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Abstract

A simulation-based optimization framework involving simultaneous perturbation stochastic approximation (SPSA) is presented as a means
for optimally specifying parameters of internal model control (IMC) and model predictive control (MPC)-based decision policies for inventory
management in supply chains under conditions involving supply and demand uncertainty. The effective use of the SPSA technique serves to
enhance the performance and functionality of this class of decision algorithms and is illustrated with case studies involving the simultaneous
optimization of controller tuning parameters and safety stock levels for supply chain networks inspired from semiconductor manufacturing. The
results of the case studies demonstrate that safety stock levels can be significantly reduced and financial benefits achieved while maintaining
satisfactory operating performance in the supply chain.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Improved operation of supply chains for manufactured
goods is worth billions of dollars to the national economy
(Simchi-Levi, Kaminsky, & Simchi-Levi, 2004); effective in-
ventory management plays an important role in this regard.
The use of optimization techniques in the management of
supply/demand networks began with the development of the
classical economic order quantity approach (Wilson, 1934).
Later developments include approaches for determining opti-
mal base stock levels in “order-up-to” policies (Glasserman &
Tayur, 1995; Kapuscinski & Tayur, 1998) and the application
of optimal control theory (Blanchini, Miani, & Rinaldi, 2004;
Sethi & Thompson, 2000).

Model predictive control (MPC) (García, Prett, & Morari,
1989) strategies relying on deterministic linear models have
recently been proposed for tactical inventory management of
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multi-echelon production–inventory systems as seen in sup-
ply chains (Braun, Rivera, Flores, Carlyle, & Kempf, 2003;
Perea-López, Ydstie, & Grossman, 2003; Seferlis & Giannelos,
2004; Tzafestas, Kapsiotis, & Kyriannakis, 1997). However, the
inventory management problems typically found in practice
correspond to uncertain, stochastic systems. Consider a rep-
resentative real-life problem originating from semiconductor
manufacturing as shown in Fig. 1. Here finished products
(computer chips) are the result of processing silicon wafers
through a fabrication/test node, assembling die and packages
through an assembly/test node, and finishing the product be-
fore shipping to the customer to satisfy orders (Kempf, 2004).
This supply chain is characterized by long throughput times,
variability in both throughput time and yields, and significant
uncertainty in demand. As control-oriented frameworks, in-
ternal model control (IMC) and MPC-based decision policies
have the advantage that they can be tuned to provide accept-
able performance in the presence of significant supply and
demand variability and forecast error as well as constraints on
production, inventory levels, and shipping capacity.

The primary objective of this work is to present a simulation-
based framework for optimally tuning these policies in
a stochastic, uncertain environment using the concept of
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Fig. 1. Fluid representation for a representative three-echelon supply chain
based on semiconductor manufacturing (Kempf, 2004).

simultaneous perturbation stochastic approximation (SPSA)
(Spall, 2003). SPSA incorporates a simultaneous perturbation
optimization method and differs from infinitesimal perturbation
analysis (Glasserman & Tayur, 1995) and the Robbins–Monro
stochastic approximation algorithm (Robbins & Monro, 1951)
in that it avoids an explicit calculation or measurement of the
gradient (Spall, 1998, 2003).

Two important scenarios are presented that illustrate the ben-
efits of the SPSA approach in enhancing the usefulness of the
policies under conditions of uncertainty. In the first scenario,
an IMC decision policy for a single product, single echelon
production–inventory system is evaluated. The SPSA technique
is applied to determine financially optimal controller tuning
parameters under conditions involving varying magnitudes of
forecast error. The second problem scenario involves the si-
multaneous selection of safety stock targets and MPC move
suppression parameters for the representative semiconductor
manufacturing problem described in Fig. 1 in circumstances
involving stochastic yield, variable throughput times, and un-
certain, autocorrelated demand.

The paper is organized as follows. Sections 2 and 3 are
concerned with presenting the IMC- and MPC-based tacti-
cal decision policies that are optimal with respect to linear
time-invariant models derived using fluid analogies. Section
4 describes the SPSA optimization method that will seek op-
timal tuning and targets of the IMC and MPC policies when
placed in a stochastic environment. Section 5 presents the re-
sults of applying SPSA for the previously described scenarios,
with the results yielding some fundamental insights into the
proper selection of inventory targets and tuning of the decision
policies. A summary of the work and resulting conclusions is
presented in Section 6.

2. Multi-degree-of-freedom combined
feedback–feedforward internal model control

Fluid analogies represent meaningful descriptions of supply
chains associated with high-volume manufacturing problems

at sufficiently long time scales. This applies to discrete-parts
manufacturing problems such as semiconductor manufacturing
(Braun et al., 2003). The output of a factory is stored in a ware-
house where it awaits shipments to customers (retailers, distrib-
utors, etc.). The warehouse serves as a buffer in the presence
of stochastic, uncertain customer demand and factory output.
The factory is modeled as a pipe with a particular throughput
time � and yield K . Inventory is modeled as material (fluid) in
a tank. Applying the principle of conservation of mass to this
system leads to a differential equation relating net stock (mate-
rial inventory, y(t)) to factory starts (input pipe flow, u(t)) and
customer demand (output tank flow, d(t)) which is represented
by the equation

dy

dt
= Ku(t − �) − d(t). (1)

Based on (1) it is possible to derive feedback-only decision
policies that manipulate factory starts to maintain inventory
level at a designated setpoint. However, if knowledge of fu-
ture customer demand is available, it is advantageous to use
feedforward compensation. Customer demand (d(t)) is consid-
ered as the sum of the forecasted demand (dF(t), known �F
days ahead of time) and unforecasted demand (dU(t)) as shown
below

d(t) = dF(t − �F) + dU(t). (2)

The overall dynamical system is then defined by the equations:

y(s) = p(s)u(s) − pd1(s)pd2(s)dF(s) − pd2(s)dU(s) (3)

= Ke−�s

s
u(s) − e−�Fs

s
dF(s) − 1

s
dU(s). (4)

The model per Eq. (4) is the basis for the process control-
based tactical decision policies considered in this pa-
per. We first evaluate a multi-degree-of-freedom combined
feedback–feedforward IMC structure (Morari & Zafiriou,
1988) as a decision policy. With this structure independent
controllers can be utilized for setpoint tracking (i.e., meet-
ing an inventory target), measured disturbance rejection (i.e.,
meeting forecasted demand), and unmeasured disturbance re-
jection (i.e., satisfying unforecasted demand). Fig. 2 shows the
structure schematically. The aforementioned controllers corre-
spond to qr for setpoint tracking, qF for measured disturbance
rejection, and qd for unmeasured disturbance rejection.

The IMC design procedure for these controllers is comprised
of the following two steps:

(1) Design for nominal optimal performance: q̃r(s), q̃d(s), and
q̃F(s) are designed for H2-optimal setpoint tracking, un-
measured disturbance rejection, and measured disturbance
rejection, respectively,

min
q̃r

‖(1 − p̃q̃r) r‖2,

min
q̃d

‖(1 − p̃q̃d)pd2 dU)‖2,

minq̃F‖(p̃d − p̃q̃F)pd1pd2dF‖2,
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Fig. 2. Three-degree-of-freedom combined feedback–feedforward IMC structure.

subject to the requirements that q̃r(s), q̃d(s) and q̃F(s) be
stable and causal.

(2) Design for robust stability and performance: q̃r(s), q̃d(s)

and q̃F(s) are augmented with filters which can be
tuned to detune the nominal performance (e.g., reduce
aggressive manipulated variable action associated with
the optimal controller per Step 1) or to satisfy robust
performance.

The final controllers obtained from applying this procedure are
shown as follows:

Setpoint tracking: The setpoint tracking mode of this con-
trol system is designed for H2-optimality with respect to step
inputs and augmented with a lowpass filter. This controller
guarantees no offset for Type-1 setpoint changes in the control
system.

qr(s) = s

(�rs + 1)nr
. (5)

Unmeasured disturbance rejection: This mode of the control
system allows the user to specify the system response to un-
forecasted demand changes. The design procedure relies on an
H2-optimal factorization for ramp inputs, with a Type-2 filter

guaranteeing no offset for both asymptotically step and ramp
disturbances.

qd(s) = s(�s + 1)
(nd�ds + 1)

(�ds + 1)nd
. (6)

Measured disturbance rejection: The measured disturbance re-
jection mode relies on a �F-day ahead forecast signal to ma-
nipulate factory starts. The IMC controller form is defined as
follows (Lewin & Scali, 1988)

qF(s) = q ′
F(s)fF(s), (7)

where q ′
F(s) is defined as

q ′
F(s) = e−(�F−�)s (8)

if the forecast horizon is longer than the factory throughput
time (�F ��). If the forecast horizon is shorter (�F < �) then
q ′

F(s) is defined as

q ′
F(s) = (� − �F)s + 1. (9)

The generalized Type-2 filter fF(s) is defined as

fF(s) = (nF�Fs + 1)

(�Fs + 1)nF
. (10)
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Fig. 3. IMC system response to a unit pulse in forecast error (� = 2, �F = 5, �d = 2, �F = 2, K = 1, nd = nF = 3), note that the bottom plot shows the �F-day
ahead forecast error.

Each controller is required to be stable and proper, thus im-
posing the constraint that all values of the user-adjustable pa-
rameters (�r, �d, and �F) be positive and that the filter order is
chosen to ensure transfer function properness (nr �1, nd �3,
nF �3). Fig. 3 shows some representative results for the re-
sponse of the IMC control system to a forecast error pulse.
The controller anticipates the increased future demand and in-
creases starts accordingly. When no demand change is real-
ized, starts are decreased to return the inventory level to the
setpoint.

3. Model predictive control as a tactical decision policy

The application of MPC to the inventory management prob-
lems considered in this paper follows along the lines of the
conceptual framework presented by Braun et al. (2003); this
is summarized schematically in Fig. 4. Factory starts are op-
timized over a move horizon to minimize deviations from in-
ventory targets given an anticipated demand signal. The starts
level corresponding to the first entry in the move horizon is im-
plemented and the process is repeated. A meaningful objective
function formulation is as follows:

min
�u(k|k)...�u(k+M−1|k)

J , (11)

where �u(k) . . . �u(k + M − 1) represents the computed
sequence of starts changes and the individual terms of J

correspond to:

Keep Inventories at Inventory Planning Setpoints

J =
︷ ︸︸ ︷
P∑

�=1

Qe(�)(ŷ(k + �|k) − r(k + �))2

Penalize Changes in Starts

+
︷ ︸︸ ︷
M∑

�=1

Q�u(�)(�u(k + � − 1|k))2 (12)

subject to constraints on inventory capacity (0�y(k)�ymax),
factory inflow capacity (0�u(k)�umax), and changes in the
quantity of factory starts (�umin ��uk ��umax). Eq. (12) is a
multi-objective expression that addresses the main operational
objectives in the supply chain. The first term is a setpoint track-
ing term intended to maintain inventory levels at user-specified
targets over time. The second term is a move suppression term
that penalizes changes in the factory starts. The emphasis given
to each one of the sub-objectives in (12) (or to specific system
variables within these objective terms) is achieved through the
choice of weights (Qe(�) and Q�u(�)). These can potentially
vary over the move and prediction horizons (M and P , respec-
tively).

Controlled variables y for the problem in Fig. 1 consist of
the three inventory levels (I10, I20, and I30). The starts rates for
the Fab/Test1, Assembly/Test2, and Finish nodes (C1, C2 and
C3) represent manipulated variables. The demand signal (which
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Fig. 4. Receding horizon representation of MPC.

dictates the shipment flow in C4) is treated as a disturbance and
consists of two components: (1) actual demand (which is only
fully known after the fact) and (2) forecasted demand, which
is provided to the algorithm as an exogeneous signal. For the
problem in Fig. 1 the mass conservation relationship for die-
package inventory (I10) can be written as

I10(k + 1) = I10(k) + Y1C1(k − �1) − C2(k), (13)

�1 and Y1 represent the nominal throughput time and yield for
the Fab/Test1 node, respectively, while C1 and C2 represent
the daily (or per-shift) starts that constitute inflow and outflow
streams for I10 and M10. Similar relationships to (13) can be
written for the semi-finished goods (I20) and components ware-
house (I30) inventories. These material balances can in general
be organized into a discrete-time state-space model represen-
tation amenable to MPC implementation and analysis.

4. Simulation-based optimization using SPSA

Simulation-based optimization algorithms are generally ap-
plied to problems where a closed-form relationship between
the parameters being optimized and the objective function is
unknown or difficult to obtain. This may be due to the presence
of noise in the objective function evaluation, or the relationship
between the parameters and the function may be significantly
complex. The lack of explicit gradient information justifies an
interest in optimization algorithms that rely solely on measure-
ments of the objective function.

Sections 2 and 3 showed the development of controllers that
are based on nominal linear models, but will be implemented
in uncertain, stochastic settings. To achieve optimality in a
stochastic setting, it is necessary to add a second optimization
layer. A simulation-based optimization scheme is particularly
useful in this regard. In this paper we examine SPSA, a promis-
ing approach that has received considerable attention over the
last decade (Spall, 1998, 2003). The method has been used in a
wide variety of settings such as statistical parameter estimation,
adaptive control, and many other applications (Spall, 2003).

The SPSA technique represents a significant improvement
over traditional finite-difference stochastic approximation
(FDSA) methods. The basis of the method is an efficient and
intuitive “simultaneous perturbation” estimate of the gradient.
Only two measurements of the objective function are required
at each iteration, regardless of the number of parameters p.
SPSA realizes the same level of accuracy as comparable FDSA
methods for a given number of iterations despite the fact that
only two measurements are made to form an estimate, as
opposed to 2p measurements. Therefore, SPSA requires p

times fewer evaluations of the objective function to achieve an
equivalent result (Spall, 2003).

The underlying premise of SPSA is the minimization of an
objective function, J . The objective function J takes a real-
valued vector of search parameters �x of dimension p and re-
turns a scalar. The process begins with an initial guess of the
input vector �x and iterates using the simultaneous perturba-
tion estimate of the gradient g(�x) = �J/��x. Note that this
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formulation is similar to the FDSA algorithm discussed pre-
viously, but differs in the nature of the gradient estimate. The
SPSA algorithm consists of the following steps:

(1) Initialize the input vector and gain sequences: An initial
guess of the optimal input vector is made (�x0). At this stage,
one must also select the coefficients of the gain sequences
ak =f (a, �) and ck =f (c, �). These sequences govern the
step size at each iteration and the magnitude of the per-
turbation, respectively. Guidelines for generating the gain
sequence coefficients a and c are available in the literature
(Spall, 1998, 2003). Values for � and � used in the case
studies of the next section (0.602 and 0.101, respectively)
were obtained directly from Section III in Spall, 1998.

(2) Generate the perturbation vector: A random perturbation
vector (�k) is generated. Each element of the vector is
independently generated using a Bernoulli ±1 distribution
with a probability of 1

2 for each possible outcome.
(3) Evaluate the objective function: Two measurements of the

objective function are obtained: J (�xk + ck�k) and J (�xk −
ck�k).

(4) Approximate the gradient: The simultaneous perturbation
approximation of the gradient, Ĵ (�xk), is determined using

ĝ(�xk) = J (�xk + ck�k) − J (�xk − ck�k)

2ck�k

. (14)

(5) Update the estimate: The standard stochastic approxima-
tion form (15) is used to update �xk to �xk+1.

�xk+1 = �xk − akĝ(�xk). (15)

5. Case studies

In both case studies described in this section we consider
a financial objective function as the basis for optimizing the
decision policy. Profit is determined according to the objective
function

max
�x

Profit = Revenue − Productioncost

− Inventorycost − Backordercost, (16)

where (for the MPC case study)

Revenue =
Tfinal∑

k=1

�RC4(k), (17)

Productioncost =
Tfinal∑

k=1

Nnodes∑

j=1

�Cj
Cj (k), (18)

Inventorycost =
Tfinal∑

k=1

Nnodes∑

j=1

�I I10j (k), (19)

Backordercost =
Tfinal∑

k=1

�BBackorders(k). (20)

An equivalent objective function is formulated for the con-
tinuous time production–inventory system by sampling daily.
The search vector �x consists of important system param-
eters that could include IMC controller tuning parame-
ters (�r, �d, and �F), inventory targets (ri), objective func-
tion weights (Qe(�),Q�u(�)), nominal model parameters,
prediction horizons, and so forth. The objective function
shown in (16) comprehensively accounts for the produc-
tion cost, inventory holding cost, backorder penalty, and
revenue generation via the parameters �C, �I, �B, and �R,
respectively.

5.1. Case study 1: tuning a single echelon supply chain

Consider a production–inventory system with deterministic
supply (� = 2, �F = 5, K = 1) and uncertain, autoregressive
demand (generated by filtering a white noise sequence with a
first-order lowpass filter with bandwidth of 1 rad/day). Forecast
error corresponds to a white noise signal. An IMC decision
policy as described in Section 2 is developed based on these
nominal values. Weights for the financial objective function are
�R = 5, �C1

= 2, �I = 0.1, and �B = 5. Fig. 5 shows optimal
values of the adjustable-parameters �d and �F for increasing
values of forecast error variance. When forecast error is low,
the feedforward controller can be tuned aggressively, which is
reflected in low values of �F. As the amount of forecast error
increases, the SPSA search indicates that financial optimality
is attained by implementing a more passive feedforward con-
troller in conjunction with an increasingly aggressive feedback
controller. For high levels of forecast error it is advantageous to
act cautiously to forecast information, but be more aggressive
with feedback action.

5.2. Case study 2: optimizing inventory targets and controller
tuning in a three echelon supply chain

For the second case study, the SPSA algorithm is applied to
the larger network topology (Nnodes = 3) shown in Fig. 1 sub-
ject to a centralized MPC decision policy. The throughput time
in M10 varies according to a triangular distribution, with 80%
of the output produced after 35 days and the remaining 20%
evenly split between days 34 and 36. Throughput times vary
similarly for M20 and M30, with ranges between 5–7 and 1–3
days, respectively. Yield rates vary uniformly for each manu-
facturing node (95% ± 2% for M10, 98% ± 2% for M20, and
99% ± 1% for M30). Stochasticity and uncertainty in demand
are considered, as shown in Fig. 6, which shows a demand re-
alization from an autoregressive process and its corresponding
forecast. The MPC prediction horizon P is 70 days and the
move calculation horizon M is 60 days. In all cases, the empha-
sis is on meeting the inventory targets equally (Qe(�) = 1) for
all channels and elements of the horizon. Weights for the finan-
cial objective function are as follows: �R = 40, �C1

= 10, �C2
=

8, �C3
= 2, �I = 0.1, and �B = 5. Fig. 7 shows the optimiza-

tion path for the second case study. Initially, the optimizer
drives the inventory targets towards zero. As baseline inventory
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Fig. 6. Actual and forecasted customer demand for the MPC case study.

levels are decreased, the risk of backorders increases. Eventu-
ally, the optimization algorithm converges to an optimum where
the inventory targets are approximately 400, 0, and 1000 units

for I10, I20, and I30, respectively. Given supply and demand
uncertainty, it makes physical sense to keep a buffer in the final
inventory stage (I30, the inventory closest to the demand), but
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seek to minimize the amount of excess intermediate products
stored in earlier stages. Note that the optimal target for I10 is
greater than that of I20, this agrees with intuition as the factory
M10 has the longest throughput time and most stochastic be-
havior of all the production nodes. As demand variability and
stochasticity increases, it will become necessary to keep larger
inventories at all levels of the supply/demand network. For the
cost values used in this study and the characteristics of the de-
mand signal, profitability of the supply chain seems somewhat
less sensitive to changes in the move suppression values than to
changes in setpoint targets. Inventory and backorder costs are
significantly greater than costs incurred by detuning the MPC
decision policy.

Fig. 8 shows the MPC simulation where controller tuning
and inventory targets are determined from the SPSA optimiza-
tion algorithm (the final iteration shown in Fig. 7). Safety
stock levels are reduced to a level where inventory targets are
as low as possible without incurring backorders, and increased
move suppression denotes less “thrash” in factory starts. These
conditions minimize inventory holding costs and increase
profits.

6. Summary and conclusions

IMC and MPC algorithms have been demonstrated to be
capable of managing inventory in uncertain production–
inventory and multi-echelon supply/demand networks, respec-
tively. The use of SPSA allows for determining controller

tunings and operating targets that lead to optimal results from
either an operational or financial standpoint. The results of the
optimization on a single node example show that it is advanta-
geous to act cautiously to forecasted information and gradually
become more aggressive (with respect to feedforward action)
as more accurate demand forecasts become available. For
the three echelon problem, the use of the simulation-based
optimization method led to insights concerning the proper pa-
rameterization and tuning of the tactical MPC decision policy.
The amount of safety stock necessary for optimal profitability
is a function of the accuracy and magnitude of the demand
forecast. SPSA provides a way of systematically determin-
ing the financially optimal inventory targets and the move
suppression values present in the MPC objective function
simultaneously. For the semiconductor manufacturing prob-
lem case study, it was found that the optimization problem
was more sensitive to changes in inventory targets, and less
sensitive to changes in move suppression. This allows for
flexibility when tuning the decision policy, as robustness con-
siderations do not have to be cast aside in favor of increased
profitability.
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