows the

dissonance curve for a timbre with seven harmonic partials.
Note that many of the valleys in Figure 2 correspond
(roughly) to intervals in the diatonic scale, suggesting a rela-
tionship between musical scales and the most consonant
intervals of the dissonance curve. Observe also that disso-
nance curves depend on the spectrum of the sound, and con-
sequently may be used to describe sensory consonance and
dissonance not only in traditional harmonic settings, but also
in nontraditional, inharmonic musical settings. These ideas
are explored in depth in [21].

To be concrete, the dissonance between a sinusoid of 
frequency f1 with magnitude v1 and a sinusoid of frequency
f2 with magnitude v2 can be parameterized as

(1)

where

(2)

a = 3.5, b = 5.75, d* = .24, s1 = .021 and s2 = 19 are deter-
mined by a least squares fit. The magnitude term v1v2 ensures
that softer components contribute less to the total dissonance
measure than those with larger magnitudes, d* is the inter-
val at which maximum dissonance occurs, and the s para-
meters in (2) allow a single functional form to smoothly
interpolate between the various curves of Figure 1 by sliding
the dissonance curve along the frequency axis so that it
begins at the smaller of f1 and f2, and by stretching (or com-
pressing) it so that the maximum dissonance occurs at the
appropriate frequency. See [18] for a derivation, justification,
and discussion of this model.
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Fig. 1. Two sine waves are sounded simultaneously. Typical per-
ceptions include pleasant beating (at small frequency ratios), rough-
ness (at middle ratios), and separation into two tones (at first with
roughness, and later without) for larger ratios. The horizontal axis
represents the frequency interval between the two sine waves, and
the vertical axis is a normalized measure of sensory dissonance. The
different plots show how the sensory consonance and dissonance
varies depending on the frequency of the lower tone.
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A line spectrum F representing a note with fundamental
frequency f is a collection of n sine waves (or partials). The
intervals between the partials are denoted by aj with a1 =
1 < a2 < . . . < an so that the frequencies of the parials are 
a1 f < a2 f < . . . < an f. The corresponding magnitudes are v1,
v2, . . . , vn. The intrinsic dissonance of the sound F is the sum
of the dissonances of all pairs of partials

(3)

More generally, suppose there are m different notes, 
each with line spectrum (timbre) Fi, fundamentals fi, inter-
vals between partials ai1, ai2, . . . , ain, and magnitudes vi1, vi2,
. . . , vin. (If there are different numbers of partials in each
timbre, set n to the maximum number and set the appropri-
ate magnitudes vij to zero). Then the total sensory dissonance
is the sum of the dissonances between all pairs of partials

(4)

3. Adaptive tunings

This section briefly reviews the adaptive tuning algorithm
proposed in [19], and then introduces several modifications
that allow real time implementation. The input is a stream of
MIDI note-on events. These are retuned so as to minimize
the sensory dissonance, and the output is a stream of MIDI
note-on commands plus “pitch bend” commands that can be
interpreted by most modern synthesizers and samplers. An
implementation of the algorithm, written in the Max pro-
gramming language, is currently available on our website 
at [1].

3.1. The adaptive algorithm

The sensory dissonance caused by m sounding notes, each
with fundamental fi and timbre Fi can be calculated as in (4).
By making small adjustments to the tuning of the notes 
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(to the fi), it may be possible to decrease the dissonance. 
One approach is to adjust the current frequencies of the 
fundamentals in the (minus) direction of the gradient. The
iteration is

(5)

where the gradient is an approximation to the partial deriv-
ative of D with respect to the ith fundamental frequency, and
k is the iteration counter. The behavior of this adaptive tuning
algorithm is to continuously adjust the fundamentals of the
notes so as to descend the m-dimensional landscape defined
by D in (4).

To be explicit, the “cost” function D is defined to be the
sum of the dissonances of all the intervals at a given time,
and the iteration updates the fi by moving “downhill.” This is
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Fig. 2. Plots of the calculated dissonance of a spectrum vs. fre-
quency interval are called dissonance curves. This figure shows the
dissonance curve for a 7 partial harmonic spectrum. The minima of
this curve occur at 1, 7/6, 6/5, 5/4, 4/3, 7/5, 3/2, 5/3, 7/4, and 2/1,
which lie near many of the 12-tet scale steps (top axis). Dissonance
values (on the vertical axis) are normalized to unity.

do
for i = 1 to m

(6)

endfor
until f k f k ii i+( ) - ( ) < "1 d

f k f k
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i

+( ) = ( ) - ( )1 m

An explicit expression for the gradient term is given

in [19]. Thus the frequencies of all notes are modified in pro-
portion to the change in the cost and to the stepsize m until
convergence is reached, where convergence means that the
change in all frequencies is less than some specified d. Thus
the iteration ceases when the gradient term is (approxi-
mately) zero, which occurs when the dissonance is at a (local)
point of inflection. The minus sign insures that the algorithm
descends to look for a local minimum of the dissonance
(rather than ascending to a local maximum), that is, that the
inflection point is a minimum rather than a maximum.

3.2. A real time implementation in Max

Figure 3 shows the main screen of the adaptive tuning
program Adaptun. The user must first configure the program
to access the MIDI hardware. This is done using the two
menus labelled Set Input Port and Set Output Port, which list
all valid (OMS) MIDI sources and destinations. The figure
shows the input US-428 Port 1 which is my hardware, and
the output is set to IAC Bus # 2, which is an OMS interap-
plication (virtual) port that allows MIDI data to be trans-
ferred between applications. The interapplication ports allow
Adaptun to exchange data in real time with sequencers, soft-
ware synthesizers, or other programs. In particular, the output
of Adaptun can be recorded by setting the input of a MIDI
sequencer to receive on the appropriate IAC bus.

In normal operation, the user plays a MIDI keyboard. The
program rechannelizes and retunes the performance. Each
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df ki ( )
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currently sounding note is assigned a unique MIDI channel,
and the adapted note and appropriate pitch bend commands
are output on that channel. As the algorithm iterates, updated
pitch bends commands continue to fine tune the pitches. The
MIDI sound module must be set to receive on the appropri-
ate MIDI channels with “pitch bend amount” set so that the
extremes of ±64 correspond to the setting chosen in the box
labelled PB value in synth. The finest pitch resolution possi-
ble is about 1.56 cents when this is set to 1 semitone, 3.12
cents when set to 2 semitones, etc.

There are several displays that demonstrate the activity of
the program. First, the message box directly under the block
labelled Adapt shows the normalized sensory dissonance of
the currently sounding notes. The bar graph on the left dis-
plays the sensory dissonance as a percentage of the original
sensory dissonance of the current notes. A large value means
that the pitches did not change much, while a small value
means that the pitches were moved far enough to cause a sig-
nificant decrease in sensory dissonance. The large display in
the center shows how many notes are currently adapting (how
many pieces the line is broken into) and whether these notes
have adapted up in pitch (the segment moves to the right) or

down in pitch (the segment moves to the left). The screen
snapshot in Figure 3 shows the adaptation of three notes; two
have moved down and one up. There is a wrap-around in
effect on this display; when a note is retuned more than a
semitone, it returns to its nominal position. The number of
actively adapting tones is also displayed numerically in the
topmost message box.

The user has several options which can be changed by
clicking on message boxes.1 One is labelled speed and 
depth of adaptation in Figure 3. This represents the stepsize
parameter m from (5) and (6). When small, the adaptation
proceeds slowly and smoothly over the dissonance surface.
Larger values allow more rapid adaptation, but are less
smooth. In extreme cases, the algorithm may jump over the
nearest local minimum and descend into a minimum far from
the initial values of the intervals. The relationship between
the speed of adaptation and “real-time” is complex, and
depends on the speed of the processor and the number of
other tasks occurring simultaneously. The message box
labelled # of partials in each note specifies the maximum
number of partials that are used. (The actual values for the
partials are discussed in detail in Section 3.3.)

There are two useful tools at the bottom of the main
screen. The menu labelled input MIDI file lets the user
replace (or augment) the keyboard input with data from a
standard MIDI file. The menu has options to stop, start, and
read. First, a file is read. When started, adaptation occurs just
as if the input were arriving from the keyboard. The message
box immediately below the menu specifies the tempo at
which the sequence will be played. This is especially useful
for older (slower) machines. A SMF can be played (and
adapted) at a slow tempo and then replayed at normal speed,
increasing the apparent speed of the adaptation. Finally, the
all notes off button sends “note-off ” messages on all chan-
nels, in the unlikely event that a note gets stuck.

3.3. The simplified algorithm

In order to operate in real time (actual performance depends
on processor speed), several simplifications are made. These
involve the specification of the spectra of the input sounds,
using only a special case of the dissonance calculation, and
a simplification of the adaptive update.

The dissonance measure in (4) is dependent on the spectra
of the currently sounding notes, and so the algorithm (6)
must have access to these spectra. While it should eventually
be possible to measure the spectra from an audio source in
real time, the current MIDI implementation assumes that the
spectra are known a priori. The spectra are defined in a table,
one for each MIDI channel, and are assumed fixed through-
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Fig. 3. Main screen of the adaptive tuning program Adaptun,
implemented in the Max programming language.

1 When a Max message box is selected, its value can be changed 
by dragging the cursor or by typing in a new value. Changes are
output at the bottom of the box and incorporated into subsequent
processing.
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out the piece (or until the table is changed). They are stored
in the collection2 file timbre.col. The default spectra are 
harmonic with a number of partials set by the user in the
message box on the main screen, though this can easily be
changed by editing timbre.col. The format of the data reflects
the format used throughout Adaptun; all pitches are defined
by an integer

(7)

For instance, a note with fundamental 15 cents above middle
C would be represented as 6015 = 100*60 + 15 since 60 is
the MIDI note number for middle C. Similarly, all intervals
are represented internally in cents: an octave is thus 1200 and
a just major third is 386.

Second, the calculation of the dissonance is simplified
from (4) by using a single “look-up” table to implement (1).
A nominal value of 500Hz is used for all calculations
between all partials, rather than directly evaluating the expo-
nentials. In most cases this will have little effect, though it
does mean that the magnitude of the dissonances will be
underestimated in the low registers and overestimated in the
treble. More importantly, the amplitude parameters v1 and v2

are set to unity. Combined with the assumption of fixed
spectra, this can be interpreted as implying that the algorithm
operates on a highly idealized, averaged version of the spec-
trum of the sound.

The numerical complexity of the iteration (6) is domi-
nated by the calculation of the gradient term, due to its com-
plexity (which grows worse in high dimensions when there
are many notes sounding simultaneously). One simplification
uses an approximation to bypass the explicit calculation of
the gradient. Adaptun adopts a variation of the Simultaneous
Perturbation Stochastic Approximation (SPSA) method of
[24], which is itself a variant of the classic Kiefer-Wolfowitz
algorithm [7]. To be concrete, the function

where D(k) is a randomly chosen Bernoulli ±1 random
vector, can be viewed as an approximation to the gradient 

which grows closer in the limit as c approaches zero.

The algorithm for adaptive tuning is then

(8)

In the standard SPSA, convergence to the optimal value can
be guaranteed if both the stepsize m and the pertubation size
c converge to zero at appropriate rates, and if the cost func-
tion D is sufficiently smooth [23]. In the case of adaptive
tunings, it is important that the stepsize and perturbation size
not vanish, since this would imply that the algorithm
becomes insensitive to new notes as they occur.
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In the adaptive tuning application, there is a granularity
to pitch space induced by the MIDI pitch bend resolution of
about 1.56 cents. This is near to the resolving power of the
ear (on the order of 1 cent), and so it is reasonable to choose
m and c so that the updates to the fi are (on average) roughly
this size. This is the strategy followed by Adaptun, though
the user chooseable parameter labeled speed and depth of
adaptation gives some control over the size of the adaptive
steps. Convergence to a fixed value is unlikely when the step-
sizes do not decay to zero. Rather, some kind of convergence
in distribution should be expected, although a thorough
analysis of the theoretical implications of the fixed-stepsize
version of SPSA remain unexplored. Nonetheless, the
audible results of the algorithm are vividly portrayed in
Section 5.

4. Context, persistence, and memory

Introspection suggests that people readily develop a notion
of “context” when listening to music and that it is easy to tell
when the context is violated, for instance, when a piece
changes key or an out-of-tune note is performed. While the
exact nature of this context is a matter of speculation, it 
is clearly related to the memory of recent sounds. It is not
unreasonable to suppose that the human auditory system
might retain a memory of recent sound events, and that these
memories might contribute to and color present perceptions.
There are examples throughout the psychological literature
of experiments in which subjects’ perceptions are modified
by their expectations, and we hypothesize that an analogous
mechanism may be partly responsible for the context sensi-
tivity of musical dissonance.

Three different ways of incorporating the idea of a
musical context into the sensory dissonance calculation were
suggested in [22], in the hopes of being able to model some
of the more obvious effects.

1. The exponential window uses a one-sided window to
emphasize recent partials and to gradually attenuate the
influence of older sounds.

2. The persistence model directly preserves the most promi-
nent recent partials and discounts their contribution to dis-
sonance in proportion to the elapsed time.

3. The context model supposes that there is a set of priv-
iledged partials that persist over time to enter the disso-
nance calculations.

All three models augment the sensory dissonance calcula-
tion to include partials not currently sounding; these extra
partials arise from the windowing, the persistence, or the
context. A series of detailed examples in [22] showed how
each of the models explained some aspects, but failed to
explain others. The context model was the most successful,
though the problem of how the auditory system might create
the context in the first place was left unexplored.

To see how this might work, consider a simple context that
consists of a set of partials at 220, 330, 440, and 660Hz.

JNMRSE 

2 In Max, a “collection” is a text file that stores numbers, symbols
and lists.
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When a harmonic note A or E is played at a fundamental of
220 or 330Hz, many of their partials coincide with those of
the context, and the dissonance calculation (which now
includes the partials in the context as well as those in the cur-
rently sounding notes) is barely larger than the intrinsic dis-
sonance of the A or E themselves. When, however, a G note
is sounded (with fundamental at about 233Hz), the partials
of the note will interact with the partials of the context to
produce a significant dissonance.

The context idea is implemented in Adaptun using a static
“drone.” The check box labelled drone enables a fixed context
that is defined in the collection file drone.col. The format of
the data is the same as in (7) above. For example, the drone
file for the four partial context of the previous paragraph is:

(The “02” occurs because the perfect fifth between 330Hz
and 220 Hz correponds to 702 cents, not 700 cents as in the
tempered scale.) When the drone switch is enabled, notes that
are played on the keyboard (or notes that are played from the
input MIDI file menu) are adapted with a cost function that
includes both the currently sounding notes and the partials
specified in the drone file. The drone itself is inaudible, but
it provides a framework around which the adaptation occurs.
Examples are provided in Section 5.

5. Examples

This section provides several sound examples that demon-
strate the adaptive tuning algorithm and the kinds of effects
possible with the various options in Adaptun. A composition
demonstrates the artistic potential.

5.1. Example 1: Listening to adaptation

The first sound example is presented in listenadapt.mp3 [30].
The adaptation is slowed so that it is possible to hear the con-
trolled descent of the dissonance curve. Three notes are ini-
tialized at the ratios 1, 1.335, and 1.587, which are the 12-tone
equal tempered (12-tet) intervals of a fourth and a minor sixth
(for instance, C, F, and A�). Each note has a spectrum con-
taining four nonharmonic partials at f, 1.414f, 1.7f, 2f. Because
of the dense clustering of the partials and the particular inter-
vals chosen, the primary perception of this tonal cluster is its
roughness and beating. As the adaptation proceeds, the rough-
ness decreases steadily until all of the most prominent beats
are removed. The final adapted ratios are 1, 1.414, and 1.703.

This is illustrated in Figure 4, where the vertical grid on
the left shows the familiar locations of the 12-tet scale steps.
The three notes are represented by the three vertical lines,
and the positions of the partials are marked by the small
circles. During the adaptation, the lowest note descends while

1,  4500;

2,  5202;

3,  5700;

4,  6402;

the higher two ascend, eventually settling on a “chord”
defined by the intervals g, 1.41g, and 1.7g. The arrows point-
ing left show the locations of four pair of partials that are
(nearly) coinciding.

In the sound example, the adaptation is performed three
times, at three different speeds. The gradual removal of beats
is clearly audible in the slowest. When faster, the adaptation
takes on the character of a sliding “portamento.” There is still
some roughness remaining in the sound even when the adap-
tation is complete, which is due to the inherent sensory dis-
sonance of the sound. The remaining slow beats (about one
per second) are due to the resolution of the audio equipment.
Thus there are two “time scales” involved in the adaptation
of a musical passage. First is the rate at which time evolves
in the music, the speed at which notes occur. Second is the
time during which the adaptation occurs, which is deter-
mined by the stepsize parameter. The two times are essen-
tially independent.

One aspect that may not be apparent is that the final value
of g differs from run to run. This is because the iteration is
not completely deterministic; the probe directions D(k) in (8)
are random, and the algorithm will follow (slightly) different
trajectories each time. The bottom of the dissonance land-
scape is always defined by the ratio of the fundamentals of
the notes (in this case g, 1.41g, and 1.7g) but the exact value
of g may vary.

5.2. Example 2: Adaptive study 1

The second example, presented in adaptstudy1.mp3 [31], is
orchestrated for four synthesized “wind” voices. When

JNMRSE

Fig. 4. Three notes have fundamentals at C, F, and A�, and par-
tials at 1.0f, 1.41f, 1.7f, and 2.0f. After adaptation, the C at frequency
f slides down to frequency g, while the other two notes slide up to
1.41g and 1.70g. The arrows on the right emphasize the resulting
four pairs of (almost) coinciding partials.



Real-time adaptive tunings using max 7

several notes are sounded simultaneously, their pitches are
often changed significantly by the adaptation. This is empha-
sized by the motif which begins with a lone voice. When the
second voice enters, both adapt, giving rise to pitch glides
and sweeps. Since the timbres have a harmonic structure,
most of the resulting intervals are actually justly intoned
because the notes adapt to align a partial of the lower note
with some partial of the upper. By focusing attention on the
pitch glides (which begin at 12-tet scale steps), this demon-
strates clearly how distant many of the common 12-tet inter-
vals are from just.

Perhaps the most disconcerting aspect of the study is the
way the pitches wander. As long as the adaptation is applied
only to currently sounding notes, successive notes may differ:
the C note in one chord may be retuned from the C note in
the next. This can produce an unpleasant “wavy” or “slimy”
sound. This effect is easy to hear in the long notes which 
are held while several others enter and leave. For instance,
between 0:36 and 0:44 seconds (and again at 1:31 to 1:39),
there is a three note chord played. The three notes adapt to
the most consonant nearby location. Then the top two notes
change while the bottom is held; again all three adapt to their
most consonant intervals. This happens repeatedly. Each time
the top two notes change, the held note readapts, and its pitch
slowly and noticeably wanders. Though the vertical sonority
is maintained, the horizontal retunings are distracting.

The most straightforward way to forbid this kind of 
behavior is to leave currently sounding notes fixed as newly
entering notes adapt their pitches. This can be implemented
by calculating the dissonance cost function as in either (8) or
(4), but setting the stepsize m to zero for those fundamentals
that are no longer new. The problem with this approach is
that it does not address the fundamental problem, it only
addresses the symptom that can be heard clearly in this sound
example. A better way is by the introduction of the inaudi-
ble “drone,” or context.

5.3. Example 3: A melody in context

Adaptun implements a primitive notion of memory or
context in its drone function. A collection of fixed frequen-
cies are prespecified in the file drone.col, and these frequen-
cies enter into the dissonance calculation, though they are not
sounded.

The simplest case is when the spectrum of the adapting
sound consists of a single sine wave partial as in parts (a)
and (b) of Figure 5. The unheard context is represented by
the dashed horizontal lines. Initially, the frequency of the
note is different from any of the frequencies of the context.
If the initial note is close to one of the frequencies of the
context, then dissonance is decreased by moving them closer
together. The note converges to the nearest frequency of the
context, as shown by the arrow. In (b), the initial note is
distant from any of the frequencies of the context. When both
distances are larger than the point of maximum dissonance
(the peaks of the curves in Fig. 1), then dissonance is

decreased by moving further away. Thus the pitch is pushed
away from both nearby frequencies of the context, and con-
verges to some intermediate position.

Generally the timbre will be more complex than a single
sine wave. Figure 5 shows several other cases. In parts (c),
(d), and (e), the timbre consists of two sine wave partials.
Depending on the initial pitch (and the details of the context)
this may converge so that both partials overlap the context as
in (c), so that one partial merges with a frequency of the
context and the other does not as in (d), or to some interme-
diate position where neither partial coincides with the
context (as in (e)). Part (f ) gives the flavor of the general case
when the timbre in complex with many sine wave partials
and the context is dense. Typically, some partials converge to
nearby frequencies in the context and some will not.

To see how this might function in a (more) realistic
setting, suppose that the current context consists of the note
C and its first 16 harmonics. When a new harmonic note
occurs, it is adapted not only in relationship to other currently
sounding notes, but also with respect to the partials of the C.
Because partials of the adapting notes often converge to coin-
cide with partials in the context (as in Fig. 5 part (f )), there
is a good chance that a partial of the note will align with a
partial of the context. When this occurs, the adaped interval
will be just, formed from the small integer ratio formed by
the harmonic of the note with the harmonic of the context.

Thus the context provides a structure that influences the
adaptation of all the sounding notes, like an unheard drone.
In this way, it can give a horizontal consistency to the adap-
tation that is lacking when no memory is allowed.
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Fig. 5. The dashed horizontal grid defines a fixed “context”
against which the notes adapt. When the note has a spectrum con-
sisting of a single sine wave partial as in (a) and (b), then the note
will typically adjust its pitch until it coincides with the nearest
partial of the context as in (a), or else be repelled from the nearby
partials of the context as in (b). When the spectrum has two par-
tials, then the adaptation may align both partials as in (c), one as in
(d), or none as in (e). In (f), the partials fight to align themselves
with the context, eventually converging to minimize the beating.
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5.4. Example 4: Adaptive study 2

The fourth example, presented in adaptstudy2.mp3 [32], 
is orchestrated for four synthesized “violin” voices. Like 
the first study, the adaptive process is clearly audible in the
sweeping and gliding of the pitches. For this performance,
however, a context consisting of all octaves of C plus all
octaves of G was used.3

The context encourages consistency in the pitches, main-
taining (an unheard) template to which the currently sound-
ing notes adapt. Though the study still contains significant
pitch adaptation, the final resting places are constrained so
that the adjusted pitches are related to the unheard C or G.
Typically, some harmonic of each adapted note aligns with
one of the octaves of the C or G template.

In several places throughout the piece adjacent notes (of
the 12-tet scale) are played simultaneously. For the specified
timbres, this is near the peak of the dissonance curve.
Depending on exactly which notes are played, the order in
which they are played, and the vagaries of the random test
directions (the D(k) in (8)), sometimes the two pitches adapt
to an interval at about 316 cents (a just minor third) by
moving apart in pitch, and sometimes they merge into a
unison at some intermediate pitch. In either case, the primary
sensation is of the motion.

5.5. Example 5: Local Anomaly

The piece Local Anomaly [20] was created from a standard
MIDI drum track using Adaptun. In a SMF drum track, 
each type of drum (snare, tom, high hat, etc) is assigned to
a different note. The first step was to randomize the notes
(within reasonable limits). These were then played using
various percussive stringed instrument sounds (guitars,
basses, pianos, etc.). This extremely dissonant but highly
rhythmic soundscape was input into Adaptun, and the 
notes adapted towards consonance. A simple context con-
sisting of all octaves of the note C was used. The output was
recorded, and the resulting MIDI file was then more carefully
orchestrated.

As expected from the previous examples, one of the most
prominent features of the piece is the pitch glides. These give
an “elasticity” to the tuning, analogous to a guitar bending
strings into (or out of) tune. All pitch glides in Local
Anomaly are created by the adaptive process. The piece has
no clear notion of musical “key”, yet does maintain conso-
nance by converging pitches to intervals defined primarily by
small integer ratios. Thus adaptation provides a kind of
“intelligent” portamento that begins wherever commanded
by the performer (or MIDI file), and slides smoothly to a
nearby “most consonant” set of intervals. The speed of the
slide is directly controllable and may be (virtually) instanta-
neous or as slow as desired.

6. Discussion

The adaptive tuning strategy can be viewed as a generaliza-
tion of Just Intonation in two respects. First, it is indepen-
dent of the key of the music being played, that is, it
automatically adjusts the intonation as the notes of the piece
move through various keys. This is done without any spe-
cifically “musical” knowledge such as the local “key” of 
the music, though such knowledge can be incorporated in a
simple way via the “context,” the unheard drone. Second,
though this application has not been stressed here, the adap-
tive tuning strategy is applicable to inharmonic as well as har-
monic sounds. This broadens the notion of “Just Intonation”
to include a larger palette of sounds.

By functioning at the level of successions of partials (and
not at the level of notes) the sensory dissonance model does
not deal directly with pitch, and hence does not address
melody, or melodic consonance. Rasch [17] describes an
experiment in which “Short musical fragments consisting of
a melody part and a synchronous bass part were mistuned in
various ways and in various degrees. Mistuning was applied
to the harmonic intervals between simultaneous tones in
melody and bass . . . The fragments were presented to musi-
cally trained subjects for judgments of the perceived quality
of intonation. Results showed that the melodic mistunings of
the melody parts had the largest disturbing effects on the per-
ceived quality of intonation . . .” Interpreting “quality of into-
nation” as roughly equivalent to melodic dissonance, this
suggests that the misalignment of the tones with the internal
template was more important than the misalignment due to
the dissonance between simultaneous tones.

Such observations suggest why attempts to retune pieces
of the common practice period into Just Intonation, adaptive
tunings, or other theoretically ideal tunings may fail;4 squeez-
ing harmonies into Just Intonation requires that melodies be
warped out of tune. If the melodic dissonance described by
Rasch dominates the harmonic dissonance, then the process
of changing tunings may introduce more dissonance, albeit
of a different kind. This does not imply that it is impossible
(or difficult or undesirable) to compose in these alternative
tunings, nor does it suggest that they are somehow inferior;
rather, it suggests that pieces should be performed in the
tunings in which they were conceived.

7. Conclusions

Just as the theory of four taste bud receptors cannot explain
the typical diet of an era or the intricacies of French cuisine,
so the theories of sensory dissonance cannot explain the
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3 The drone file contained all the C’s 2400, 3600, 4800, 6000, . . .
plus all the G’s 3100, 4300, 5500, 6700, . . . .

4 The effort to improve Beethoven or Bach by retuning pieces to Just
Intonation produced a sense that the music was “unpleasantly
slimy” (to quote George Bernard Shaw when listening to Bach on
Bosanquet’s 53-tone per octave organ [10]) or badly out of tune due
to the melodic distortions.
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history of musical style or the intricacies of a masterpiece.
Even restricting attention to the realm of sensory dissonance,
the average amount of dissonance considered appropriate 
for a piece of music varies widely with style, historical era,
instrumentation, and experience of the listener.

The intent of Adaptun is to give the adventurous composer
a new option in terms of musical scale: one that is not con-
strained a priori to a small set of pitches, yet that retains
some control over consonance and dissonance. The incorpo-
ration of the “context” feature helps to maintain a sense of
melodic consistency, while still allowing the pitches to adapt
to (nearly) optimal intervals.
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