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Simultaneous Perturbation Learning Rule for
Recurrent Neural Networks and Its FPGA

Implementation
Yutaka Maeda, Member, IEEE, and Masatoshi Wakamura

Abstract—Recurrent neural networks have interesting prop-
erties and can handle dynamic information processing unlike
ordinary feedforward neural networks. However, they are gen-
erally difficult to use because there is no convenient learning
scheme. In this paper, a recursive learning scheme for recurrent
neural networks using the simultaneous perturbation method
is described. The detailed procedure of the scheme for recur-
rent neural networks is explained. Unlike ordinary correlation
learning, this method is applicable to analog learning and the
learning of oscillatory solutions of recurrent neural networks.
Moreover, as a typical example of recurrent neural networks,
we consider the hardware implementation of Hopfield neural
networks using a field-programmable gate array (FPGA). The
details of the implementation are described. Two examples of a
Hopfield neural network system for analog and oscillatory targets
are shown. These results show that the learning scheme proposed
here is feasible.

Index Terms—Field-programmable gate array (FPGA) imple-
mentation, Hopfield neural networks (HNNs), recurrent neural
networks (RNNs), recursive learning, simultaneous perturbation.

I. INTRODUCTION

NOWADAYS, neural networks (NNs) are widely used in
many fields. At the same time, back-propagation (BP) has

been widely adopted as a successful learning rule to find the
appropriate values of the weights for NNs.

Unlike ordinary multilayered feedforward NNs, recurrent
neural networks (RNNs) can handle dynamical information
processing. It is well known that recurrent-type NNs have
complicated properties compared with ordinary multilayered
NNs. In spite of the great deal of interest in these RNNs, one of
the reasons why RNNs cannot be easily used is the difficulty in
setting up the values of the weights in the network for specific
purposes. That is, a suitable learning scheme is essential for
wider applications of RNNs.

For example, the Hopfield neural network (HNN) is a typical
recurrent neural network with symmetrical fully connected
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weights [1]. HNNs are used to store patterns or to solve com-
binatorial optimization problems like the traveling salesman
problem. For these problems, the weights in the network are
typically determined by patterns to be memorized based on
Hebbian learning rule [2] or an energy function based on the
problem. If our patterns are analog or if we cannot find a proper
energy function, it will be impossible to apply these techniques
to find the optimal weight values of the network. Moreover,
these techniques are difficult to realize as hardware systems.

Let us think about recursive-type learning rules for RNNs.
The BP-type learning rule is not suitable for these RNNs. For
example, the BP through time (BPTT) for RNNs is a learning
rule based on the ordinary BP method [3]. In the BPTT method,
an error defined by the difference between the outputs of the
network and their desired outputs is propagated through time.
This procedure is relatively complicated.

Hardware realization of NNs is an interesting issue [4], [5].
There are many approaches to implement NNs [6], [7]. In addi-
tion, realizing a learning scheme is intriguing [6], [8], [9]. How-
ever, it seems difficult to realize the learning rule described pre-
viously as a large-scale integrated (LSI) system. Thus, inventing
a new learning rule for RNNs is crucial.

The simultaneous perturbation optimization method was in-
troduced by Spall [10], [11]. Alespector et al. [12] and Cauwen-
berghs [13] described the same method. Maeda also indepen-
dently proposed a learning rule using simultaneous perturbation
and reported on the feasibility of the learning rule in control
problems [14]–[16]. In these works, NNs with the simultaneous
perturbation are realized by software. On the other hand, the
merit of the learning rule was demonstrated in hardware imple-
mentation for many types of NNs [17]–[20]. Analog and pulse
density types of NNs via the simultaneous perturbation learning
rule were fabricated in these works.

The main advantage of the simultaneous perturbation method
is its simplicity. The simultaneous perturbation can estimate the
gradient of a function using only two values of the function it-
self. Therefore, it is relatively easy to implement as a learning
rule of NNs compared with other learning rules such as the BP
learning rule. At the same time, this learning rule is easily appli-
cable to recurrent types of NNs, since only the final error values
are required to estimate the gradient of the error function with
respect to the weights.

The FPGA is a very useful device for realizing a specific dig-
ital electronic circuit in diverse industrial fields [21]. For ex-
ample, Hikawa realizes an NN with on-chip BP learning using
a field-programmable gate array (FPGA) [22], [23]. Successful
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digital implementation of support vector machines and some ap-
plications of FPGA-based NNs are reported [24]–[27].

In this paper, we considered an FPGA implementation of an
analog HNN with the learning rule via the simultaneous pertur-
bation. We would like to emphasize features of the research as
follows.

1) We summarize the learning scheme using the simulta-
neous perturbation for RNNs.

2) We design an FPGA HNN system as a typical example
of RNN systems. Then it is important to take inherent
recurrent signal flows into account.

3) Learning capability via the simultaneous perturbation
is realized using FPGA as a hardware system.

4) We consider an analog HNN. Then ordinary arithmetic
operations are used to realize neural signal processing,
instead of Boolean operations such as OR or AND used
in a pulse stream type of implementation [19], [20].

The implementation is described in detail. The results of the
FPGA HNN system are also shown.

II. LEARNING SCHEME USING SIMULTANEOUS PERTURBATION

When we use an RNN for a specific purpose, we need to de-
termine the proper values of the weights in the RNN. That is, the
so-called learning of RNNs is very important. Now we consider
a recursive learning scheme for RNNs.

In many applications of RNNs, we know the ideal output or
situation for the network. Using this information, we can eval-
uate how well the network performs. Such an evaluation func-
tion gives us a clue for optimizing the weights of the network.

In order to use the BPTT, the error quantity must propagate
through time from a stable state to an initial state. This process
is relatively complicated. It seems difficult to use such a method
directly, because it takes a long time to compute the modifying
quantities corresponding to all weights. At the same time, it
seems practically difficult to realize the learning mechanism as
a hardware system.

On the other hand, the simultaneous perturbation learning
scheme is suitable for the learning of RNNs and their hard-
ware implementation. The simultaneous perturbation optimiza-
tion method requires only values of an evaluation function as
mentioned. If we know the evaluation of a stable state, we can
obtain the modifying quantities of all weights of the network
without complicated error propagation through time.

The simultaneous perturbation learning rule for recurrent
neural networks is described as follows:

(1)

if
if
otherwise

(2)

where and denote the weight vector of a network and its
th element at the th iteration, respectively. is a positive con-

stant and is the magnitude of the perturbation. represents
the th element of the modifying vector. is the maximum
value of the weight.

and denote a sign vector and its th element that is 1 or
1, respectively. The sign of is randomly determined. More-

over, the sign of is independent of the sign of the th element
of the sign vector. That is

(3)

where denotes the expectation. is Kronecker’s delta.
denotes an error or an evaluation function, for example, defined
by outputs of neurons in a stable state and a pattern to be em-
bedded.

In many cases, the limitation on for the weighting value
is not necessary. However, when the behavior of the weight
value is erratic, it is useful and efficient.

When we expand the right-hand side of (1) at the point ,
there exist such that

(4)

We take an expectation of the previous quantity. From the
conditions given by (3) of the sign vector , we have

(5)

That is, approximates . Since the right-
hand side of (1) is an estimated value of the first-differential
coefficient of the error function, the learning rule is a type of a
stochastic gradient method [15], [16].

The learning rule described here is a simplified version of the
one proposed in [15]. In the basic form of the simultaneous per-
turbation method [10], [15], different distributions can be used
for the perturbation. In this paper, the Bernoulli distribution is
adopted for the perturbations to simplify and reduce the com-
plexity of the implementation.

An important point is that this learning rule requires only two
values of an error function. Therefore, we can apply this learning
scheme to not only the so-called feedforward-type of NNs but
also to recurrent-type NNs like HNNs. At the same time, unlike
the Hebbian learning, this scheme is applicable to analog prob-
lems.

We now explain the procedure of this learning scheme in de-
tail.

1) Set the initial weights and the initial state of the network.
2) Run the RNN. The RNN then reaches a stable state.

If we would like to embed a certain pattern in the HNN,
then the following procedure is more useful than the proce-
dure outlined previously.

1’) Set the initial weights and the desired pattern as the
initial state.
2’) Run the HNN once.

If the network has the optimal weight values for the de-
sired pattern, the next state has to be the same as the desired
pattern. Therefore, one operation of the HNN is sufficient
to measure an error.
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Fig. 1. Flowchart of the scheme for RNNs.

3) We calculate the value of the error which can be defined,
for example, as follows:

(6)

where and denote a stable state of the RNN and its cor-
responding ideal output, respectively. This error is the differ-
ence between the ideal final pattern and the present final pat-
tern of the network.

In some applications of RNNs, the changes in the state of
the network are important. In this case, we can consider the
following evaluation:

(7)

where and denote the state of a neuron and its corre-
sponding desired state at the th iteration, respectively. If the
evaluation function is small, this means that the trajectory of
the network is close to an ideal trajectory.
4) Add the perturbation to all weights in the network.

The perturbations or , which are determined ran-
domly, are added to all weights simultaneously.
5) We have the RNN to operate again the same as in proce-

dure 2) or 2’).
6) Obtain the error as in procedure 3). (Obtain .)
7) Using (1) and (2), update the weights of the network and

go to procedure 2).
The flowchart of the procedure is depicted in Fig. 1. Note

that only two error values for the RNN are used to update all
weights in the network so the procedure is very simple and easy
to implement.

We can summarize some of the advantages of the simulta-
neous perturbation learning rule for RNNs as follows:

1) applicability to analog problems;
2) applicability to oscillatory solutions;
3) applicability to trajectory learning;
4) energy function unnecessary;

Fig. 2. FPGA board.

5) error back-propagation through time unnecessary;
6) simplicity.

III. FPGA IMPLEMENTATION OF HNN

As a typical example of RNNs, we handle an analog HNN to
be implemented by FPGA.

There are some ways of realizing hardware HNNs with
learning capability. For example, Lehmann et al. reported a
VLSI system for a HNN with on-chip learning [28]. Also in
our research, the FPGA implementation based on digital circuit
design technology is used to realize the HNN. We consider
an FPGA implementation of an analog HNN with a recursive
learning capability using the simultaneous perturbation method.
The HNN fabricated here contains 32 neurons. The number of
neurons is prescribed by the FPGA device.

We adopted VHSIC Hardware Description Language
(VHDL) in the circuit design for FPGA. The design result by
VHDL is configured on FPGA through Leonardo and Quartus.
FPGA Altera, EP20K400BC652-2V with 1 052 000 gates
(16 640 logic elements) and 212 992 bits RAM is used (see
Fig. 2).

When we consider the hardware implementation of an NN, it
is beneficial to prepare the plural neuron elements for parallel
processing. This requires a large number of gates in the FPGA.
On the other hand, the number of gates is limited. It is crucial
to economize on the number of gates used in FPGAs. We have
to take this tradeoff into account. Therefore, if we design an
HNN with so many neurons, it will be necessary to use the series
processing of neurons from a practical point of view. Actually,
it was impossible to realize totally parallel processing system of
the HNN, because scale of the HNN with 32 neurons, that is,
the number of gates required in the design is larger than the gate
number in the FPGA device used here.

A. Technical Factors

When we design digital NN circuits, data handling and high-
speed calculations are very important. Many approaches are
possible to achieve these requirements. In this section, we de-
scribe in detail the technical factors of our HNN design.

1) Representation of Numerical Values and Opera-
tions: Our purpose is to construct the HNN efficiently,
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Fig. 3. State flow of the overall HNN system.

not to invent and evaluate new arithmetic representations, oper-
ations, or precision. In this implementation, we adopt a single
precision floating-point representation of the numerical values.
Thirty-two bits with one sign bit, eight exponent bits and 23
mantissa bits of IEEE 754 standard are used to represent a
numerical value. This representation was sufficient to describe
the HNN operation.

Arithmetic operations used here are standard procedures. We
briefly describes about multiplication and addition. The adder
operation consists of 1) comparison of the values, 2) alignment
of the mantissas by equalizing their exponents, 3) addition of the
mantissas, 4) normalization, and 5) truncation. Further, the mul-
tiplication procedure consists of 1) multiplication of the signs,
2) addition of the exponent, 3) multiplication of the mantissas,
4) normalization, and 5) truncation.

Henceforth, these operations will be referred as adder or mul-
tiplier.

2) Control Unit: The control unit plays a central role in the
whole of the system for series processing. The unit outputs con-
trol signals to all other units.

The operation of the unit is described in Fig. 3 as a state flow
graph. We design the unit based on the state flow graph.

At the initial state, we set up the initial values. Run 1 denotes
an operation of the HNN without perturbation. Error 1 calcu-
lates a value of the evaluation function without perturba-
tion. Then, if is sufficiently small, the learning process
will terminate. Otherwise, the system gives the perturbation for
all weights in Add perturbation state. A 64-bit shift register
described in the following generates random numbers for the
perturbation in the Add perturbation state. Run 2 is an opera-
tion of the HNN with the perturbation. Error 2 calculates an-
other value of the evaluation function with the perturbation. In
the Modify state in Fig. 3, we update all weights using these
two values of the evaluation function, which are obtained in the
states Error 1 and Error 2. This series of operations corresponds
to one learning iteration.

At the Error state, the difference between the outputs of the
HNN and their teaching signal is calculated. The difference de-
notes a value of the evaluation function.

3) Neuron Unit: The architecture of our neuron unit is de-
picted in Fig. 4. The neuron unit is realized using several types
of calculations: adder, multiplier, register, and so on.

The output values of all neurons and corresponding weight
values are stored in the memory unit.

Fig. 4. Configuration of the neuron unit.

Fig. 5. Input–output characteristics of neurons.

The output of a neuron and the corresponding weight value
in the memory are multiplied. First, this result is stored in a
register. We repeat the multiplication for the other outputs of
the other neurons with the corresponding weights. We add the
result and the value in the register. Repeating this procedure, the
weighted inputs for the neuron are summed up. The weighted
sum becomes the output of the neuron through an input–output
function.

The input–output characteristics of these neurons are de-
picted in Fig. 5. In order to simplify the circuit design, a linear
function with a saturation of 4 is used here. That is, neurons
in this network have analog state values from 4 to 4.
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Fig. 6. Configuration of the error part.

Fig. 7. Configuration of the linear feedback shift register.

As mentioned before, this single neuron unit is used serially
to realize all neurons in the HNN.

4) Learning Unit: The leaning unit consists of two parts: the
error part and the modification part. This single learning unit
generates the modifying quantities and updates all weights.

Fig. 6 shows the error part. This part generates the difference
in the error values with and without the perturbation, that is,

. This quantity is commonly used to modify
all weights.

A random number generator is used in this part. A linear
feedback shift register with 64 flip-flops is adopted as shown
in Fig. 7.

Fig. 8 shows a modification part in the learning unit. In the
memory unit, all weight values and the corresponding sign in-
formation of one bit are stored. Based on the sign and the mod-
ifying quantity generated in the error part, the part modifies the
weight values.

First, common quantity is given from the
error part. Then the sign of this difference is changed according
to the sign information for a weight in the memory.

We set ( is an adequate integer.). Therefore,
shifting the bits of the exponent part of the result means a mul-
tiplication of the value with the previous result. This result
denotes a modifying quantity for a weight. Using an adder, we
can update the weight.

We have to repeat this procedure for all weights in the net-
work. However, the differences in the error values

and are the same for all weights. The point is that

only different weights have different sign information. Thus, the
complete learning procedure is very simple and compact.

5) Memory: The memory stores the weight values of the
neurons, the output and weight values of the neurons, the sign
information, and the teaching signals. These data are read or re-
stored according to the command of the control unit.

Since we have 32 neurons in the HNN, there exist
weight values. Therefore, we need 10 bits addressing

. HNNs have a weights matrix whose symmetrical
elements are equal. Thus, we take this condition on weights into
account.

B. HNN System

The total operation of the system is divided into two func-
tions: the operation of the HNN and a learning function.

1) Operation of HNN: Fig. 9 shows configuration of the
HNN from an arithmetic operation point of view. Moreover,
control signals are described in detail. The state machine in
Fig. 9 controls the two RAMs: the counter and the selector. The
counter decides which weight values and output in the RAMs
should be selected through the lookup table.

The operation of the HNN is realized by the neuron unit and
the memory. The neuron unit carries out sum-of-products opera-
tions in the neurons at the Run mode. Then the neuron unit per-
forms the sum-of-products operation serially. That is, a single
actual neuron realizes for 32 imaginary neurons. Fig. 10 shows
the flow of operations. From time to 1, the arithmetic logic
unit (ALU) works as the th neuron. From 1 to 2, the ALU
works as the 1th neuron, and so on. The weight values, in-
puts, and outputs are on memories. These data are read from or
written to the memories.

2) Learning Function: The function is realized by the
learning unit.

As mentioned before, the single learning unit generates all
modifying quantities for all weights in the network. The basic
quantity for the modification of weights
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Fig. 8. Configuration of the modification part.

Fig. 9. Configuration of the HNN from arithmetic operation point of view.

is common. The only difference is the sign of the quantity. By
scanning all of the weights and their sign information shown in
Fig. 8, the unit updates the weight value.

If we adopt the BPTT or other gradient types of learning rules,
the learning unit and the learning operation become extremely
complicated. In contrast, using the simultaneous perturbation
method, we could simplify the mechanism, since only two stable
states are used to calculate the error and to update the weights.

For this design, 9225 logic elements (about 55%) and 45 056
bits of RAM(about 21%) are used. Moreover, 38 out of 502 pins
are assigned to observe states of the HNN.

Fig. 10. Time-division-multiplexing processing.

C. Result

1) Analog Pattern: We show a result for the learning of
analog values. The desired outputs of each neuron in the HNN
are analog quantities. The teaching pattern to be memorized for
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Fig. 11. Result for analog problem.

Fig. 12. Change in error for the analog problem.

all neurons is the sinusoidal analog value shown in Fig. 11. The
waveform itself does not have any specific meanings.

The horizontal axis of the figure denotes the neuron number.
The vertical axis shows an output of the neuron in a stable state.
For example, the output of the first neuron is depicted in the
leftmost side of the chart. The 32nd neuron is on the rightmost
side. Each neuron has its desired analog value, which is shown
as the desired signals in Fig. 11. That is, the desired output of
the first neuron is zero, that of the second neuron is about 0.8,
and so on. Connecting these ideal values for all neurons shows
a sinusoidal waveform.

We can see the learning process in Fig. 11. The more the
learning process proceeds, the more the actual outputs resemble
the teaching pattern. After about 3500 iterations of learning, the
outputs of the neurons are exactly the same as the desired ones.

In this experiment, the coefficient and
.

Fig. 12 shows the change in error with increasing number
of iteration. The error decreases as the learning proceeds.
After about 2500 learning iterations, the error is sufficiently
decreased. With 10 MHz clock frequency, the learning has been
accomplished within about 2 s.

2) Oscillatory Solution: The analog HNN can learn a kind
of oscillatory state. We handle the problem of an oscillatory
pattern in which two analog patterns occur alternately in a stable
state of the network. That is, in a proper stable state, two analog
patterns appear in turn.

Fig. 13. Result for an oscillatory pattern after 1000 learning iterations.

Fig. 14. Result for an oscillatory pattern after 2000 learning iterations.

Fig. 15. Result for an oscillatory pattern after 3000 learning iterations.

In this experiment, we handle two sinusoidal waveforms with
180 different phases as the target patterns, which are exactly the
same as the patterns shown in Fig. 16.

Figs. 13 –16 exhibit outputs of the neurons of the network in
a stable state after a certain learning period. In the very early
stage, as in Fig. 13, the outputs are relatively small. After 2000
learning iterations, the outputs respond to the target pattern. In
Fig. 15, the output pattern is rather close to the desired pattern.
After 5000 learning iterations, there is a perfect agreement with
the wanted pattern as in Fig. 16. As shown in Fig. 17, the error
decreases to zero after around 3800 learning iterations. It took
about 2 s with 10 MHz clock for the learning.

In this experiment, the coefficient is 1/2 , 0.0001.
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Fig. 16. Result for an oscillatory pattern after 5000 learning iterations.

Fig. 17. Change in error for the oscillatory analog problem.

We would like to emphasize that these two examples had all
analog targets. In these cases, Hebbian learning, which is widely
used for HNNs, would be unsuitable since the outputs consid-
ered in its scheme are binary.

Moreover, the latter example of learning of oscillatory state
is impossible to realize using Hebbian learning. However, the
simultaneous perturbation learning rule makes it possible.

IV. CONCLUSION

This paper proposed a recursive learning scheme for recurrent
NNs. The learning scheme is based on the simultaneous pertur-
bation method.

As an example, we implement the HNN with this learning
scheme by FPGA. Learning examples for analog targets and an
oscillatory pattern are shown.

This scheme requires only two values of an error function.
Therefore, it was relatively easy to implement, especially as a
hardware system.

Moreover, it is possible to utilize this scheme for analog prob-
lems or the learning of oscillatory patterns in contrast to ordi-
nary Hebbian learning.

Investigation on capability of the simultaneous perturbation
learning rule for such problems is our future work.
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