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INTRODUCTION

The active noise control (ANC) is used to reduce noise generated by engines, air conditioners

or the other industrial equipment. In ANC, a primary unwanted noise and an anti-noise of

equal amplitude and opposite phase are superimposed and cancelled each other. Then, it is

important to produce the anti-noise exactly.

The filtered-x least mean square (LMS) algorithm is widely used to ANC. In this algorithm,

estimation of the so-called secondary-path is essential to generate the precise anti-noise.

However, characteristics of the secondary-path vary with respect to temperature or the other

environments. Therefore, it is difficult to know the exact characteristics of the secondary-path.

On-line estimation is more difficult.

This paper proposes an ANC system without the estimation of the secondary-path. An

algorithm proposed here is based on the simultaneous perturbation types of recursive

optimization method. The methods was proposed by J. C. Spall[1],[2]. J. Alespector et al. [3]

and G. Cauwenberghs[4]. Y. Maeda also independently proposed the algorithm using the



Figure 1 Schematic diagram of ANC system.

simultaneous perturbation as a learning rule of neural networks and reported feasibility and

usefulness of the learning rule in control problems[5],[6],[7]. At the same time, the merit of

the learning rule was demonstrated in VLSI implementation of analog neural networks using

this rule[8],[9].

These optimization methods do not require gradient of an objective function to find a

minimum point, but requires only values of the function. Using a kind of difference

approximation, the method estimates the gradient of the function and updates estimator.

We apply the method to the ANC system. Then, the proposed system performs

modification of coefficients in an adaptive filter, which generates the anti-noise, using only

information measured by sensor microphone. Therefore, there is no need to estimate the

characteristics of the secondary-path.

Some preliminary experimental results for a duct system are also shown to confirm

feasibility of the proposed methods.

ANC USING THE LMS ALGORITHM

ANC is recently used in many fields such as ear protectors, noise reduction of air-

conditioning duct and noise reduction in cabin of jet plains and trains[10].

In these applications of ANC, the filtered-x LMS algorithm[11][12][13] is ordinary used.



Figure 1 shows schematic diagram of an ANC system using the filtered-x LMS algorithm.

Since basic idea of noise canceling is superimposition of two waves with opposite phase, it is

important to predict a primary unwanted wave at a point where the noise should be reduced.

THE SIMULTANEOUS PERTURBATION

The simultaneous perturbation method. There are several versions in the simultaneous

perturbation types of optimization methods; simultaneous perturbation method, one-

measurement simultaneous perturbation and time difference simultaneous perturbation. In this

section, we describe details of the simultaneous perturbation method and the time difference

simultaneous perturbation method.

Now, we consider an unknown objective function J(w)ÎÂ given by parameters wÎÂn, our

problem is to find a minimum point without using derivatives of the function J(w).

The simplest solution for the problem is the finite difference. We estimate the derivative of

the function using the finite difference. The recursive algorithm for the problem is as follows;
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where, wi is a modifying quantity for the i-th parameter. c represents a magnitude of the

perturbation and a is a positive coefficient. ei is the fundamental vector whose i-th component

is one and the others are all zero.

However, this algorithm is not efficient, because the method requires i-times measurements

for the function. If the dimension n of the parameters is large, we have to make many

observations for the objective function.

In order to overcome this problem, the simultaneous perturbation method was introduced. The

advantage of the simultaneous perturbation method is its simplicity. The simultaneous

perturbation can estimate the gradient vector using only two values of the objective function.

The simultaneous perturbation algorithm is described as follows;
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where, w is a modifying vector and wi represents the i-th element of the vector w. st

and st
i denote the sign vector and its i-th element that is 1 or �1, respectively. The sign of si

t is



randomly determined. Moreover, the sign of si
t is independent of the sign of the j-th element

sj
t of the sign vector. That is, E (si

t)=0, E (si
t s
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t)=0 (i j). E denotes the expectation, c is a

magnitude of the perturbation.

Let us briefly consider the algorithm. We expand J(wt+cst) in the right-hand side of Eq.(3) at

the point wt. Then, there exist ws1 such that
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We take an expectation of the above quantity. From the conditions of the sign vector st, we

have
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That is, Dwi
t approximates ¶Jp(wt)/¶wi

t. Since the right-hand side of Eq.(3) is an estimated

value of the first-differential coefficient in the sense of the expectation, the algorithm is a type

of a stochastic gradient method[7],[8].

An important point is that this algorithm requires only two values of the function; J(w) and

J(w+cs). That is, it requires only two measurements of the function in order to obtain

estimator of the gradient vector of the objective function.

Time difference simultaneous perturbation method. Two measurements are required in the

simultaneous perturbation algorithm. On the other hand, an algorithm that requires only one

measurement at every iterations is proposed. In this section, we describe the time difference

simultaneous perturbation algorithm proposed by Y. Maeda[14]. The algorithm is shown as

follows;
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where, Dwmax restricts maximum quantity of modification. st is the sign vector. st-1
i defined

previously. The sign vector has the same properties explained in the simultaneous

perturbation algorithm. By means of the term cst, random perturbation +c or -c are added to

all weights.

Note that the algorithm requires only one measurement of the objective function at every

iteration unlike the simultaneous perturbation algorithm.

In (6), the vector Dwt means an estimated gradient vector derived from the second procedure

(7). Perturbations are added to all weights simultaneously by the third term of (6). Since

expectation of the sign matrix is zero, the weight wt is updated only by the second term in the

sense of expectation.

In (7), a difference of the values of the function at time t and time (t-1) is divided by the

magnitude of the perturbation. This gives an estimated gradient. However, J(wt) includes an

effect of Dwt-1. When we expand J(wt) at wt-1, there exists wm such that
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Therefore, since st-1
i=±1, we have
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That is, the modifying vector Dwt is the gradient of the function in the sense of the expectation.



In other words, we can find this procedure a stochastic gradient method as same as the

simultaneous perturbation method.

IMPLEMENTATION OF THE SIMULTANEOUS PERTURBATION FOR ANC

We stated the details of the simultaneous perturbation algorithm and the time difference

simultaneous perturbation algorithm. In this section, we apply these algorithms to ANC

system. A schematic diagram for ANC system using the simultaneous perturbation or the time

difference simultaneous perturbation is shown in Figure 2. Note that the procedure does not

use the reference signal and the estimator of the secondary-path.

The simultaneous perturbation algorithm

and the time difference simultaneous

perturbation algorithm require two

measurements and one measurement at

every iterations for the objective function,

respectively. On the other hand, in ANC

system, each sampling error signal doses

not contain enough information as an

evaluation function to be minimized. That

Figure 2 Schematic diagram of ANC using the simultaneous perturbation or the time

difference simultaneous perturbation.

Figure 3 Block interval and sampling interval.
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is, the expectation of the error signal has to be used as the evaluation function. However, it is

impossible to utilize the expectation. In practical application, this quantity is replaced by a

sum of the error for a certain interval. That is, the error function is defined as follows;
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where, t denotes block number and k is sampling number in a block interval, l is total

sampling number for one block interval. Using this block interval, we evaluate the error.

Figure 3 shows the relation between the sampling period and the block interval.

For the error function (11), we use the algorithms (2) and (3), (6) and (7). Of course, w is

regarded as the weight coefficient vector in the adaptive filter of Figure 2. Every two block

intervals, the coefficients are updated by the simultaneous perturbation algorithm. The time

difference simultaneous perturbation algorithm modifies the coefficients for every one block

interval.

PRELIMINARY EXPERIMENTAL RESULTS

In this section, we show some preliminary experimental results. We consider the single-

channel experimental duct system. The setup is illustrated in Figure 4. The duct consists of

acrylic boards with the dimension of 150mm x 150mm x 1300 mm. Two microphones are

used as a reference microphone and an error microphone. A loudspeaker is mounted on one

end of the duct as a primary noise source. Another loudspeaker is used to reduce unwanted

noise around the error microphone.  TMS320C30 DSP with 32MHz and 12bits A/D, D/A

Figure 4 Block diagram of ANC system used here.



converter are used in the system. Using

this experimental system, we confirmed a

feasibility and validity of the algorithm

presented here. Noise source is 200Hz

sinusoidal wave. The adaptive filter used

here is a five-tap FIR filter. We have to

increase number of tap in the adaptive

filter for actual application. However, this

setup is used to confirm very basic

feasibility of our scheme.

Figure 5 shows signals measured by the

error microphone with and without ANC

using the simultaneous perturbation method.

Their power spectra are shown in Figure 6,

respectively.

At 200Hz, the ANC system has about 25db

attenuation.

Figure 7 shows signals measured by the

error microphone with and without ANC

using the time difference simultaneous

perturbation method.  Their power spectra

are shown in Figure 8, respectively. In this

case, the system has about 15db attenuation

at 200Hz.

CONCLUSION

In this paper, we presented an ANC system

Figure 6 Power spectra of the result using

the simultaneous perturbation.

Figure 5 Experimental result using the

simultaneous perturbation.

Figure 7 Experimental result using the time

difference simultaneous perturbation.



using the simultaneous perturbation

method and the time difference

simultaneous perturbation method. These

methods optimize unknown functions

without using derivatives of the function.

Therefore, the presented ANC algorithms

using these methods do not require any

estimation of the so-called secondary-

path transfer function. Some preliminary

experimental results were shown.

We emphasized only on an algorithmic

or a principle aspect of the simultaneous perturbation types of optimization method for the

ANC system. Experiments described here are restricted. For example, the noise source is

sinusoidal wave. From technical point of view, further research is necessary.
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