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Abstract - The aim of this paper is twofold: first, we 
consider a variation of the first-order simultaneous 
perturbation stochastic approximation (SPSA) algorithm 
developed by J. Spall [5-6] which makes use of several 
numerical artifices, including adaptive gain sequences, 
gradient smoothing and a step rejection procedure, to 
enhance convergence and stability. Second, we present 
numerical studies on a non-trivial test-example, i.e., the 
water cooling of sulfuric acid in a two-tank system. This 
numerical evaluation includes the development of a neural 
model as well as the design of a model-based predictive 
neural PID controller. 
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1. Introduction 

Over the past several years, neural networks (NNs) have 
been increasingly applied to the identification and control 
of nonlinear systems; see, e.g., [2], [7] and the references 
therein. 

A basic model structure for static nonlinearities is the 
multilayer feedforward NN, in which learning, i.e., 
estimation of weights and biases, involves the minimization 
of a quadratic output error criterion J(0) using back- 
propagation (BP) [4], an analytical procedure in which the 
error evaluated at the output layer is propagated back 
through the hidden layers and the input layer. 
Although the BP method can be generalized for more 
complex NN structures, which are useful in modeling 
dynamic nonlinear systems, the resulting algorithms are 
usually more complicated to implement and more 
computationally demanding. Hence, it is appealing to 
develop a more straightforward, numerical procedure for 
computing the gradient of the quadratic output error 
criterion. However, as NNs usually involve a large number 
of unknown parameters, the evaluation of the criterion 
gradient by varying the parameters one at a time, as it is 
required in conventional finite difference approximations, 
would be extremely costly. 

In contrast to standard finite differences, the 
simultaneous perturbation (SP) approximation of the 
gradient proposed by Spall [5] makes use of a very efficient 
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technique based on a simultaneous (random) perturbation in 
all the parameters and requires only two evaluations of the 
criterion. This approach has first been applied to gradient 
estimation in a first-order stochastic approximation (SA) 
algorithm [5], and more recently to Hessian estimation in an 
accelerated second-order SPSA algorithm [6]. 

In a previous work [9], the authors have applied the 
above-mentioned first- and second-order SA algorithms 
(1SPSA and 2SPSA) to several test-examples in order to 
evaluate their potential to address the problem of parameter 
estimation in NNs. Efficiency, simplicity of implementation 
and very modest computational costs make 1SPSA 
particularly attractive, even though it suffers from the 
classical drawback of first-order algorithms, i.e., a slowing 
down in the convergence as an optimum is approached. 

In this study, a variation of this first-order algorithm is 
considered which makes use of adaptive gain sequences, 
gradient smoothing and a step rejection procedure, to 
enhance convergence and stability. To demonstrate the 
algorithm efficiency and versatility, attention is focused on 
a realistic application example, e.g. the development of a 
predictive control scheme for a two-tank cooling system. 
This predictive controller is based on three main 
components [2] : 

• a process emulator in the form of a neural state space 
model [7], which generates prediction of the future 
process outputs over a specified horizon; 

• a NN controller, with a PID-like input-output 
parametrization [8]; 

• an optimization procedure to train the NN model (off- 
line) and the NN controller (on-line). 

The remainder of this paper is organized as follows. 
Section 2 introduces the basic principle of the SPSA 
algorithm used throughout this study. In section 3, the 
model-based predictive control scheme is described in some 
details, including the structure of the process emulator and 
controller. In section 4, these tools are applied to the 
problem of controlling the output temperature of sulfuric 
acid in a two-tank cooling system. The performance of this 
control scheme in the face of non measurable disturbances 
in the acid inlet temperature and noisy output acid 
temperature measurements is investigated. Finally, section 
5 is devoted to some concluding remarks. 
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2. A f irst-order SPSA a lgor i thm 

Consider the problem of minimizing a, possibly noisy, 
objective function J(0) with respect to a vector 0 of 
unknown parameters (in this study, the weights and biases 
of a NN). 

1SPSA is given by the following core recursion for the 
parameter vector 0 [5-6] 

Ok = Ok-1 --ak gk(Ok-1) (1) 

in which ak is a non-negative scalar gain coefficient, and 

~k(0k_l) is an approximation of the criterion gradient 

obtained by varying all the elements of 0k simultaneously, 

i.e., 

-J(0k-1 + CkAk)-- J(0k-1 - CkAk)- 

2CkAkl 

~(0k_l) . . . .  (2) 

J(0k-I + CkAk ) -- J(0k-I - CkAk ) 

2CkAkp 

where Ck is a positive scalar and Ak = (Akl, Ak2 . . . . .  Akp) z 
with symmetrically Bernouilli distributed random variables 
{A~}. 

In its original formulation, 1SPSA makes use of 
decaying gain sequences {ak} and {ck} in the form 

a c 
= , c k = ~ (3) 

ak ( A + k  +1) a (k + 1) v 

Numerical experiments show that the algorithm may 
therefore get stuck somewhere in the parameter space if the 
criterion value becomes significantly worse (due to a poor 
current gradient approximation, a non-convex optimization 
problem .... ) and the gain sequences are too small to recover 
from this situation. 

In order to enhance convergence and stability, the use of 
an adaptive gain sequence for parameter updating is 
considered in this study, i.e., 

a k =T]ak_l, rl_>l, if J(0k)  <J(0k_l)  

a k =~tak_l,  ~_<1, if J(0k)_>J(0k_l) (4) 

where, typically, r I = 1.05 and tx = 0.7. 
In addition to gain attenuation when the value of the 

criterion becomes worse, "blocking" mechanisms [6] are 
also applied, i.e., the current step is rejected and, starting 
from the previous parameter estimate, a new step is 
accomplished (with a new gradient evaluation and a 
reduced updating gain). 

A constant gain sequence c k = c is used for gradient 
approximation, the value of c being selected so as to 
overcome the influence of (numerical or experimental) 
noise. 

Finally, a gradient smoothing (GS) procedure is 

implemented, i.e., gradient approximations are averaged 
across iterations in the following way 

G k =pk Gk_l + (1--pk)~k(0k_l) ,  O<_Pk <_1, G O =0 (5 )  

where, starting with a typical value of p = 0.95, Pk is 
decreased in a way similar to (4) when step rejection occurs 
(i.e. Ok = kt0k-1 with IX _< 1 ) and is reset to its initial value 

after a successful step. 
As the following simple numerical example illustrates, 

the use of these numerical artifices, i.e., adaptive gain 
sequences, step rejection procedure and gradient smoothing, 
significantly improves the effective practical performance 
of the algorithm (which, in the following, is denoted 
"adaptive 1SP-GS"). 

Test-example: we consider the problem of modeling a 
nonlinear process given by 

y(k) = 0.875y(k - 1) + u(k - 1) (6) 
1 + y2(k -1)  

using a dynamic multilayer perceptron (DMLP) [1] with 1 
input, 4 nodes in the hidden layer and 1 output. The hidden 
and output nodes are associated with second-order dynamic 
elements, so that there are np= 33 unknown parameters to 
estimate. 

Table 1 compares, in terms of number of iterations, 
computational load (normalized CPU with the CPU 
required by 1SPSA as reference) and mean square error 
(RMS), the performance of 

• The original 1SPSA algorithm (equations 1-3 with a 
step rejection procedure); 

• Adaptive 1SP-GS (equations 1, 2, 4, 5); 
• Adaptive 1GBP-GS (same as above with a gradient 

evaluated analytically using generalized back- 
propagation); 

Table 1. Computational statistics 
Iterations CPU RMS 

1SPSA 8000 1 0.00326 - 
0.00431 

Adaptive 1SP-GS 8000 1.3 0.00309 
Adaptive 1GBP-GS 600 7.2 0.00310 

Clearly, generalized back-propagation (GBP) is very 
efficient in terms of number of iterations required to 
achieved a certain level of accuracy, but it is 
computationally expensive as it requires the solution of 
dynamic sensitivity equations at each iteration. On the other 
hand, 1SPSA has very modest computational requirements, 
but produces relatively dispersed results (0.00326 - 0.00431 
represents the range of values obtained from 10 
independent runs starting from the same initial parameter 
estimates). The main advantage of our algorithm is that it 
retains the very modest computational requirement of 
ISPSA and usually provides less dispersed, more accurate 
results. 
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3. NN modeling and control 

When modeling nonlinear dynamic systems, several 
alternative NN architectures can be used (see, e.g. [2]). For 
the application considered in section 4, a neural state space 
model, as introduced by Suykens [7], is selected 

Xk+l = WAB tanh(VA Xk + VB Uk + DAB) 

"Yk = WCD tanh(Vc xk + VD uk + [3CD) (7) 

As illustrated in Fig. 1, neural state space models are 
recurrent NNs. The dimensions of the weight matrices and 
bias vectors are WAD E ~ nxnhx , V A E ~ nhx×n , 

VB ~ ~nhxxrn, ~AB ~ ~nhx ' WCD ~ ~fxnhy ' VC E ~ nhyxn , 

V D E ~ nhy×m , [~CD E~ ~ nay , where n, m, 1, nh, and % are the 

number of states, inputs, outputs and hidden neurons, 
respectively. 

These unknown parameters are estimated off-line from a 
set of N real system outputs by minimizing an output error 
least-square (OLS) criterion, i.e. 

N 
min I(0)= r~n E (Yi - yi(0)) 2 (8) 

0 i=l 

Once this task has been achieved, the neural state space 
model can be used as a process emulator in a model-based 
predictive control scheme [2] (Fig. 2). The NN state space 
model generates prediction of future process outputs over a 
specified prediction horizon, which allows a quadratic 
performance criterion to be defined, i.e. 

j= ~ ~r (k + i ) -  ~(k + i ) ~ + X  ~ Au(k + i - l )  2 (9) 
i=N 1 i=l 

where yr(k) is the output of a model reference, N 1 and N 2 
define the horizons over which the tracking errors 

e(k) = yr(k) - 2~(k) and control increments Au(k) are 

considered. The weighting factor ~ penalizes the control 
increments. 

The control signal u(k) can be produced in two ways: 

• An on-line optimization routine is applied to the 
minimization of J with respect to the control moves 
u(k) over the prediction horizon, and the optimal 
control signal is directly applied to the process; 

• The minimization of J is accomplished with respect to 
the weights of a feedforward NN controller, which in 
some sense mimics the action of the on-line 
optimization routine. 

In this study, the second approach has been chosen as it 
is conceptually more robust. Indeed, the NN controller 
keeps track of the optimization procedure, and can produce 
a control signal even during periods of time where 
optimization cannot be performed satisfactorily (e.g., in an 
on-line application, higher priority events and interrupts can 
prevail on optimization). In our implementation, controller 
training occurs only during the transient phases, in which 

the system is sufficiently excited by the input signals. 
Optimization is suspended in steady-state phases to avoid 
detuning the NN controller, which produces the input signal 
applied to the process. 

Following the line of thought in [8], the NN controller 
parametrization is chosen in a similar way as in a classical 
PID controller, i.e., with three inputs i l (k )=e (k ) ,  

k 
i2(k) = ~ e ( i )  and i3(k) = e ( k ) -  e ( k -  1), one hidden 

i=l 
layer with nm nodes and one output. As only a weighted 
sum of il(k), i2(k), i3(k) is needed to mimic the PID 
algorithm, the biases of the NN controller are set to zero. 

Of course, the prediction of the NN emulator is usually 
not perfect, and the effect of modeling errors can be treated 
as an additive disturbance which can be estimated at the k th 
sampling instant in a manner similar to Dynamic Matrix 
Control (DMC), i.e., 

ym(k) = y(k) + d(k - 1) 

d(k) = y(k) - ~(k) (10) 

ym(k) is substituted for ~(k) in the expression of the 

performance criterion (9), which allows modeling errors to 
be compensated. 

u k ~ Yk 

Xk Xk+ 1 

Figure 1. Neural state space model 

MODEL t 
MODEL Y' [ 9 l 

I CONTROLLER 

Figure 2. Model-based predictive neural control scheme 

4. Case study: cooling of sulfuric acid in a two- 
tank system 

In the remaining of this study, the usefulness of our 
adaptive 1SP-GS algorithm is illustrated with a numerical 
application, i.e., neural modeling and control of a two-tank 
system used to cool sulfuric acid with a countercurrent 
water stream [3]. 
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4.1 Process description 

A nonlinear mathematical model of  the cooling system 
(see Fig. 3.) is used for producing simulated data. This 
model can be derived by expressing the energy balance on 
each tank, i.e., 

MT,1CpaTa, 1 = M wCpw (Tw,2 -Tw,  1 ) + ]QI aCpa (Ta,in - Ta, 1 ) 

MT.2CpaTa, 2 = IVI w Cpw (Tw,in - Tw.2) + IVI aCpa (Ta, 1 - T a ,  2 )  

(11) 

where MT, i is the weight of  acid in tank i (i =1, 2), Cpa 

(Cpw) is the acid (water) specific heat, IQI a (~ ' [w)  is the 

acid (water) mass flow rate, Tad (Tw, i ) is the acid (water) 

temperature from tank i. 
Heat transfer is modeled through a log-mean delta T, 

i.e., 

(Ta,1 - Tw,1 ) - -  (Ta,l - Tw, 2 ) 
l~/[wCpw (Tw,1 -Tw,2)  = k lA 1 

In (Taa - TwA ) 
(Wa,t - W w , 2 )  

(Ta, 2 - Tw, 2 ) - (Ta, 2 - Tw,in ) 
1Q[ wCpw (Tw,2 - Tw.in ) = k2A 2 

In (Ta'2 - Tw'2) 

(Ta,2 - Tw,in) 

(12) 

where K is the heat transfer coefficient in tank i and A~ is 
the coil heat transfer area in tank i. 

Parameter values and steady-state operating conditions 
are listed in Table 2. 

Table 2. Model parameters 
MT, 1 = 4351 kg A~ = 6.4 m 2 

My, 2 = 4351 kg Az= 8.9 m 2 

Cp, a = 1.506 kJ/kg K T~,  = 447 K 

Cp, w = 4.183 kJ/kg K iVI a = 1.26 kg/s 

k~ = 1.136 kJ/m 2 s K Tw.in = 293 K 

k~ = 0.738 kJ/m z s K 14I w = 0.97 kg/s 

1 Cold H20 
l~lw,Tw,in 

T w A Tw,~ 3, setpoint 

.... T .2. 

Tank 1 Tank 2 

Figure 3. Two-tank cooling process 

As sulfuric acid is assumed to come from an upstream 
unit, the feed temperature Ta, i, varies and is considered as a 
non-measured disturbance. 

4.2 NN modeling 

The 40 weights and biases of  a neural state space model 

with n = 2, m = 1, l = 1, n~ = 5, nhy = 2 are estimated by 

minimizing an OLS criterion (8). The training set consists 
of  2270 data produced by applying steps of  various 
amplitudes and durations in the cooling water stream. 
During these experiments, the inlet acid temperature is 
constant (Table 2). The evolution of the criterion for ten 
independent runs starting with random initial estimates 
(Fig. 4) illustrates the good performance of the adaptive 
1SP-GS algorithm. Figure 5 shows some cross-validation 
results demonstrating the good model agreement. 

lo" 

lo' ~ 6  

* a 25 6 Epooh. 
Figure 4. System identification: mean-square error curves 

for ten independent runs 

..o[ f a2s  

a2o  

315  

ill! 
Figure 

% 
2 0  4 0  e o  8 0  l O 0  1 2 o  

T im .  ( ho . , )  

5. Cross-validation results (solid line: process 
output; dotted line: NN output) 

4.3 NN predictive control 

A N N  PID controller with nm = 2 is used to control the 
acid temperature from the second tank Ta,2(t) by acting on 

the cooling water stream g, lw(t).  The 8 unknown NN 

weights are estimated by minimizing the performance 
criterion (9) with N1 = 1, N2 = 20 and the output y'(k) of  a 
second-order model reference with ~ = 0.8 and co n = 4 .  

In this application, the requirements on the optimization 
algorithm are: (a) small computational costs so that the 
criterion minimization can take place within a sampling 
period, (b) robustness and reliability so that, even in the 
presence of  perturbations, at least a lower value of the error 
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criterion can be achieved. On the other hand, accuracy in 
estimating the controller parameters is not determinant. 
With this view, the minimization of the receding horizon 
criterion (9) is performed using ISPSA-GS, with a 
maximum of 100 iterations per sampling interval. Figure 6 
illustrates the excellent tracking capabilities of the NN PID 
controller. 

However, in the face of disturbances in the acid feed 
temperature, the prediction of the NN process emulator 
deteriorates, which results in large tracking errors. Figure 7 
shows the effect of step disturbances of -4 K in t = 15 hrs 
and +8K in t = 42 hrs. The effect of these non measured 
disturbances can be compensated using (10), as illustrated 
in Fig. 8. The effect of measurement noise with a standard 
deviation of 0.75 K is also depicted in Fig. 9. In all these 
cases, the predictive NN PID control scheme displays very 
satisfactory performance. 

~ 2 4  

a 2 0  

a , a  

a l e  l .... 2- 
Time {hour) 

Figure 6. Tracking capabilities of the NN PID (solid line: 
model reference; dotted line: NN process 
emulator; dashed line: process output) 
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Figure 7. Effect of non measurable disturbances in the acid 
feed temperature (key as in Fig. 6). 
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Figure 8. Modeling error compensation (key as in Fig. 6). 
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Figure 9. Effect of measurement noise (key as in Fig. 6). 

5. Conclusion 

The SP-approach devised by Spall [5-6] is a very 
powerful technique, which allows an approximation of the 
gradient of the objective function to be computed by 
effecting simultaneous random perturbations in all the 
parameters. In this study, a variation of the first-order SP 
algorithm is described and evaluated with a realistic 
numerical application. Especially, a predictive NN PID 
control scheme is developed, which shows promising 
(simulation) results. 
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