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Abstract

Averaging of the output (iterates) from a stochastic
approximation (SA) recursion has been shown to be a
useful technique for the gradient-based Robbins-Monro
form of SA. For the gradient-free (e.g., Kiefer-
Wolfowitz) form, iterate averaging can produce an
improvement in the stability of the algorithm and
competitive mean-square errors relative to the standard
(unaveraged) recursion, We discuss guidelines on how
and when to use averaging in this context
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1. Introduction

Averaging techniques have received much attention
for their potential to enhance the performance of
stochastic approximation (SA) algorithms for
optimization of some loss function (see Polyak and
Juditsky (1992) and the references therein). The efficacy
of the averaging approach for Robbins-Monro SA has
been established by Polyak and Juditsky (1992), who
developed the asymptotic distribution theory for averaged
SA iterates, and by others (Kushner and Yang (1993,
1995), Ljung (1993)).

These techniques are useful to practitioners because
they can lead to optimal results without the need to know
certain quantities, such as optimal SA gains or particular
values of the Hessian of the loss function. These
quantities are usually unknown in practical applications,
but knowledge of them may be necessary to satisfy
theoretical requirements for the optimal performance of
the standard SA recursion (i.e., the SA recursion without
averaging).
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For the gradient-free form of SA (e.g., the Kiefer-
Wolfowitz finite-difference method, FDSA), the situation
is not so clear. Such methods construct gradient
approximations based on measurements of the loss
function; they differ from the Robbins-Monro setting,
which requires a direct measurement of the gradient of
the loss function with respect to the parameters being
optimized. Dippon and Renz (1996, 1997) have
investigated the asymptotic distributions of various
weighted averages of the output (iterates) in the gradient-
free setting. Dippon and Renz (1997) find that one can
run an averaged FDSA, without knowledge of (usually)
unknown quantities such as the optimal gain or a lower
bound on the smallest eigenvalue of the Hessian matrix,
with confidence that the result will have a reasonably
small error. The reason for this is that the asymptotic
mean squared error (AMSE) for the averaged iterates in
FDSA is (under hypotheses) less than four times the
AMSE of the standard algorithm run in optimal mode.
Since the optimal setup for the standard algorithm is
seldom known, and since bad choices of algorithm
parameters can result in arbitrarily large AMSE, the
averaging technique can provide a competitive error level
without requiring such special knowledge

2. Guidelines

Given the above situation, it would be useful to have
some guidelines on when to use iterate averaging in the
gradient-free setting. To investigate this, we consider the
Simultaneous Perturbation SA (SPSA) algorithm
introduced by Spall (1988). This algorithm is based on a
special (“simultaneous perturbation” (SP)) form of the
gradient approximation required in the computations, and
is especially efficient in high-dimensional problems,
relative to FDSA

Let us introduce some notation. From Spall (1992),
the (standard) SPSA iteration is 8,,, =8, —a,8,(9, ),
where 8, is the k™ estimate of the optimizing vector &
of a loss function L( &) having derivative
8(0)=d(6)/ 30 such that g(@" )=0, ,(e) is the SP



estimate of the gradient at the k™ iteration,
a,=al(k+1)%,a20,0<a<1,and §,(e)isestimated

based on evaluating L( @k *+c, 4, ), which is observed
with additive noise, where A, is a particular random

perturbation and ¢, =c¢/(k+1) is a scale factor, with
c20and 0<2y<a<6y.

In order to compare the AMSEs of the standard and
averaged versions of the algorithm, we examine the
asymptotic distribution of the error in the estimate of & .
In the above setup, with « =1 (chosen for optimal
asymptotic performance) and ¥ =1/ 6 (chosen to provide

the same rate of convergence, i.e., a scale factor of k”3,
as the averaged algorithm) the asymptotic distribution of
the error in the standard SPSA iterate is (from Spall
(1992)) given by:

0, -6 ) -2

N(CZ(H—ﬁl/za)‘lb,PMPT), (1)

where =0 —2y =2/3 (with the choices of & and ¥ as

above), P is an orthogonal matrix such that PHPT is
diagonal, H is the Hessian matrix, 9°L(8)/ 3696 ,
evaluated at 6", M =ac?p*(PHPT —B1/2a)" 18¢%, o
and p are parameters associated with the observation
. noise and random perturbations, respectively, and b is a
vector related to the third derivative of the loss function
(superscript T denotes matrix transpose). Of course, the
asympitotic results depend on regularity conditions, and
on conditions related to the choice of the random
perturbations, 4, .

For the averaged iterate, we examine the simple
average, defined as Ek =kt Eklé, , although various other

=1

weighted averages have also been proposed. The
asymptotic distribution of the error in the averaged iterate
(from Dippon and Renz (1997)) with ez e(2/3,1) and
¥y =1/ 6 (standard settings for averaging) is given by

k%9, -6 )—2
N(3cH D12, 360 H™2 | 16c%). @

A few facts of interest may be noted regarding
expressions (1) and (2), which were developed
independently of each other. First, the dependencies on
the quantities a and ¢ are shown explicitly. Second, the
asymptotic means are not zero, as they are in Robbins-
Monro SA; this complicates the analysis of the AMSE.
Finally, the parameters of the asymptotic distribution of
the averaged iterates do not depend on the choice of a.
This is important to the practitioner, since it is often not
easy to determine the optimal choice of g
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Taking the AMSE of an asymptotic N( i,2.)
distribution to be ",u,uT + Zn where [Jo] is a matrix norm,

we have that the AMSE of the averaged SPSA iterates is
less than that of the standard SPSA asymptotic iterate if:

Joc*Hb6" 7 14436292 H /16
< "c“(H ~BI/2a) 6" (H-B1/2a)"
+ac?p*P(PHPT — B1/2a) PT / 8c2". 3)

It is easy to see that there are cases where expression
(3) would or would not hold, i.e., where either the
averaged or the standard iteration would be preferable.

In order to obtain an intuitive understanding of when
averaging can be most successful, we examine expression
(3) in the case when & is a scalar. The analysis of this
case is simplified by the fact that P =1. We focus on two
possibilities, the case where the Hessian is large compared
to £/ 2a, and the case of smaller values of H, where other
terms are held constant. If H is large, it is easy to see that
the inequality (3) will tend to hold, because of the
exponent of -1 in the variance term of expression (1)
compared to the squared inverses in the other terms. In
that case, averaging will tend to improve the estimate.

On the other hand, smaller values of H will tend to favor
the unaveraged iterates. This finding also makes sense
from the viewpoint of geometric intuition. That is, larger
values of H (the second derivative of the loss function) are
associated with a more rapidly varying loss function,
which would tend to make the iterates jump back and
forth around the minimizing value 8", a situation that
should favor averaging.

3. Numerical Study

In order to test the idea that larger values of H tend of
favor iterate averaging, we undertook the problem of
minimizing the following loss function for 6 R°®:

6 6 6
L(6)= n(zlr? HLE T +(01)F r?),

i= i=1 i=1
where 7, is the i component of the vector 7= B@, and
B is the 6 X 6 upper triangular matrix with all entries = 1/6
in the upper part, and 7 is a scale factor to control the
size of H (see the discussion below).This function was
chosen to ensure significant variable interaction and to
provide a reasonably challenging loss function, where the
ratio of the maximum to minimum eigenvalues of H is
65. For this function, the value of & is zero in all
components and H =27B7B.

Several runs were made with various settings of the
parameters, and changing seeds for the random variables.
The parameters and settings that were fixed for all of the



runs were: a=1, 4, ~Bemoulli(+1), y=1/6, ¢ =001,
the observation noise added to the value of L(8) was
N(0,0001% ), and the number of iterations within SPSA
was 10,000.

Using the above parameters and settings and a fixed
value of 77, we ran one SPSA recursion with a =1 (to
implement the classical O(1/ k) SA gain) and another
recursion with o =68 (this type of “slowly decaying”
gain is required for use with averaging). After 10,000
iterations, we computed the squared norm of the final 6
values (i.e., the error values, since ¢ =0) from the o =1
recursion and from the o =68 recursion, and the squared
norm of the average of the last 1000 iterates of the o =68
recursion. These three squared error norms were
computed for 10 independent trials for both 7 =10 (large
H) and 77 =.005 (small H). Means of these results over
the 10 trials are shown in Table 1 in normalized form,
i.e., the squared norms in each row are divided by the
squared norm for the o =1 run. This normalization is
done to allow more direct comparisons and in an effort to
remove variation due to suboptimalities in the SA
recursion brought about by using a fixed value of a for
both small and large values of H (necessary since the size
of H in the equations is relative to the size of a).

Table 1.

Normalized Squared Error Norms for Standard and
Averaged Iterates at Various Values of ¢ and 7, after
10,000 iterations (values shown are means over 10
replications). Averaging used the final 1000 iterations

a=1 o =.68 a=.68
Final @, Average of Final @,
unaveraged | last 1000 | unaveraged
n=10 1 0110 0094
(Large H)
1n=.005 1 9665 9609
(Small H)

Table 1 shows that, as predicted, for larger H, iterate
averaging provides a strong improvement over the
unaveraged final result of the o =1 recursions. For
smaller values of A, this study finds that averaging
provides a small improvement over the ( unaveraged)

o =1 result, which is not contrary to the discussion in
Section 3 above (although we might have predicted that
averaging would actually be harmful; our small H results
are affected by the fact that the initial guess of 8 was not
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much changed by the SA processing due to the extreme
flatness of the loss function in the vicinity of §").

Another result of interest is shown by comparing the
last two columns of the table, which show that the final
(unaveraged) squared error for the o =68 recursion was
smaller than that of the averaged iterate, despite the
(presumably) asymptotically suboptimal value of or.
This result, which we have noted rather often in
experimenting with averaging, suggests that, for non-
asymptotic (i.e., real-world) recursions, at least of the
SPSA type, averaging can sometimes degrade the output
of SA relative to the standard (i.e., unaveraged) iterate
produced using a slowly decaying gain. Of course, since
our only theory of these recursions is asymptotic, it is
difficult to provide a theoretical rationale for this finding.

4. Conclusions

In gradient-free SA, averaging of the iterates can
provide convenience for the user and stability of the
output of the algorithm. Because of the non-zero mean in
the asymptotic distribution of the error in the estimate of
the optimizing value of @, however, averaging does not
guarantee an optimal asymptotic result, as is the case
with the Robbins-Monro SA algorithm. We have
examined the asymptotic theory of a form of gradient-
free SA, the SPSA algorithm, which is particularly
efficient in many complex (large dimensional) problems.
This theory indicates that, in accordance with geometric
intuition, averaging will tend to be most successful in
cases where the Hessian of the loss function is large-
relative to certain parameters of the algorithm, and will
tend to be unsuccessful in some cases where the Hessian
is smaller. We have completed a small-scale numerical
study that supports the general trend of these ideas.
Further guidelines for when averaging is useful can stem
from expression (3), which indicates that averaging will
be useful when the inequality holds.

Although not considered here, gains of the form
a, =al(k+A+1)” with A>0 (used in Spall (1997)),
provide a simple means for ensuring stability of the
algorithm in the early iterations (via the A>0 term)and a
larger step size (via a larger choice of a, allowed by the
use of A) in the later iterations. The author has found that
an unaveraged algorithm with such a simple gain often
yields superior finite-sample performance, competitive
with or better than an averaged solution. Perhaps an
averaging approach using A>0 (untried by the author as
of this writing) would yield even better results.
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