QUANTITATIVE DECISION SUPPORT FOR UPGRADING
COMPLEX SYSTEMS OF SYSTEMS

By

RONALD R. LUMAN

B.A. May 1976, Middlebury College
M.S. May 1978, Michigan State University
M.S. May 1986, Johns Hopkins University

A Dissertation submitted to

The Faculty of

The School of Engineering and Applied Science
of the George Washington University in partial satisfaction
of the requirements for the degree of Doctor of Science

November 19, 1997

Dissertation directed by

Dr. Howard Eisner
Professor of Engineering Management
Systems Engineering
ABSTRACT

The engineering of complex systems of systems has been receiving greatly increased amounts of attention in recent years. Within the Department of Defense, “system of systems” terminology is now widely used to describe how the successful, combined operation of many platforms, weapon systems, and communication systems is necessary to achieve an overall warfare objective, especially in joint operations. Although the characteristics and system engineering challenges associated with systems of systems are becoming well understood, effective architecting approaches that enable cost/performance trades are still immature.

A systematic approach to considering how best to upgrade specific, complex systems of systems is postulated and demonstrated. The process treats cost as the independent variable (CAIV) and seeks to find the “best” point design that may involve upgrading all component systems simultaneously, not just one at a time. The process has been demonstrated on a naval mine countermeasures (MCM) system of systems representation of sufficient complexity and detail to demonstrate the feasibility of the approach. The process formulates a constrained, nonlinear optimization problem whose objective function is a representation of the top-level measure of effectiveness (MOE), with constraints represented by functionalized Performance Based Cost Models, secondary MOEs, and technology-driven bounds on system measures of performance (MOPs). Both closed-form and simulation-based optimization approaches have been demonstrated and differences quantified, including the suboptimality of considering just one system at a time.

Due to the nature of complex system of systems interactions, implementation of this optimization technique on problems of national interest will require a simulation to represent the mapping of system MOPs to single system MOEs and on to the overarching system of systems MOE. A stochastic simulation of the MCM system of systems was therefore also implemented and optimized utilizing a constrained variant of the Simultaneous Perturbation Stochastic Approximation method.

This process therefore demonstrates a disciplined, quantitative approach to developing system of systems upgrade options for very complex situations, which can result in more effective and comprehensive systems acquisition and technology investment strategies. A secondary benefit is that the process can be used as a framework for the utilization of campaign-level simulations to support acquisition decisions.
TABLE OF CONTENTS

ABSTRACT ... ii

TABLE OF CONTENTS ... iii

LIST OF ILLUSTRATIONS .. v

Chapter

1. INTRODUCTION ... 1
 Background ... 1
 Systems of Systems Definitions and Concepts ... 3

2. MANAGEMENT ISSUES .. 6
 Usual Approach .. 6
 System of Systems Upgrade Decision Objectives 9

3. APPROACH ... 12
 Dissertation Objective ... 12
 Proposed Quantitative Decision Support Process 13
 Development Approach ... 15

4. GENERAL SYSTEM OF SYSTEMS PERFORMANCE MODEL 20

5. MINE COUNTERMEASURES SYSTEM OF SYSTEMS PERFORMANCE
 MODEL ... 27
 S: MCM Reconnaissance System ... 29
 S: MCM Neutralization System ... 33
 S: MCM Clearance System of Systems ... 36
 Performance Based Cost Model (PBCM) and Parameter Bounds 41

6. OPTIMIZATION APPROACH .. 59
 Applicable Methods ... 59
 Constrained Simultaneous Perturbation Stochastic Approximation
 (SPSA) Method ... 64
 Model Reformulation via Penalty Function Methods 71
 Limitations and Scope of Research ... 76
7. PHASE I RESULTS: CLOSED FORM OBJECTIVE FUNCTION 80
 Constrained SQP .. 81
 Single System vs. System of Systems Optimization 85
 Constrained SQP Optimization Via Penalty Function Methods 90
 First Order Constrained SPSA Optimization Via Penalty Function
 Method ... 94
 Second Order Constrained SPSA Optimization Via Penalty Function
 Method ... 96

8. PHASE II RESULTS: SIMULATION OBJECTIVE FUNCTION 103
 Simulation Description .. 103
 Second Order Constrained SPSA Optimization Via Penalty Function and
 Simulation .. 104
 Practical Selection of Initial MOP Estimates and Final Results 109

9. VERIFICATION AND VALIDATION ISSUES ... 117
 What is Important and Why ... 119
 Selection Strategies For Ultimate Design Of The Process VV&A
 Approach(es) .. 122
 Perspectives on the Limitations of V&V Approaches 123

10. SUMMARY AND CONCLUSIONS ... 125
 Conclusions .. 126
 Future Research .. 128

APPENDIX A: Constrained SQP Optimization MATLAB® Code, Example, and
 Results .. 130

APPENDIX B: Single System vs. System of Systems Optimization 138

APPENDIX C: Constrained SQP Optimization (Penalty Function) MATLAB®
 Code and Results .. 153

APPENDIX D: First Order Constrained SPSA MATLAB® Code, Example, and
 Results .. 160

APPENDIX E: Second Order Constrained SPSA MATLAB® Code
 and Results .. 173

APPENDIX F: MCM System of Systems MATLAB® Simulation Code and
 Results .. 184
LIST OF ILLUSTRATIONS

Figure

1. System of Systems (S2) Engineering Elements ... 5
2. Minefield Layout and Area to be Searched/Cleared ... 29
3. Probability of Localization as a Function of Re-Acquisition Range......................... 35
4. Clearance Confidence Level as a Function of Required Clearance Rate 39
5. Mine Clearance System of Systems Parameter Dependency Diagram 40
7. PBCM for Area Coverage Rate ... 44
8. PBCM for Classification Probability ... 46
9. PBCM for False Alarm Rate .. 47
10. PBCM for Time to Classify ... 49
11. PBCM for Navigation Accuracy .. 51
12. PBCM for Re-Acquisition Range ... 53
13. PBCM for Time to Prosecute False Target ... 55
14. PBCM for Time to Neutralize .. 57
15. Summary of MCM System of Systems Optimization Problem 58
16. Asymptotic Penalty Gain Function ... 74
17. Constrained SQP Optimization Results for S .. 83
18. Single System Optimization Results ... 87
19. Single System Optimization Assuming Better/Worse Other System Performance ... 89
20. Constrained SQP Optimization (Penalty Function) Results for S 92
21. Penalty Function vs. Baseline Numerical Comparison .. 93
22. 1SPSA Results—5000 Function Evaluations ... 95
23. 2SPSA Results—5000 Function Evaluations ... 97
24. 2SPSA Initialized at Baseline Optimum ... 98
25. Comparison of System of Systems MOE Results ... 99
26. Comparison of Optimization Algorithm MOE, Cost, and q(x) Results................. 100
27. Comparison of 1SPSA vs. 2SPSA Clearance Rate Results .. 101
28. Comparison of 1SPSA vs. 2SPSA System of Systems Cost Results 102
29. MCM Simulation Block Diagram ... 103
30. 2SPSA Simulation Results—5000 Function Evaluations ... 107
31. 2SPSA Simulation vs. Analytic Model Results .. 108
32. 2SPSA Simulation Results for Clearance Rate ... 108
33. 2SPSA Simulation Results (MOE and Normalized MOPs)--2000 Iterations with Ramp Interpolation Initialization ... 111
34. 2SPSA Simulation Results (MOP Values)--2000 Iterations with Ramp Interpolation Initialization .. 112
35. 2SPSA Simulation vs. Analytic Model Results .. 113
36. 2SPSA Simulation Clearance Rate Results ... 114
37. 2SPSA Simulation Cost Results ... 114
38. 2SPSA Simulation Costfactor Results by Individual System 115
CHAPTER 1

INTRODUCTION

Background

The engineering of complex systems of systems has been receiving greatly increased amounts of attention recently. Within the Department of Defense, system of systems terminology is now widely used to describe how the successful, combined operation of many platforms, weapon systems, and communication systems is necessary to achieve an overall warfare objective, especially in joint operations. This increased level of complexity has become a concern at the highest levels of command, as General John Sheehan, Commander in Chief of U.S. Atlantic Forces, recently wrote:

“Victory will depend on the ability to master the ‘system of systems’ composed of multiservice hard- and soft-kill capabilities linked by advanced information technologies.”

And Admiral Owens, Vice Chairman of the Joint Chiefs of Staff notes that systems of systems have arisen not by design, but in response to the vision of users who recognize the tremendous potential of systems working together towards broad, common objectives:

“We have cultivated a planning programming and budgeting system that tends to handle programs as discrete entities...yet, the interactions and synergisms of these systems constitute something new and very important. What is happening is driven in part by broad conceptual architectures---and in part by serendipity: It is the creation of a new system of systems.”

Although the characteristics and system engineering challenges associated with systems of systems are becoming well understood, effective architecting approaches are still immature for systems of systems.\(^3\)

This dissertation specifically addresses the issue of how best to upgrade a complex system of systems, once the need to do so has been realized. The system of systems is considered as a whole entity and a quantitative methodology for determination of an optimal upgrade suite under cost and technology constraints is demonstrated. The methodology utilizes a multi-disciplinary approach including operations analysis, cost modeling, nonlinear optimization, and stochastic modeling and simulation.

Systems of Systems Definitions and Concepts

A complex system of systems is generally viewed as having the following characteristics:5

- comprised of several independently acquired systems, each under a nominal systems engineering process
- time phasing between each system’s development is arbitrary and not contractually related
- system couplings are neither totally dependent or independent, but rather interdependent
- individual systems are generally uni-functional when viewed from the system of systems perspective
- optimization of each system does not guarantee overall system of systems optimization
- combined operation of the systems constitutes and represents satisfaction of an overall mission or objective

Some examples of existing, complex systems of systems that exhibit all of these characteristics are:

- National Aviation System: planes, airports, airways, air traffic control
- Naval Mine Countermeasures Force: search, sweep, neutralization systems
- Naval Surface Fire Support: reconnaissance, targeting, weapon systems
- Theater Ballistic Missile Defense: surveillance, tracking, interceptor systems

Although it is difficult to know where to draw the line to form a boundary to describe a particular system of systems, it is generally viewed as a coherent entity when there is a recognition that overall management control over the autonomously managed systems has become mandatory. Unfortunately, it is rare that a large, complex system of systems is developed under a single, architecture resulting from a strategic development decision. Component systems are developed one by one, and the full system of systems evolves over a period of time that may be measured in decades as various leadership entities develop enhanced visions of how systems can be used together to achieve larger objectives. And although each system may have been justified and designed based upon sound system engineering principles to fulfill a perceived functional or performance need, its requirements and design most likely did not develop in response to concerns over the complete system of systems objectives.

A framework for conducting system engineering at the system of systems (S2) level has been developed, but has not achieved widespread acceptance. Figure 1 lists the elements of S2 Engineering and highlights those aspects that require a quantitative analysis of alternatives to upgrading an extant system of systems—the subject of this dissertation.

Figure 1. System of Systems (S2) Engineering Elements
CHAPTER 2

MANAGEMENT ISSUES

Usual Approach

Often, as in the case of the DoD, a program executive officer will be responsible for a collection of system acquisition programs, each of which can be viewed as part of a larger system of systems—though this collection may not necessarily fully comprise that system of systems. Were (s)he to have the luxury to architect a complete system of systems from scratch, it could be done by applying an extension of the usual system engineering approach, treating each acquisition system as a sub-system of the larger entity.\(^7\)

Rather than architecting a system of systems in its entirety, the programs executive is often faced with deciding how best to *upgrade* an existing system of systems. This generally means either beginning a new acquisition program to add a new system to the overall system of systems (additional functionality) or inserting advanced technology into an existing system via the upgrade or modification process.\(^8\) Significant constraints and boundary conditions are placed upon these executives, including budgets, politics, ill-defined and competing mission objectives, and of course, technology itself. Many new initiatives are underway under the umbrella of “Acquisition Reform” to encourage

acceleration of systems development time, delivery of affordable systems, and risk mitigation through adoption of commercial off the shelf (COTS) components or technologies. These attempts at accelerating the usual acquisition cycle include such innovative and complementary measures as Advanced Technology Demonstrations (ATDs) and Advanced Capability Technology Demonstrations (ACTDs); often described, respectively, as "technology pushes" and "military need pulls\[9\].

Although these initiatives promote the quick fielding of new, militarily useful technologies, they do not represent a disciplined approach to considering how best to upgrade specific, complex systems of systems under the constraints mentioned above. Development of such an approach is the objective of this dissertation effort.

The usual approach in DoD to assessing whether to go forward with a new system development has been to conduct a Cost and Operational Effectiveness Analysis (COEA). The objective of the COEA (or the replacement “analysis of alternatives” procedure) is to determine whether the proposed system is the most cost effective alternative to meeting a certified military need\[10\]. A typical analysis approach is to utilize modeling and simulation (M&S) to estimate the marginal utility of proposed system point designs (across a range of system measures of performance (MOPs)) to a larger warfare or campaign objective. The simulation is run on a carefully selected set of applicable scenarios with and without the system alternatives to determine the best alternative among those hypothesized. A multi-objective metric that reflects costs and other relevant

factors may be used to compare alternatives. This metric may attempt to reflect expert opinion as to military value of the alternatives that are not captured by the quantitative analysis due to limitations of fidelity or scope. However, the primary shortcoming of the general approach to making upgrade decisions to a system of systems is that just one component system is considered at a time, in a “stovepipe” fashion. It cannot generate the “best” alternative from the system of systems perspective, since it considers replacement or addition of just one component system rather than enhancements across the full system of systems.

A significant observation is that the DoD acquisition community strongly prefers quantitative “engineering analysis” over qualitative “decision support” methods such as the Analytic Hierarchy Process. This is perhaps because the community is dominated by engineers and scientists who eschew attempts to convert opinion and judgments into metrics—hence the heavy emphasis on modeling and simulation as the basis for decisionmaking. A recent article in IEEE Engineering Management shows this to be widespread throughout the technical and scientific community.\(^\text{11}\)

In summary, we are focused on “upgrading” vs. “design” of systems of systems because (1) all proposed systems/upgrades must fit into an extant system of systems, (2) there is rarely an opportunity to architect a major system of systems from scratch, (3) requirements usually evolve in consideration of legacy systems’ capabilities and management, and (4) we can often take advantage of available M&S that can be adapted for decision support use if we take the view of upgrading an extant system of systems.

System of Systems Upgrade Decision Objectives

The decision maker is generally trying to solve one of two problems, though not always in an explicit manner: (1) maximize the system of systems’ performance subject to a cost constraint or (2) minimize additional cost under performance constraints. Cost constraints usually appear very rigid at the outset. Recent DoD acquisition reform initiatives have softened hard budget allocations in favor of an approach known as Cost as Independent Variable (CAIV). Application of the CAIV approach requires a representation of a system’s performance as a function of cost, referred to as a Performance-Based Cost Model (PBCM). This is almost never applied at the system of systems level, however. Explicit performance constraints are expressed as minimum performance requirements and may be self-imposed for political or strategic reasons, or perhaps externally mandated due to advanced competition/military threats. Implicit performance constraints are generally due to technological limitations. Again, the effects of component systems’ performance constraints on overall system of systems’ effectiveness is almost never well-understood.

These upgrade decisions are generally made and reviewed annually for all warfare or program areas as part of strategic planning and budgeting processes in DoD. Upgrade options generally take four forms, depending upon which forcing conditions are most pressing:

1. a new type of system (i.e., additional functionality) must be added to the system of systems
2. additional numbers of existing component systems must be procured (enlarging the scope and capability of the system of systems and offering an opportunity to insert advanced technology)

3. existing component systems must be replaced due to aging or obsolescence (also offering an opportunity to enhance the system of systems’ performance and/or functionality through advanced technology insertion)

4. existing component systems must be upgraded due to requirements pressure or availability of advanced technology

Of course, final acquisition upgrade decisions are based upon a variety of factors, many of which are not amenable to quantification and objective analyses. However, decision makers generally agree that their decisions are easier when a thoughtful analysis that provides a measure of the marginal utility of each upgrade option to their system of systems’ effectiveness is available. This is easy to say, but hard to do. The most common approach in DoD to getting a grip on system of systems’ effectiveness is through the use of wargames and campaign-level simulations. Unfortunately, these approaches are often insensitive to all but the most dramatic changes in capability. That is, it is often impossible to isolate the contribution to an overall campaign due to small changes in component systems’ functionality and/or performance. Therefore, acquisition trade analyses similar to the COEA M&S analysis described above are often done on a scale more amenable to quantitative analysis. Some of the challenges inherent in objectively trading off system upgrade options:

- the system of systems itself is not well defined (i.e., what is the boundary of the system of systems with regard to environment and other systems?)
- the measures of effectiveness (MOEs) for the system of systems are not well-defined
- field data on (MOPs) for existing component systems is limited or altogether non-existent (a challenging M&S VV&A issue)
- MOPs and CONOPS for upgrade options are not well-defined
- budget constraints are not fixed and usually shrinking (both current and out-year)
- marginal utility of proposed additional functionality and/or enhanced performance is not well understood

Regarding models and simulation, a well-accepted and validated representation of the system of systems is not usually available that would be suitable for MOE/MOP analysis purposes. This is a reflection of the usual single-system focus as well as the tendency to create sophisticated M&S first and seek ways to use it afterwards.
CHAPTER 3

APPROACH

Dissertation Objective

The dissertation objective is to develop a quantitative process/methodology to support system of systems upgrade decisions so we can answer the question: “From the system of systems perspective, where are the limited upgrade resources best applied?”

The overall approach is to develop and demonstrate a process that will enable a domain expert systems architect or engineering team to generate an optimal suite of upgrade design requirements subject to stated constraints in accordance with a specified MOE for a particular complex system of systems. This process will be demonstrated on a real world, contemporary system of systems in sufficient detail to demonstrate the feasibility of the approach—a practical, proof-of-principle demonstration. The mature process will feature a constrained, nonlinear optimization algorithm whose objective function is a simulation that represents the defined system of systems’ effectiveness. This is necessary to take advantage of substantial investments in system of systems M&S and to avoid unnecessary simplification of the system abstraction required to obtain closed form expressions of typical, complex systems of systems behavior. As is usually the case, a balance must be struck between model fidelity and execution time due to intense computational burden of advanced M&S. These considerations will drive selection of the system of systems’ MOE/MOP and PBCM structure.
Proposed System of Systems Quantitative Decision Support Process

Key steps of the process are as follows:

1. Define the overall system of systems, its components, and its missions or scenarios of interest.

2. Define critical MOPs and MOEs:
 a) overarching MOE for the full system of systems that expresses the decision makers’ objective
 b) one characteristic MOE for each system and how it contributes to the overarching MOE
 c) component systems’ MOPs

3. Specify initial boundary conditions for the upgrade process
 a) cost constraints on component systems and the overall system of systems
 b) technological and requirements constraints on MOPs
 c) force structure constraints, such as minimum and maximum numbers of each type of system
 d) potential secondary MOE threshold function constraint

4. Formulate Performance Based Cost Models (PBCM) for each component system by parameterizing system cost as a function of its MOPs.

5. Formulate an appropriate first order model that will capture the mapping from component system MOPs to system MOEs and eventually the overarching MOE. Alternatively, select an appropriate M&S implementation that evaluates the desired objective function and MOE constraints as a function of component
systems’ MOPs. (Constructing expressions that model the system of systems’
top-level performance is important for initial problem understanding, but will
probably not be sufficient to adequately capture system interactions and
performance drivers. It is envisioned that this step will expose the requirement to
utilize advanced M&S to represent sufficient complexity necessary to provide
credible analyses to support decisions regarding complex, high value systems.)

6. Solve the resulting constrained, nonlinear (stochastic) system of systems
performance optimization problem under sets of constraints and scenarios as
defined by the expert system architect that are sufficiently broad to provide a
complete range of applicable upgrade options to the decision maker. [A solution
to a specific constrained problem formulation yields parameters that represent one
system of systems requirements suite, or upgrade option. The solution will still
require further evaluation to determine design implications for each system. In
this way, the process provides support to the decision process rather than make
the decision per se.]

7. Effectively communicate results of the process to the decision maker or decision
making body.
Development Approach

The process will be developed utilizing an evolutionary prototyping approach in a cycle of problem formulation, solution, evaluation, refinement, expansion and generalization. Critical stages in the development are as follows:

- Formulate the general nonlinear optimization problem for this process. The particular form has two nonlinear constraints, upper and lower MOP bounds, and a nonlinear objective function, as shown in Chapter 4.

- Apply the optimization process to an existing, complex system of systems for which the author has current domain expertise: naval mine countermeasures (MCM).

Model formulation has two parts:

1. **System Performance Model.** A simplified, but realistic performance model of a dual system of systems is described in Chapter 5, in which closed form expressions for MOPs, MOEs, and constraints are developed. Through this example, it became clear that the objective function is generally a non-linear function of all component systems’ MOPs. This non-linear objective function therefore represents complex interactions between component systems. As simplifying assumptions (engagement rules, environmental dependencies, etc.) are relaxed, it becomes impractical to obtain closed-form expressions that map MOPs up to system of system level MOEs. However, it is assumed that the rules governing the interaction between the component systems and the environment are known and can be simulated.
2. **System Cost Model.** A variant of a “Cost-Based Performance Model” is also formulated in Chapter 5, in which cost is parameterized by the MOPs. Essentially, each MOP is considered to be a cost driver to an identifiable subsystem, who’s cost can be estimated based on the cost-driver MOP values.

- Investigate various applicable optimization techniques and select the most promising for this particular application. Although constrained, nonlinear optimization does not appear to have yet been applied to the system of systems upgrade problem, optimization and simulation have been combined before, and the literature has been further examined for practical insights. Algorithm efficiency has been a primary consideration, with the long term perspective that the objective function will eventually be evaluated via simulation (see Chapter 6).

- Solve the MCM closed form problem to gain insight into process viability and experience with the candidate search techniques. Then, revise the process and general problem formulation as necessary.

- Generalize and demonstrate the process for the case where it is impractical to obtain closed form expressions for the objective function to sufficiently represent the complex interactions of systems, environment, and scenario. For a complex system of systems, the use of advanced modeling and simulation will be necessary to overcome the difficulties in obtaining closed form expressions for the objective function.

Embedding a simulation inside a non-linear, constrained search algorithm has been done before to determine control settings on a variety of single system simulation types5,6. Extension of that application to efficiently determine system design parameters in the system of systems context described here can revolutionize the way campaign-level M&S is utilized to support acquisition decisions. A variety of simulation products and system domains were considered for this proof-of-concept analysis. Candidate system of system domains that were investigated to varying degrees include:

- Naval MCM. Systems: ships, aircraft, detection, classification, identification, neutralization sensors and devices.

Balancing simulation (1) availability, (2) validity, (3) applicability (including PBCM aspects), (4) efficiency, and (5) author’s domain expertise, it was decided to generate an analytic naval MCM system of systems model (Chapter 5) and implement it both analytically (expected value sense) and as a Monte Carlo Simulation using MATLAB® (Chapters 7 and 8). This facilitates a self-consistent comparison of the closed form analytic model results and those obtained via simulation.

Finally, the fully developed process should be compared against existing processes and evaluated for its utility to the decision maker when attempting to upgrade a complex system of systems. We are investigating a new process for supporting acquisition decisions, which is not unlike an expert system, except that we have no accepted knowledge base to capture. For expert systems, validation efforts generally concentrate on comparisons against documented test cases. O’Keefe et al17 recommend testing against a small number of complex cases and asking a panel of experts to assess how well the process handles them.

The appropriate process to compare against is that of the COEA. Unfortunately, utilization of quantitative methods in COEAs are somewhat unique to each study, and concentrate on a single system. Furthermore, optimization methods have not been

applied in COEA analyses in the sense of a rigorous “search” for the best set of system requirements. Rather, a “best” option is selected from a finite set of point designs/requirements.

The comparison approach selected here (Chapter 7) is to compare system of systems optimization results to results obtained by optimizing one system at a time. This verifies implementation, self-consistency, and quantifies the improvement to be realized in taking the system of systems viewpoint for the MCM situation. It also highlights assumptions (implicit and explicit) that a single system analyst must make concerning the other systems in the system of systems, and assesses the impact of self-consistent but erroneous assumptions.
CHAPTER 4

GENERAL SYSTEM OF SYSTEMS PERFORMANCE MODEL

Consider n types of systems, S_i, that comprise a system of systems, S, with the following characteristics and constraints:

- $S = \{S_1, \ldots, S_n\}$
 [note: could index as S_{ij} to indicate the j^{th} system of type i]

- There are m_i systems of type i, and the total number of systems is

 $$m = \sum_{i=1}^{n} m_i, \quad \mathbf{m} = \{m_1, \ldots, m_n\}.$$
 The minimum number of each system type required for the system of systems is designated as \mathbf{m}^L.

- Each system type has a set of r_i measures of performance (MOP):

 $$\mathbf{p}_i = \{p_{i,1}, \ldots, p_{i,n}\}.$$
 Thus each \mathbf{p}_i has dimension r_i and $r = \sum_{i=1}^{n} r_i$.

- Each system type has one overall measure of effectiveness (MOE),

 $$E_i = f_i (\mathbf{m}, \mathbf{p}_1, \ldots, \mathbf{p}_n),$$
 developed specifically to reflect how it contributes to the overarching MOE for S. Each component system’s effectiveness may depend upon the MOPs of other systems in the system of systems as well as how many of each type. Implications of this point are further discussed below and are illustrated by the example in Chapter 5.
• Each system’s MOPs are constrained by low performance threshold specification values, \(p^*_i \), and realistic technology limitations at the high performance end, resulting in the following upper and lower bound constraints: \(p^{L_i} \leq p_i \leq p^{U_i} \) or \(p^{L_j} \leq p_j \leq p^{U_j} \), \(\forall j \). Note that for some parameters, such as navigation accuracy, small values are better than large values, hence \(p^*_i \) is not simply the lower bound, \(p^{L_i} \). In the most general case, these MOP constraints could be functions of time as well, in anticipation of requirements creep and advancing technology.

• Each system’s unit cost is a (possibly nonlinear) function of performance, expressed in terms of its critical MOPs: \(c_i = h_i(p_i) \), \(c = \{c_1, \ldots, c_n\} \). We denote \(c^*_i = h_i(p^*_i) \) as the cost associated with the threshold system. This performance based cost model (PBCM) is generated by considering each critical MOP as a cost driver of a particular subsystem, whose cost can be parameterized on that MOP. (Clearly, more complex cost models representing various aspects of life cycle costs could be formulated, but this form is sufficiently complex to demonstrate feasibility.) Total system of systems’ cost is then: \(C = mc^T \).

The system of systems has one overarching performance metric, \(E \), a function of each system’s overall MOE and the number of systems: \(E = g(m, E_1, \ldots, E_n) \). If any \(E_i \) depends upon not just \(p_i \) but some elements of \(p_j \) where \(i \neq j \) then the system of systems is interdependent. So in general, \(E \) will turn out to be complicated function of
the full set of component systems’ MOPs: \(E = G(m, p_1, \ldots, p_n) \). That is, some systems’ performance impacts other systems’ performance.

When describing a system of systems comprised of relatively simple component systems, or utilizing simplified models of complex systems, each \(f_i(m, p_1, \ldots, p_n) \) can be expressed in closed form. The simplified (but realistic) mine countermeasures example in Chapter 5 develops a closed form, nonlinear expression for \(E \), which is intuitive and quite useful. However, MOPs are themselves typically sensitive to scenarios, concepts of operation (CONOPs), and environments. So in order to obtain representative, robust, full fidelity, results it will generally be necessary to utilize a simulation to evaluate each \(f_i \) and of course, \(G \).

The usual approach when considering upgrades and/or new systems is to treat them individually, perhaps never even defining the full system of systems to which it belongs. That is, define one overarching MOE (or attribute) for the component system and evaluate alternatives in accordance with a cost/MOE ratio. In some cases, multi-attribute evaluations are conducted, (with a weighted factor representing impacts on the larger system) but this is not widely done in DoD systems Cost Effectiveness and Analysis (COEA) studies. This individualized approach is equivalent to assuming that all component systems’ MOEs are independent of each other. Under that assumption, maximizing overall effectiveness, \(E \), is a matter of maximizing each individual system’s effectiveness, perhaps subject to an overall constraint on cost. However, even this approach of constraining overall system of systems’ cost is not widely done, as the tendency is to handle each system and its constraints individually, which can lead to poor
overall decisions from the system of systems perspective—especially with limited resources.

It should also be noted that the set of MOEs appropriate for this system of systems analysis, \(\{ E_i \} \), are not necessarily the same MOEs that are appropriate for evaluating each system apart from the full system of systems. A single system evaluation attempts to reflect requirements on the system’s performance levels by attempting to combine all critical design MOPs and measures of value to the larger system of systems into one decision metric. When considering the full system of systems as proposed here, the individual systems MOE set, \(\{ E_i \} \), should be formulated specifically to represent each system’s contribution to the overarching quantitative effectiveness measure, \(E \). Looking ahead to the optimization algorithm, it will not be necessary to express each \(E_i \) separately, but it is good to do so for later insight as to what the particular (or marginal) contribution of each system is to the overarching MOE.

In addition to the constraints on measures of performance shown above, several other constraint types can occur and should be considered:

- **“Force structure” constraints.** There is generally a practical operational or programmatic limitation as to how many systems of each type can comprise the system of systems, known as “force structure” constraints:
 \[
 m^L \leq m \leq m^U, \text{ or } m_i^L \leq m_i \leq m_i^U, \forall i.
 \]

- **System effectiveness constraints.** In a similar fashion to the MOP constraints, there is generally a minimum threshold for each system’s measure of effectiveness (MOE). This can be generated through a technical performance
analysis or (more likely) because the existing component system performs at the threshold level and it is desired to meet or exceed that level. Therefore, the threshold MOE for each system, S_i, is: $E_i^* = f_i^*(m^i, p^i_1, \ldots, p^i_n) \leq E_i$, $\forall i$.

When trying to minimize cost subject to performance constraints, there should be a minimum overall system of systems MOE constraint as well: $E_L^r \leq E_r$.

- **Cost constraints.** When applicable, there can be cost constraints on individual systems as well as the full system of systems: $C \leq C^U$ and $c \leq c^U$. Implicitly, c is also bounded below due to the presence of minimum performance thresholds as discussed above. Hence, we have: $c^* \leq c \leq c^U$. For the purposes of this study, we will take the system of systems viewpoint, and consider only the cost constraint at the macro level, $C \leq C^U$.

- **Secondary MOE as quality constraint.** As will be illustrated by the MCM example in Chapter 5, it may be necessary to specify a secondary overall MOE for the system of systems which will act as a quality constraint. This can be necessary in the case where the overall MOE is time to complete the system of systems functionality. To ensure that the function is completed to a minimum performance threshold it is necessary to add the secondary MOE as a quality constraint: $q(m, p_1, \ldots, p_n) \geq q_T$.

Definition of system of systems upgrade options is accomplished through control of the constraint set. For example, if only certain component systems are candidates for upgrades (sometimes referred to as “advanced technology insertion”), then their parameters can be constrained to current values—in this manner, the analysis retains full
consideration of their influence on the overall system of systems while still investigating upgrade options and their effects on the stable system components as well. The option of replacing some number of existing component systems with advanced systems of the same type while retaining some of the existing systems can be expressed by fixing \(m_i \) and defining a new system, \(S_{i+1} \), of essentially the same type but with its MOPs and cost allowed to be variable.

There are two general cases of interest in when considering upgrading (or designing) an existing system of systems, summarized below:

<table>
<thead>
<tr>
<th>Case 1: Maximize (S = {S_1, \ldots, S_n}) system of systems performance subject to force level, technology, cost, and performance threshold constraints:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max (E = g(m, E_1, \ldots, E_n) = G(m, p_1, \ldots, p_n)) where (E_i = f(m, p_1, \ldots, p_n)), subject to:</td>
</tr>
<tr>
<td>(m^L \leq m \leq m^U)</td>
</tr>
<tr>
<td>(p_i^L \leq p_i \leq p_i^U) and (E_i^* \leq E_i, \forall i) where (E_i^* = f(m^L, p_i^, \ldots, p_n^)).</td>
</tr>
<tr>
<td>(C \leq C^U) and (c \leq c^U)</td>
</tr>
<tr>
<td>([q(m, p_1, \ldots, p_n) \geq q_T), potential secondary MOE performance threshold function constraint]</td>
</tr>
</tbody>
</table>
Case 2: Minimize $S = \{S_1, \ldots, S_n\}$ system of systems cost subject to performance, force level, technology, and individual systems cost constraints:

$$\text{Min} \quad C = mc^T, \text{ subject to:}$$

$$E_i^L \leq E \quad \text{where} \quad E = g(m, E_1, \ldots, E_n) = G(m, p_1, \ldots, p_n) \quad \text{and} \quad E_i = f_i(m, p_1, \ldots, p_n),$$

$$m^L \leq m \leq m^U,$$

$$p_i^L \leq p_i \leq p_i^U \quad \text{and} \quad E_i^* \leq E_i, \forall i \quad \text{where} \quad E_i^* = f_i(m^L, p_1^*, \ldots, p_n^*).$$

$$[q(m, p_1, \ldots, p_n) \geq q_T, \text{ potential secondary MOE performance threshold function constraint}]$$

When addressing the system of systems upgrade from the CAIV perspective, we would optimize a sequence of Case 1 problems formed by discretely parameterizing the system of systems cost constraint. This is accomplished by defining a sequence of upper cost bounds, $C_k^U = \text{costfactor}_k \cdot C^*$, where C^* is the cost to produce the threshold system of systems defined by the parameter set, $\{m^L, p_1^*, \ldots, p_n^*\}$.
CHAPTER 5

MINE COUNTERMEASURES SYTEM OF SYSTEMS PERFORMANCE MODEL

This appendix describes a simplified, but realistic model of naval mine countermeasures (MCM) operations and systems. This limited system of systems consists of two systems: a minefield reconnaissance system and a separate, mine neutralization system. The reconnaissance system first conducts a reconnaissance survey of the entire suspected minefield area, attempting to detect, classify, and localize mine-like objects. These contacts are then passed to the neutralization system, which must re-acquire the contacts and neutralize each mine-like object, if necessary (that is, if the mine-like object is indeed identified as an actual mine). System descriptions, functionality, measures of effectiveness, measures of performance, and PBCM are provided in sufficient detail to support system of system upgrade decisions and trade-off analyses.

Before formulating the system of system’s model as defined in Chapter 4, we first define the following mine countermeasures analysis terminology:

\(\alpha \)
Desired MCM area clearance rate: at least 100\(\alpha \)% of the mines have been cleared.

\(A \)
Reconnaissance system area coverage rate during detection pass (nm\(^2\)/day)

\(d_{\text{mines}} \)
Average distance between mines (yards)

\(F_0 \)
Number of false targets contained in the MCM area, \(S_{\text{minefield}} \)

\(\lambda \)
Minefield density (mines/nm\(^2\))

\(\lambda_{ft} \)
False target (non-mine minelike object) density (objects/nm\(^2\));

\(M_0 \)
Number of mines originally laid in the MCM area, \(S_{\text{minefield}} \)

\(P_{\alpha} \)
Probability that the MCM area will be cleared to the desired minefield clearance rate, \(\alpha \).

\(p \)
Mine clearance probability: probability that a mine randomly placed in the MCM area will be cleared.

\(P_{c} \)
Probability of correctly classifying a detection as mine-like or nonmine-like, at range \(R_{c} \)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_d</td>
<td>Detection probability at range R_d</td>
</tr>
<tr>
<td>P_{fa}</td>
<td>Detection false alarm rate, (false alarms/nm2)</td>
</tr>
<tr>
<td>P_{ID}</td>
<td>Probability of correct ID; $P_{ID}=1$ assumed for military minefields</td>
</tr>
<tr>
<td>P_L</td>
<td>Localization (or re-acquisition) probability</td>
</tr>
<tr>
<td>P_n</td>
<td>Neutralization probability; $P_n=1$ assumed for these operations</td>
</tr>
<tr>
<td>R_c</td>
<td>Minelike object classification range (yards)</td>
</tr>
<tr>
<td>R_d</td>
<td>Target detection range (yards)</td>
</tr>
<tr>
<td>R_r</td>
<td>Range at which S_2 has an 80% chance of re-acquiring S_1’s detections</td>
</tr>
<tr>
<td>σ</td>
<td>Standard deviation of minelike object localization error (yards)</td>
</tr>
<tr>
<td>$S_{\text{minefield}}$</td>
<td>Area to be searched (nm2), referred to as the MCM area</td>
</tr>
<tr>
<td>T_c</td>
<td>Time required to classify a mine (min)</td>
</tr>
<tr>
<td>T_{class}</td>
<td>Time required to classify all detections within $S_{\text{minefield}}$ (hours)</td>
</tr>
<tr>
<td>T_{detect}</td>
<td>Time required to complete detection pass through $S_{\text{minefield}}$ (hours)</td>
</tr>
<tr>
<td>T_n</td>
<td>Time spent neutralizing (prosecuting) a classified mine (min)</td>
</tr>
<tr>
<td>T_{pf}</td>
<td>Time spent prosecuting a non-mine classified as a mine (min) or time spent unsuccessfully attempting to re-acquire a correctly classified mine.</td>
</tr>
<tr>
<td>V_{transit}</td>
<td>Reconnaissance system speed during detection and transit (knots)</td>
</tr>
<tr>
<td>V_{class}</td>
<td>Reconnaissance system speed during classification operations (knots)</td>
</tr>
</tbody>
</table>

The overarching MOE, E, for this MCM system of systems, S, is the time required to achieve a specified MCM area clearance rate, α, with specified confidence level, β.

Knowing the form of E guides our performance model formulation for the component systems, S_1 and S_2. For the purposes of this analysis, we assume there is only one system of each type, therefore $n=2$ and $m=\{1,1\}$.

For the purposes of analysis, we will need to specify the mission scenario and minefield that is to be cleared. The examples used in the analyses to follow will assume an MCM area of 20 nm2, seeded with 100 mines, corresponding to $S_{\text{minefield}}=20$ and $M_0=100$. The mines are laid out in four rows of 25 each, with a 400 yard separation between mines within each row, and 800 yards between the rows. Hence $d_{\text{mines}}=600$ yards. Figure 2 illustrates a minefield layout with these characteristics.
This system is used to survey a suspected minefield area, performing the typical MCM minehunting functions of detection, classification, and localization. It is assumed here that the area is completely covered first with a detection pass. Then, classification (done at much reduced standoff range necessitated by the much higher frequency sensor) of each detected object is attempted. Localization is done concurrently with detection and classification, and therefore takes no additional time. In consideration of the overarching system of systems measure of effectiveness, the MOE for S_1 is then:

$$E_1 = \text{Time (hours) to complete reconnaissance of area } S_{\text{minefield}}$$

given λ, λ'_{μ}, and M_0, where $M_0 = \lambda \cdot S_{\text{minefield}}$ and $F_0 = \lambda'_{\mu} S_{\text{minefield}}$.

The time to complete the detection pass over the area is simply:

$$T_{\text{detect}} = \frac{24 \cdot S_{\text{minefield}}}{A} = \frac{24 \cdot M_0}{\lambda' \cdot A}.$$

Following the detection pass over the MCM area, the reconnaissance system will its localized contacts and attempt to classify each contact as either mine-like or nonmine-
like. (Later, the neutralization system will attempt to re-acquire and neutralize all declared mine-like objects.) In order to calculate time to complete classification, we must know how many detections are expected to be made, and of what type:

\[D_m = P_d \cdot M_0 \quad = \quad \text{Number of detected mines} \]

\[D_{fa} = P_{fa} \cdot S_{minefield} \quad = \quad \text{Number of mine false alarms} \]

\[D_f = P_d \cdot F_0 \quad = \quad \text{Number of false targets detected} \]

To generate expressions for \(T_c \) and \(T_{cf} \), we must assume a specific classification concept of operations (CONOP). If we assume that \(S_f \) takes the shortest route between contact locations and then executes a semi-circle of radius \(R_c \) about the contact location, then an approximate expression for the time to classify is:

\[
T_c = \frac{60 \cdot d_{mine}}{2000 \cdot V_{transit}} + \frac{60 \cdot \pi R_c}{2000 \cdot V_{class}}
\]

What about time spent attempting to classify a target which is in reality a false alarm? Let's assume that the CONOP would be to execute a full circle about the contact location in the event that the first classification pass was unsuccessful during the first half-circle maneuver. The time required to travel to the contact and execute the full circle is then:

\[
T_{cf} = \frac{60 \cdot d_{mine}}{2000 \cdot V_{transit}} + \frac{60 \cdot 2\pi R_c}{2000 \cdot V_{class}}
\]

\[
= 2T_c - \frac{60 \cdot d_{mine}}{2000 \cdot V_{transit}}
\]

As will be seen in the Performance Based Cost Model (PBCM) formulation later in this chapter, this formulation for \(T_{cf} \) keeps it independent of cost drivers for the classification sonar performance, which reduces the number of MOPs necessary in the optimization.
problem, as the terms d_{mine} and V_{transit} will be considered as fixed for the scenario. The
time (hours) required to classify all detections is then:

$$T_{\text{class}} = \frac{1}{60} \left[P_c T_c D_m + (1 - P_c) T_{cl} D_m + T_{cl} \left(D_{fa} + D_{fb} \right) \right]$$

and we can now formulate the system measure of effectiveness:

$$E_1 = \frac{24 \cdot M_0}{A} + \frac{1}{60} \left[P_c T_c P_d M_0 + (1 - P_c) T_{cl} P_d M_0 + T_{cl} \left(P_{fa} S_{\text{minefield}} + P_d F_0 \right) \right]$$

where $T_{cl} = \left(2 T_c - \frac{60 \cdot d_{\text{mine}}}{2000 \cdot V_{\text{transit}}} \right)$.

Under the assumptions stated above, we can now list the minimum set of
measures of performance that are necessary to formulate an expression for E_1 as well as
describe performance parameters necessary to formulate E_2:

$p_1 = \{p_{1,1}, \ldots, p_{1,5}\}$, hence $r_1 = 5$.

$p_{1,1} = A = \frac{2 \cdot R_d \cdot V}{2000}$ [This expression represents a two-sided detection sonar. A
typical approximation is that for a particular
sonar/target/environment set, R_d is determined by fixing P_d and
V_{transit}. For the PBCM and analysis, we assume $P_d=0.90$ and
$V_{\text{transit}}=7$ knots.]

$p_{1,2} = P_c$

$p_{1,3} = P_{fa}$

$p_{1,4} = T_c$
$p_{1.5} = \sigma$

[The localization accuracy is a critical parameter for re-acquisition, a major function of S_2. As a simplification, we have chosen to neglect its effect on S_1's re-acquisition during the classification pass, because the re-acquisition would be done with the identical sensor suite that performed the initial detections.]

Therefore, the final form of the MOE for S_1 as a function of the MOP vector is:

$$E_1(p_1) = \frac{24 \cdot M_0}{\lambda \cdot A} + \frac{1}{60} \left[p_c T_c p_d M_0 + (1 - p_c) T_{cf} p_d M_0 + T_{cf} (P_{fa} S_{minefield} + P_d F_0) \right]$$

$$= \frac{24 \cdot S_{minefield}}{A} + \frac{1}{60} \left[p_c T_c p_d \lambda S_{minefield} + (1 - p_c) T_{cf} p_d \lambda S_{minefield} + T_{cf} (P_{fa} S_{minefield} + P_d \lambda S_{minefield}) \right]$$

$$= S_{minefield} \left[\frac{24}{p_{1.1}} + \frac{1}{60} \left[\lambda \cdot p_{1.2} p_{1.4} p_d + (2 p_{1.4} - T_{transit}) \left((1 - p_{1.2}) p_d \lambda + p_{1.3} + p_d \lambda \right) \right] \right]$$

where $T_{transit} = \left(\frac{d_{mine}}{2000 \cdot V_{transit}} \right)$.

Note that this MOE does not reflect the quality to which the reconnaissance is accomplished, only how long it takes. If we were considering the effectiveness of the stand-alone reconnaissance system, then we would want to have E_1 reflect the other MOPs as well, in order to effect a measure of “minefield characterization”.

Reconnaissance survey quality will be reflected in E_2, via expressions that utilize all the elements of p_1 that affect initialization of the neutralization function provided by S_2.

Additionally, a minimum threshold quality constraint at the system of systems level will also be imposed.
S2: MCM Neutralization System

The MCM neutralization system attempts to *re-locate, identify, and neutralize* all minelike objects detected and classified as such by the reconnaissance system. For the purposes of this analysis, the effects of identification and subsequent neutralization are ignored, and we will focus on re-acquisition of all minelike objects passed to \(S_2 \) from \(S_1 \) as contacts. In consideration of the overarching system of systems measure of effectiveness, the MOE for \(S_2 \) is:

\[
E_2 = \text{Time (hours) to complete neutralization and neutralization attempts on all contacts/objects classified as mine-like by the reconnaissance system, } S_1.
\]

Clearly, \(E_2 \) will depend upon how many objects of what type are detected and subsequently classified as minelike objects by \(S_1 \). Since the neutralization system will attempt to neutralize all declared mine-like objects, it is important to know how many such objects are expected. The following describes the expected results of the combined detection and classification activities of \(S_1 \):

\[
C_m = D_m \cdot P_c = P_d \cdot P_c \cdot M_0 \quad \text{Number of mines correctly classified as mine-like}
\]

\[
C_f = \left(D_{fa} + D_{fa}\right) \cdot \left(1 - P_c\right) = \left(P_{fa} \cdot S_{\text{minefield}} + P_d \cdot F_0\right) \cdot \left(1 - P_c\right) \quad \text{Number of non-mines incorrectly classified as mine-like}
\]

\(E_2 \) can now be formulated using the following measures of performance:
\[p_2 = \{p_{2,1}, \ldots, p_{2,3}\}, \text{ hence } r_2 = 3. \]

\[p_{2,1} = R_r, \text{ the contact localization error standoff which yields an } 80\% \text{ probability of re-acquisition.} \]

\[p_{2,2} = T_{pf} \]

\[p_{2,3} = T_n. \]

We model the probability of re-acquisition (a.k.a. localization) as:

\[P_L = e^{-\frac{\sigma}{4.481 R_r}} = e^{-\frac{\sigma}{4.481 p_{2,1}}}, \]

which yields \(P_L = 0.80 \) when \(R_r = \sigma \). This model assumes an exponential decay depending upon localization accuracy, an \(S_1 \) MOP, and re-acquisition capability of the neutralization system, an MOP for \(S_2 \). Dependence of \(P_L \) on \(R_r \) is illustrated in Figure 3. Also indicated is the feasibility region generated by the upper and lower bounds for \(R_r \), which correspond to technology and threshold system limitations presented in this chapter’s PBCM section.
Therefore,

\[E_2 = \{ \text{time to successfully re-acquire and neutralize minelike objects} \} \]

+ \{ \text{time spent in unsuccessful attempts to re-acquire MLOs} \}

+ \{ \text{time spent prosecuting non-minelike objects classified incorrectly} \}
\[E_2 = f_2(p_1, p_2) \]
\[= \frac{1}{60} \left[p_L C_m T_n + (1 - p_L) C_{pf} + C_f T_{pf} \right] \]
\[= \frac{1}{60} \left[p_L p_d p_{1,2} M_0 p_{2,3} + (1 - p_L) p_d p_{1,2} M_0 p_{2,2} + (1 - p_{1,2}) (p_{1,3} - p_{1,2} M_0) p_{2,2} \right] \]
\[= \frac{S_{\text{minefield}}}{60} \left[p_d p_{1,2} p_{2,3} \lambda e^{-\frac{p_{1,2}}{4.481 p_{2,1}}} + \left(1 - e^{-\frac{p_{1,2}}{4.481 p_{2,1}}} \right) p_d p_{1,2} p_{2,2} \lambda + (1 - p_{1,2}) (p_{1,3} + p_d \lambda_B) p_{2,2} \right] \]

S: MCM Clearance System of Systems

For the full system of systems, the overarching MOE is then simply the total time to complete clearance operations:

\[E = G(m, p_1, p_2) = E_1 + E_2 \]

However, an overall performance or quality constraint must be imposed on the clearance operations, otherwise the optimization will find a very fast yet ineffective system of systems. Specifically, this constraint specifies an MCM area clearance rate, \(\alpha \), with an associated confidence level, \(\beta \). This should actually be considered as a secondary quality MOE that has a threshold requirement. Recall that \(p \) is to be the probability that a particular mine will be cleared. It is clear that:

\[p = P_d p_c p_L = P_d p_{1,2} e^{-\frac{p_{1,2}}{4.481 p_{2,1}}} \]

and the expected number of mines successfully cleared is \(p M_0 \).

Then the probability that the number of cleared mines, \(M_c \), is at least \(\alpha M_0 \), is called the clearance confidence level, \(P_{\alpha} \), and binomially distributed as follows:
\[P_\alpha = P(M_c \geq \alpha M_0) = \sum_{i=0}^{M_0} \left(C_i^{M_0} p^i (1-p)^{M_0-i} \right) \]

For large \(M_0 \) this can be approximated with the normal distribution in accordance with DeMoivre’s theorem as follows:

\[P_\alpha \equiv P \left(X \geq -\frac{\alpha M_0 - pM_0}{\sqrt{M_0 p(1-p)}} \right) = 1 - \Phi \left(\frac{\alpha M_0 - pM_0}{\sqrt{M_0 p(1-p)}} \right), \]

where \(\Phi \) is the cumulative probability function for \(X \sim N(0,1) \). This is intuitively clear, for in the case where \(p=\alpha=0.95 \), \(P_\alpha=0.5 \), indicating that we would then have a 50-50 chance of clearing 95% of the mines. \(P_\alpha \) rapidly rises as \(\alpha \) decreases. For example, with \(\alpha=0.90 \), \(p=0.95 \), and \(M_0=100 \), then \(P_{0.90}=0.971 \). Figure 4 illustrates the behavior of \(P_\alpha \) for a selection of values for \(p \).

The threshold performance constraint at the system of systems level is then:

\[P_\alpha \geq \beta, \text{ or } 1 - \Phi \left(\frac{\alpha M_0 - pM_0}{\sqrt{M_0 p(1-p)}} \right) \geq \beta. \]

Unfortunately, this added constraint at the system of systems level is nonlinear, affecting our choice of optimization algorithms (see Chapter 6). As an illustration with realistic values, choose \(\alpha=0.90 \), \(M_0=100 \), and \(\beta=0.95 \). In other words, with 100 mines present, we want to be at least 95% confident that at least 90 mines will be cleared:

\[0.95 \leq 1 - \Phi \left(\frac{90 - 100p}{\sqrt{100 p(1-p)}} \right). \]

Then, \(\Phi \left(\frac{90 - 100p}{\sqrt{100 p(1-p)}} \right) \geq 0.05 \), or \(\left(\frac{90 - 100p}{\sqrt{100 p(1-p)}} \right) \leq -1.65 \). This implies that
\[p \geq 0.9394, \text{ or } p = P_d P_e P_L = P_d p_{1,3} e^{\frac{-p_{1,3}}{4.481 p_{2,1}}} \geq 0.9394. \] Un fortunately, looking ahead to the PBCM, the system MOPs under consideration will not support this level of performance (recall that \(P_d \) will be fixed at 0.90). Relaxation of this constraint consistent with \(\alpha=0.80, M_0=100, \) and \(\beta=0.90 \) will yield a constraint that \(p \geq 0.846. \) Therefore, with 100 mines present, we will be satisfied to be at least 90\% confident that at least 80 mines will be cleared. The practical constraint we will use is therefore:

\[q(P_{P_{1,3} P_{1,3}}) = p = P_d P_e P_L = P_d p_{1,3} e^{\frac{-p_{1,3}}{4.481 p_{2,1}}} \geq 0.846. \]

Figure 5 is a parameter dependency diagram (PDD) of the full system of systems. The PDD illustrates the interdependence of the two systems’ parameters and how they map to the overall system of systems. Also illustrated is the dependence of the secondary quality MOE that constitutes a constraint on overall system of systems performance.
Figure 4: Clearance Confidence Level as a Function of Required Clearance Rate
Figure 5: Mine Clearance System of Systems Parameter Dependency Diagram

\(\alpha \) Desired MCM area clearance rate: at least 100\(\alpha \) percent of the mines have been cleared.

A Reconnaissance system area coverage rate during detection pass (nm^2/day)

d\text{mines} Average distance between mines (yards)

F\text{0} Number of false targets contained in the MCM area, \(S_{\text{minefield}} \)

\(\lambda \) Minefield density (mines/nm\(^2\))

\(\lambda_{ft} \) False target (non-mine mine-like object) density (objects/nm\(^2\));

M\text{0} Number of mines originally laid in the MCM area, \(S_{\text{minefield}} \)

\(P_{\alpha} \) Probability that the MCM area will be cleared to the desired minefield clearance rate, \(\alpha \).

\(p \) Mine clearance probability; i.e., probability that a mine in the MCM area will be cleared.

\(P_{d} \) Detection probability at range \(R_{d} \)

\(P_{fa} \) Detection false alarm rate, (false alarms/nm\(^2\))

\(P_{ID} \) Probability of correct ID; \(P_{ID} = 1 \) assumed for military minefields

\(P_{L} \) Localization (or re-acquisition) probability

\(P_{n} \) Neutralization probability; \(P_{n} = 1 \) assumed for these operations

\(R_{c} \) Mine-like object classification range (yards)

\(R_{d} \) Target detection range (yards)

\(R_{t} \) Range at which \(S_{1} \) has an 80% chance of re-acquiring \(S_{1} \)’s detections

\(\sigma \) Standard deviation of mine-like object localization error (yards)

\(S_{\text{minefield}} \) Area to be searched (nm\(^2\)), referred to as the MCM area

\(T_{\text{detect}} \) Time required to complete detection pass through search area, \(S_{\text{minefield}} \) (hours)

\(T_{\text{class}} \) Time required to classify all detections within the search area, \(S_{\text{minefield}} \) (hours)

\(T_{c} \) Time required to classify a mine (min)

\(T_{cf} \) Time required to classify a non-mine (min)

\(T_{d} \) Time required to classify a non-mine (min)

\(T_{detect} \) Time required to complete detection pass through search area, \(S_{\text{minefield}} \) (hours)

\(T_{n} \) Time spent neutralizing (prosecuting) a classified mine (min)

\(T_{pf} \) Time spent unsuccessfully attempting to re-acquire a detection (min)

\(V_{\text{transit}} \) Reconnaissance system speed during detection and transit (knots)

\(V_{\text{class}} \) Reconnaissance system speed during classification operations (knots)
Performance Based Cost Model (PBCM) and Parameter Bounds

The reconnaissance system performance ranges and cost modeling are derived from design considerations for the U.S. Navy’s Long-Term Mine Reconnaissance System (LMRS), a submarine-based autonomous undersea vehicle (UUV). The neutralization system performance ranges and cost models are based upon a combination of LMRS factors, certain U.S. Navy operational MCM systems, and commercial off-the-shelf (COTS) information regarding marine navigation systems. Due to classification and data availability issues, considerable license has been taken in developing the PBCM, with the primary intent to provide sufficient complexity and realism to show feasibility of the methodology.

MOPs developed earlier in this chapter are now grouped by the major sub-system to which they act as major cost drivers. The PBCM provides an approximation of subsystem cost as a function of those primary subsystem MOPs. Moreover, since this type of MCM system would be produced in very small numbers, only developmental costs are considered, neglecting the full system life cycle costs. Commercial off-the-shelf (COTS) or non-developmental item (NDI) technologies are also assumed so that developmental costs approximate R&D and production costs combined. The subsystem and associated MOPs are as illustrated in Figure 6. Costs are then added together to get total cost. The cost constraint indicated in Figure 15 is parameterized by “costfactor” which is a factor on the threshold system costs indicating the maximum amount the

decisionmaker is willing to consider spending. In this way, we will consider a series of optimization problems that will provide insight from the CAIV perspective.

Figure 6 Mine Clearance System of Systems MOE/MOP Structure
A. System S_2: Sensors

There are two sonars in the sensor subsystem: detection and classification sonars.

A1. Detection Sonar

Critical parameters for search sonars are probability of detection, range, maximum vehicle speed at which the sonars can remain effective due to flow noise. They are of course sensitive to several environmental parameters as well as assumed target characteristics. The approach here is to assume one environment, fix P_d at 0.90, speed at 7 knots, and utilize the modeled results in Benedict\(^{18}\) to derive the following PBCM for the overall MOP, area coverage rate, A (nm\(^2\)/day). The following table represents the PBCM:

<table>
<thead>
<tr>
<th>A (nm(^2)/day)</th>
<th>10</th>
<th>57</th>
<th>82</th>
<th>94</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost (M)</td>
<td>3</td>
<td>4.483</td>
<td>7.655</td>
<td>11.445</td>
</tr>
</tbody>
</table>

The following routine fits a third order polynomial to the data, and will form the cost model:

```matlab
% PBCM for A1, Search Sonars
x=[10,57,82,94]
y=[3,4.483,7.655,11.445]
p=polyfit(x,y,3)
x2=10:.1:100;
y2=polyval(p,x2);
plot(x,y,'o',x2,y2)
xlabel('Area Coverage Rate (nm^2/day)')
ylabel('Cost ($\text{M}$)')
```

$$a1cost$$

```
x = 10 57 82 94
y = 3 4.483 7.655 11.445
p = 4.5034e-005 -0.0053861 0.21593 1.3342
```
Therefore, $p_{l,1}^U = 10, p_{l,1}^L = 100, p_{l,1}^* = 10$, and

$$h_{1,1}(p_{l,1}) = (4.5034e-005) p_{l,1}^3 - 0.0053861 p_{l,1}^2 + 0.21593 p_{l,1} + 1.3342.$$

A2. Classification Sonar

The cost driving critical parameter for sidescan classification search sonars is its probability of classification at a given range, in this case chosen to be 70 yards. Again, vehicle speed (flow noise), environmental parameters, and assumed target characteristics are essential to making effective P_c predictions. The approach here is to assume one environment, the required classification range (important because of vehicle vulnerability to the mines), adequate vehicle control or motion compensation, and utilize the modeled results from Benedict18. While some detection sonars may be considered as non-development items (NDI), many sidescan classification sonars are now truly COTS,
which have substantially lower cost. Vehicle integration costs are considered in that “subsystem”. The following table represents the PBCM:

<table>
<thead>
<tr>
<th>P_c at 70 yards</th>
<th>0.9</th>
<th>0.93</th>
<th>0.96</th>
<th>0.98</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost ($M)</td>
<td>0.2</td>
<td>0.5</td>
<td>1.4</td>
<td>2.2</td>
</tr>
</tbody>
</table>

The following routine fits a second order polynomial to the data, and will form the cost model:

```matlab
% PBCM for A2, Classify Sonars
figure
x=[0.9,0.93,0.96,0.98]
y=[.2,.5,1.4,2.2]
p=polyfit(x,y,2)
x2=0.9:.01:1.0;
y2=polyval(p,x2);
plot(x,y,'o',x2,y2)
xlabel('Classification Probability')
ylabel('Cost ($M)')
```

» a2cost

```
x = 0.9000 0.9300 0.9600 0.9800
y = 0.2000 0.5000 1.4000 2.2000
p = 283.4646 −507.6378 227.4598
```

Therefore, \(p_{1,2}^L = 0.9, \ p_{1,2}^U = 0.98, \ p_{1,2}^* = 0.9, \) and

\[
h_{1,2}(p_{1,2}) = 283.4646 p_{1,2}^2 - 507.63784 p_{1,2} + 227.4598.
\]
B. System S_i: Software

Modern MCM sonar systems are incorporating Computer-Aided Detection and Computer-Aided Classification (CAD/CAC) processors in order to keep false alarm rates low while maintaining high probability of detection/classification. Consequently, requirements on false alarm rates are the cost driver on the software subsystem. The following table represents the PBCM:

<table>
<thead>
<tr>
<th>P_{fa} (#false alarms/nm²)</th>
<th>2.0</th>
<th>1.0</th>
<th>0.5</th>
<th>0.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost (M)</td>
<td>8.0</td>
<td>10.319</td>
<td>13.592</td>
<td>16.429</td>
</tr>
</tbody>
</table>

The following routine fits a third order polynomial to the data, and will form the cost model:

```matlab
% PBCM for B, Software in support of FAR, or CAD/CAC.
x=[2,1,0.5,0.25]
y=[8,10.319,13.592,16.429]
p=polyfit(x,y,3)
x2=0.0:0.01:2;
y2=polyval(p,x2);
```
Therefore, $p_{1,3}^I = 0.25$, $p_{1,3}^U = 2.0$, $p_{1,3}^* = 2.0$, and

$$h_{1,3}(p_{1,3}) = -2.0484 p_{1,3}^3 + 9.9873 p_{1,3}^2 - 17.942 p_{1,3} + 20.322.$$
\[T_c = \frac{60 \cdot d_{\text{mine}}}{2000 \cdot V_{\text{transit}}} + \frac{60 \cdot \pi R_c}{2000 \cdot V_{\text{class}}} + \cdots. \]

The time to classify is therefore a direct function of the maximum speed at which the vehicle can conduct the classification maneuver while holding the platform steady and quiet. We are assuming that this is a cost driver for a combination of subsystems, to include propulsion, quieting, margin, and integration; all of which we have cost estimates. With the nominal parameters as mentioned above, the following table represents the discrete data points from which the PBCM is derived, as a function of classification speed:

<table>
<thead>
<tr>
<th>(V_{\text{class}}) (knots)</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_c) (minutes)</td>
<td>9.17</td>
<td>4.77</td>
<td>389</td>
<td>3.513</td>
</tr>
<tr>
<td>Cost ($M)</td>
<td>5.0</td>
<td>7.574</td>
<td>8.190</td>
<td>9.191</td>
</tr>
</tbody>
</table>

The following MATLAB\textregistered code fits a second order polynomial to the data points for use in the cost constraints.

```matlab
% PBCM for C, Vehicle in support of time to classify.
x=[3.513,3.89,4.77,9.17]
y=[9.191,8.190,7.574,5.0]
p=polyfit(x,y,2)
x2=3.0:0.1:9.5;
y2=polyval(p,x2);
plot(x,y,'o',x2,y2)
xlabel('Time to Classify (min)')
ylabel('Cost ($M$)')
```

\(\text{x} = [3.513, 3.89, 4.77, 9.17] \)
\(\text{y} = [9.191, 8.190, 7.574, 5.0] \)
\(p = [0.11597, -2.1757, 15.2042] \).

Therefore, \(p_{1,4}^c = p_{1,4}^V = 9.17, \) and
\[
\begin{align*}
 h_{1,4}(p_{1,4}) = 0.11597 p_{1,4}^2 - 2.1757 p_{1,4} + 15.204.
\end{align*}
\]
D. System S_i: Navigation

Maritime navigation systems are now truly COTS, and therefore low cost relative to other subsystems (note that costs are in K, not M). It is also difficult to sort out competing claims of accuracy, as performance is closely related to the CONOPS. Typical non-GPS, underwater maritime systems utilize an inertial navigation system augmented with a Doppler sonar velocity log (DSVL). The DSVL performance dominates over the long term, and needs to be updated periodically with a higher quality source, such as GPS. To obtain sufficiently high accuracy to enable re-acquisition of targets, we select a 30 nm run between GPS updates. The following table lists DSVL performance in terms of percent of distance traveled, derived one-sigma geodetic accuracy, and system costs19.

<table>
<thead>
<tr>
<th>Percent of Distance Traveled</th>
<th>0.15</th>
<th>0.1</th>
<th>0.08</th>
<th>0.07</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ (yards)</td>
<td>90</td>
<td>60</td>
<td>48</td>
<td>42</td>
</tr>
<tr>
<td>Cost ($K)</td>
<td>50</td>
<td>250</td>
<td>450</td>
<td>500</td>
</tr>
</tbody>
</table>

The following routine fits a second-order polynomial to the PBCM data above:

```matlab
x=[90,60,48,42];
y=[0.050,0.250,0.450,0.550];
p=polyfit(x,y,2);
x2=40:1:90;
y2=polyval(p,x2);
plot(x,y,'o',x2,y2);
xlabel('One sigma accuracy (yards)')
ylabel('Cost ($M$)')
```

Therefore, $p_{1.5}^L = 42$, $p_{1.5}^U = 90$, $p_{1.5}^* = 90$, and

$$h_{1.5}(p_{1.5}) = (2.0618e-004)p_{1.5}^2 - 0.03776p_{1.5} + 1.7778.$$
E. System S_2: Sensors/Sonars

The neutralization system returns to the site localized by the reconnaissance system and attempts to re-acquire the target for neutralization activities. Depending on the quality of the localization activity, we should be able to get away with a much less expensive sonar than the long-range detection sonar used for reconnaissance to enhance the coverage rate. As in the case of navigation systems, these medium-performance sonars are available as NDI or COTS. One way to express the cost driving parameter is the range at which a reasonably high probability of re-acquiring the target can be assured, say 80%. Earlier in this chapter, a model for the interrelationship of localization accuracy, re-acquisition range, and probability of re-acquiring (localization) was developed under the assumption that the closer S_2 can be directed to the target location,
the higher the resultant probability of reacquisition. Utilizing data from Benedict, the following PBCM data points are derived:

<table>
<thead>
<tr>
<th>Rr (yards)</th>
<th>75</th>
<th>129</th>
<th>457</th>
<th>622</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost ($M)</td>
<td>1.5</td>
<td>3.0</td>
<td>4.8</td>
<td>7.655</td>
</tr>
</tbody>
</table>

The following routine fits a third order polynomial to the data, and will form the cost model:

```matlab
% PBCM for E, Ahead looking sonar for re-acquisition
x=[129,457,622,75]
y=[3,4.8,7.655,1.5]
p=polyfit(x,y,3)
x2=75:5:675;
y2=polyval(p,x2);
plot(x,y,'o',x2,y2)
xlabel('Re-Acquisition Range (yards)')
ylabel('Cost ($M)')

» ecost
x = 129  457  622  75
y = 3  4.8  7.655  1.5
p = 1.5049e-007 -0.00015782 0.055167 -1.8133
```

Therefore, \(p_{2,1}^L = 75 \), \(p_{2,1}^U = 700 \), \(p_{2,1}^* = 75 \), and

\[
h_{2,1}(p_{2,1}) = (15049e-007)p_{2,1}^3 - (1.5782e-004)p_{2,1}^2 + 0.055167p_{2,1} - 1.8133.
\]
F. System S_2: Vehicle (Propulsion, Energy, Quieting, Margin, Integration)

As in the PBCM for classification time for system S_1, T_{pf} (time to prosecute a false target) is the cost driver for vehicle maneuverability required to cover the area around the localized false target holding the vehicle steady while providing the re-acquisition sonar multiple aspect angles on the target in order to confidently make a false target call. The CONOP we choose for this is to make a full circle of radius 70 yards about the indicated (from S_1) location, if the usual direct approach re-acquisition attempt is unsuccessful. This CONOP and associate PBCM has two important implications for how we view T_{pf} and subsequently, T_n.

- It ignores S_2 transit time to the target’s designated location. This will be the same for all contacts provided by S_1 and shorter transit times would be a byproduct of improvements made to vehicle maneuverability driven by T_{pf}.

Figure 12: PBCM for Re-Acquisition Range
• It also ignores the true dependence of T_{pf} and T_n on the S_l localization accuracy, σ. We have chosen to look at σ’s direct effect on probability of localization, P_L only. Although this could be modeled in a more sophisticated simulation, it would be an equivalent bias on all three major additive terms of E_2, and therefore can be neglected for this analysis. Hence our formulation of T_{pf} and T_n are just the additional time it would take to make a non-contact call or neutralize the target, over and above the time required for nominal re-acquisition.

The following table lists vehicle costs as driven by false target prosecution performance:

<table>
<thead>
<tr>
<th>Speed during maneuver</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{pf} (min)</td>
<td>6.6</td>
<td>4.4</td>
<td>3.3</td>
<td>2.64</td>
<td>1.32</td>
</tr>
<tr>
<td>Cost ($M)</td>
<td>5.0</td>
<td>7.5</td>
<td>8.19</td>
<td>9.191</td>
<td>16.621</td>
</tr>
</tbody>
</table>

The following routine fits a third-order polynomial to the PBCM data above:

```matlab
% PBCM for F, Vehicle in support of time required to verify a false target
x=[6.6,4.4,3.3,2.64,1.32]
y=[5.0,7.5,8.190,9.191,16.621]
p=polyfit(x,y,3)
x2=1:0:1:7;
y2=polyval(p,x2);
plot(x,y,'o',x2,y2)
xlabel('Time to Prosecute False Target (min)')
ylabel('Cost ($M$)')
```

```matlab
gcost
x =  6.6  4.4  3.3  2.64  1.32
y =  5.0  7.5  8.19  9.191  16.621
p = -0.28504  3.8462  -17.264  33.344
```
Therefore, $p_{2} = 1.0$, $p_{2} = 7.0$, $p_{2} = 6.6$, and

$$h_{2,2}(p_{2}) = -0.28504 p_{2}^3 + 3.8462 p_{2}^2 - 17.264 p_{2} + 33.344.$$

Figure 13: PBCM for Time to Prosecute False Target

G. System S_2: Neutralization

The neutralization threshold system performance and costs are patterned after the U.S. Navy’s Mine Neutralization System (AN/SLQ-48) in which integrates a sonar, optical, and bomblet subsystems to re-acquire, identify, and neutralize targets passed to it from other systems. Although it takes time to launch, acquire, ID/neutralize, and recover this remotely operated vehicle, the ID/neutralize phase takes approximately 10 minutes. Unit cost for the AN/SLQ-48, which has been in production for some time, is down to approximately $500K$. Assuming that the cost driver for the AN/SLQ-48 (which used NDI sonars/optics) was the neutralization component, and using a 10:1 rule of thumb for
developmental vs. production costs, the threshold system development cost for a system was estimated as shown in the following table:

<table>
<thead>
<tr>
<th>T_n (min)</th>
<th>10</th>
<th>8</th>
<th>7</th>
<th>5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost (M)</td>
<td>5.3</td>
<td>6.0</td>
<td>7.0</td>
<td>10.0</td>
<td>15.0</td>
</tr>
</tbody>
</table>

The following routine fits a second-order polynomial to the PBCM data above:

```matlab
% PBCM for G, Neutralization subsystem
x=[10,8,7,5,3]
y=[5.3,6,7,10,15]
p=polyfit(x,y,2)
x2=3.0:0.1:10;
y2=polyval(p,x2);
plot(x,y,'o',x2,y2)
xlabel('Time to Neutralize (min)')
ylabel('Cost ($\text{M}$)')

» gcost
x = 10 8 7 5 3
y = 5.3 6 7 10 15
p = 0.21024 -4.1096 25.397
```

Therefore, $p_{2,3}^\star = 3.0$, $p_{2,3}^\dagger = 10.0$, $p_{2,3}^\star = 10.0$, and

$$h_{2,3}(p_{2,3}) = 0.21024p_{2,3}^2 - 4.1096p_{2,3} + 25.397.$$
Figure 14: PBCM for Time to Neutralize
Maximize $S = \{S_1, \ldots, S_n\}$ system of systems performance (minimize time) subject to technology, cost, and performance threshold constraints:

Minimize:

$$E(p_1, p_2) = E_1(p_1) + E_2(p_1, p_2)$$

$$= \frac{S_{\text{minefield}}}{60} \left[\frac{24 \cdot 60}{p_{1,1}} + \lambda \cdot p_{1,2} p_{1,4} p_d + \left(2 p_{1,4} - T_{\text{transit}} \right) (1 - p_{1,2}) p_d \lambda + p_{1,3} + p_d \lambda \right]$$

$$+ \frac{S_{\text{minefield}}}{60} \left[p_d p_{1,3} p_{2,2} A e^{-\frac{-p_{1,3}}{4.481 p_{2,1}}} + \left(1 - e^{-\frac{-p_{1,3}}{4.481 p_{2,1}}} \right) p_d p_{1,2} p_{2,2} A + (1 - p_{1,2}) (p_{1,3} + \lambda p_{2,2}) p_{2,2} \right]$$

subject to:

$$(3,0,9,0.25,30,0.42)^T \leq p_1 \leq (100,098,20,9,17,90)^T, (75,10,3,0)^T \leq p_2 \leq (700,7,0,10,0)^T$$

$$C(p_1, p_2) \leq C^U = \text{costfactor} \cdot C^* \quad \text{and} \quad q(p_1, p_1) \geq q_t = 0.846$$

where:

$$C(p_1, p_2) = (4.5034e - 005) p_{1,1}^3 - 0.0053861 p_{1,1}^2 + 0.21593 p_{1,1} + 1.3342$$

$$+ 283.4646 p_{1,2}^2 - 507.63784 p_{1,2} + 227.4598$$

$$- 2.0484 p_{1,3}^3 + 9.9873 p_{1,3}^2 - 17.942 p_{1,3} + 20.322$$

$$+ 0.11597 p_{1,4}^2 - 2.1757 p_{1,4} + 15.204$$

$$+ (2.0618e - 004) p_{1,5}^2 - 0.03776 p_{1,5} + 1.7778$$

$$+ (1.5049e - 007) p_{2,1}^3 - (1.5872e - 004) p_{2,1}^2 + 0.055167 p_{2,1} - 1.1833$$

$$+ 0.28504 p_{2,2}^3 + 3.8462 p_{2,2}^2 - 17.264 p_{2,2} + 33.344$$

$$+ 0.21024 p_{2,3}^2 - 4.1096 p_{2,3} + 25.397$$

$C^*=\text{threshold system cost}=28.066$

$q(p_1, p_1) = p = P_d P_c P_L = P_d p_{1,2} e^{-\frac{-p_{1,3}}{4.481 p_{2,1}}}$

Figure 15 Summary of MCM System of Systems Optimization Problem
CHAPTER 6
OPTIMIZATION APPROACH

In this chapter, we investigate some alternative optimization methods that will be applicable to the MCM system of systems upgrade problem formulated in Chapter 5, and reformulate the general system of systems performance model (Chapter 4) to take advantage of the most promising approach.

Applicable Methods

Referring to the discussion in Chapter 4, the general system of systems upgrade optimization problem takes the following form:

Max \(E = g(m,E_1,\ldots,E_n) = G(m,p_1,\ldots,p_n) \) where \(E_i = f_i(m,p_1,\ldots,p_n) \),

and subject to the following constraints:

\[
\begin{align*}
0 \leq m^L & \leq m \leq m^U \\
0 \leq p_i^L & \leq p_i \leq p_i^U \\
C & \leq C^U \quad \text{where} \quad C = m^T c, \quad c = \{c_1,\ldots,c_n\}, \quad \text{and} \quad C = m^T c.
\end{align*}
\]

[\(q(m,p_1,p_2,\ldots,p_n) \geq q_T, \) a potential secondary MOE threshold function constraint] \(1 \)

All quantities are real-valued, with the additional constraint that elements of \(n \)-vector \(m \) are integers. Each \(p_i \) has dimension \(r_i \) and \(r = \sum_{i=1}^{n} r_i \).
For the purpose of this study, we will consider the case where there is only one of each type of system in the system of systems. In this case, $\mathbf{m} = (1, \ldots, l)$, and that \mathbf{m} is to remain fixed. We can then ignore the difficulty of having to solve for the integer-valued vector, \mathbf{m}, which would result in an integer programming problem. Then what we have is a nonlinear, multi-dimensional optimization problem with a generally nonlinear constraint set.

We first consider the case in which the objective function, G, can be evaluated without error. Then, we can look to the deterministic domain of nonlinear programming and utilize conventional search techniques to solve the particular problem.

For the special case where all the constraints are linear, one of the most common and effective nonlinear programming algorithms is known as the Davidon-Davies method or the Davidon-Fletcher-Powell method with linear constraints. The Davidon-Davies method is a gradient search method that can handle linear equality and inequality constraints. The method projects the current solution estimate along the path of steepest descent until it intersects one (or more) hyperplanes formed by the inequality constraints. Then that constraint is said to be active, it is added to the equality constraint set, and the next iterate is restricted to move along the corresponding new intersecting hyperplane surface until a convergence criterion for a minimum is achieved. Checks are also done at each iteration to consider relaxing an equality constraint that has been established prematurely.

Some fully general nonlinear programming algorithms restructure the problem or locally linearize the nonlinear constraint set so that this method can be used as the core search algorithm. For example, if there are a small number of nonlinear constraints, it is feasible to augment the objective function with penalty functions (described in more detail later in this chapter) to incorporate the active nonlinear constraints into the objective function so that unconstrained or simple projection methods will then be applicable. This is not generally done because it comes at a cost of ill-conditioning the problem, which must be traded against the gain in algorithm simplicity.

MATLAB® is a widely used, sophisticated mathematical problem-solving commercial software product that utilizes the method of sequential quadratic programming (SQP)\[22\] to solve the fully general nonlinear programming problem in which both objective and constraint functions can be nonlinear. The particular routine is called “CONSTR” and is contained in the “Optimization Toolbox”. Basically, the method formulates a sequence of quadratic programming (QP) subproblems based on a quadratic approximation of the Lagrangian function and by linearizing the nonlinear constraints about the current iterate. The simpler QP subproblem (quadratic function with linear constraints) is solved by using an active set projection method\[23\] very similar to the Davidon-Davies Method in order to provide a search direction for a line search procedure that provides the next iterate. The original nonlinear function and constraint sets are then approximated about the new iterate and the sequence is repeated until convergence criteria are satisfied.

\[23\] Ibid, Chapter 5.
Appendix A contains specific MATLAB® code necessary to solve the MCM system of systems problem formulation and a simple illustrative problem, while results are shown in Chapter 7. The user can call CONSTR with or without supplying an explicit gradient function. Since our ultimate objective is to utilize a simulation for function evaluations, we are interested in solving the problem without an explicit gradient function. CONSTR will then approximate the gradient at each iteration at the expense of more function evaluations. The most efficient classical gradient approximation is that of forward differencing, an approximation that requires as many function evaluations as the dimensionality, r, of the independent variable vector. To enhance search algorithm convergence properties, it is generally advisable to switch over to a central difference formula as the step size reduces near the solution\(^{24}\), but at the expense of requiring $2r$ function evaluations per step.

As mentioned above, obtaining a closed form, deterministic expression for the system of systems’ MOE objective function is not always feasible. A growing number of application areas rely on stochastic modeling and simulation to predict system of systems performance under certain conditions of interest. Therefore, future practical implementations of this approach for the system of systems upgrade problem will include utilization of simulation to evaluate the objective function—an extension that will put a premium on minimizing the search algorithm’s function evaluations. Simulation will generally be of the Monte Carlo type, hence there will be random error associated with

the function evaluation. The simulation then produces a corrupted realization of the objective function of the form:

\[y(p_1, \ldots, p_n) = G(p_1, \ldots, p_n) + \omega, \]

where \(\omega \) represents simulation noise. This stochastic nature of the function evaluations puts us into the realm of stochastic optimization—to which classical optimization methods are not directly applicable. Moreover, not only will the gradient of \(y \) be unavailable explicitly, classical approximations of gradients become extremely costly to compute since each function evaluation represents a simulation run. Until recently, finite-difference-based gradient search stochastic approximation procedures that are adaptations of deterministic algorithms have been most widely used for this type of optimization. A major drawback of these methods is that the number of function evaluations required at each step is linear in the dimension of the search parameter vector.\(^{25}\) Since we envision eventually using large scale system of systems simulations with tens of parameters, a much more efficient method is desirable. The recently developed Simultaneous Perturbation Stochastic Approximation (SPSA) Method\(^{26}\) is the most efficient estimator in this domain with respect to function evaluations per iteration, and its first and second order versions have been adapted here for use in solving the MCM system of systems problem described in Chapter 5. Since it will be the central algorithm we use for stochastic optimization here, it is necessary to examine it in some detail.

Constrained Simultaneous Perturbation Stochastic Approximation (SPSA) Method

As described in Fu and Hill27, the first order SPSA method is a type of gradient search method that requires only two function evaluations per iteration. The current solution estimate is perturbed in all elements simultaneously in a sort of central difference fashion rather than one component at a time which is generally done in order to estimate the partial derivatives that comprise the gradient vector. Now, SPSA per se is an unconstrained optimization algorithm, and very little work has yet to be done to extend it to more commonly occurring constrained problems such as the system of systems upgrade problem structure formulated here. But it has been shown28 that substituting the SPSA-generated gradient estimate for the gradient estimate in a projection-based constrained steepest descent algorithm results in convergence to a Kuhn-Tucker point—meaning that SPSA can be used to enhance efficiency of such methods as the basic Davidon-Davies method described above. Most of these methods “project” from the current iterate along an estimate of the gradient until they intersect one or more constraint surfaces, which are then “followed” (always reducing the objective function and updating the active constraint set) until convergence criteria are satisfied.

Although Sadegh28 established the theoretical foundation for constrained SPSA, he did not present a workable algorithm nor does he address convergence properties relative to other first order approaches. One option for implementing a general constrained SPSA algorithm is to modify a tried and true optimization code such as MATLAB\textcopyright’s implementation of the SQP method to embed the SPSA gradient and iterate update equations. This was judged to be impractical for the scope of this dissertation due to code complexity. There are a myriad of complex sub-algorithms necessary to ensure robustness and wide applicability of commercial code. There are also significant issues regarding determination of the active constraint set in the context of a stochastic optimization domain. Indeed, practical implementations of constrained SPSA have been limited to constraint sets of the simple bound type. SPSA has been used to optimize some rather simple constrained problems utilizing discrete event simulations very successfully27 and more significantly, a 168-dimensional air-traffic control flight delay problem29. In order to discuss practical considerations any further, it is necessary to explicitly consider the SPSA algorithm.

The following unconstrained SPSA algorithm description is adapted from its author’s implementation guide.30 The adaptation utilizes the notation developed here for the system of systems upgrade problem and facilitates sharing of code that invokes the MATLAB\textcopyright CONSTR function mentioned above for efficiency comparison purposes on the deterministic formulation developed in Chapter 5. Note that the method is also

applicable to the deterministic case in which \(\omega = 0 \). As with MATLAB\textregistered, the SPSA convention is to minimize the objective function, so that we seek to minimize

\[-G(p_1, \ldots, p_n). \]

Hence we would define \(y(p_1, \ldots, p_n) = -G(p_1, \ldots, p_n) + \omega \).

Let \(x = \{p_1, \ldots, p_n\} \), the \(r \)-dimensional MOP vector for the full system of systems. SPSA iteratively produces a sequence of estimates, \(\hat{x}_0, \hat{x}_1, \hat{x}_2, \ldots \), where \(\hat{x}_k \) will converge to the optimum value as \(k \) gets large. Implementation steps for the algorithm are as follows:

1. **Initialization**
 a) Set counter index \(k = 0 \).
 b) Set initial estimate \(\hat{x}_0 = \{p_1^l, \ldots, p_n^l\} \), the threshold system of system’s MOPs.
 c) Choose the SPSA algorithm gain coefficients, \(a, c, A, \alpha, \gamma \), in accordance with guidance and experience25-28.

2. **Generate \(k \)-th iteration’s simultaneous perturbation vector.**
 a) Generate the \(r \)-dimensional random vector, \(\Delta_k \), where each of the \(r \) components of \(\Delta_k \) is generated from a Bernoulli \(\pm 1 \) distribution with probability 0.5 for each \(\pm 1 \) outcome.

3. **Objective function evaluations during \(k \)-th iteration.**
 Obtain two measurements of the objective function, \(y(x) \), as follows:

 a) Let: \(c_k = c(k + 1)^{-\gamma}, \ a_k = a(A + k + 1)^{-\alpha} \)

 \[x_k^+ = \hat{x}_k + c_k \Delta_k, \ x_k^- = \hat{x}_k - c_k \Delta_k \]
b) Evaluate the objective function twice, based upon the above simultaneous
perturbation about the current MOP iterate, \hat{x}_k:

$$y_k^+ = y(x_k^+), \quad y_k^- = y(x_k^-)$$

4. **Gradient approximation during the k-th iteration**

Compute the simultaneous perturbation approximation to the r-dimensional gradient:

$$\hat{g}_k(\hat{x}_k) = \begin{bmatrix}
\frac{y_k^+ - y_k^-}{2 c_k \Delta_k^1} \\
\frac{y_k^+ - y_k^-}{2 c_k \Delta_k^r}
\end{bmatrix}, \quad \text{where } \Delta_k^i \text{ is the } i\text{-th component of the } \Delta_k \text{ vector. This}
$$

gradient approximation contrasts with the component-by-component perturbation in
standard forward difference gradient approximations which result in r function
evaluations at each iteration.

5. **Update the MOP iterate**, \hat{x}_k.

Utilizing the gain sequence and the gradient approximation, compute:

$$\hat{x}_{k+1} = \hat{x}_k - a_k \hat{g}(\hat{x}_k) \quad \text{and} \quad y_{k+1} = y(\hat{x}_{k+1}).$$

6. **Continue or terminate the search**.

Return to Step 2, replacing k with $k+1$ or terminate if one of the following termination
criteria are satisfied:

a) $|\hat{x}_{k+1} - \hat{x}_k| \leq x_{tol}$, where x_{tol} is the MOP convergence criterion

b) $|y_{k+1} - y_k| \leq y_{tol}$, where y_{tol} is the MOE convergence criterion

c) $k+1 = k_{\max}$, the maximum allowable number of iterations.
The above algorithm summary only describes unconstrained SPSA. As mentioned above, Sadegh28 has extended the original SPSA theoretical convergence results to constrained optimization problems. It was proven that a projection-type adaptation of SPSA will converge to a Kuhn-Tucker point asymptotically when optimizing over nonlinear inequality constraints that form a non-empty, bounded set and the constraint functions are continuously differentiable. A further condition he adds is that function evaluations at points where the constraints are violated are not feasible. By projection algorithm, he means the following. Let $P(x)$ be the projection function to the nearest point to x on the constraint set, utilizing the usual Euclidean norm. Then the projection algorithm has the general form

$$\hat{x}_{k+1}^+ = P(\hat{x}_k - a_k \hat{g}(\hat{x}_k)).$$

Intuitively, we “project” from the current iterate \hat{x}_k to the nearest border of the constraint set. Practically speaking, this means that \hat{x}_{k+1}^+ must satisfy exactly one or more of the constraint equations, which are then said to be “active”. Once the active set of constraints is determined, the projection algorithm then must consider those constraints as equalities for the purpose of computing \hat{x}_{k+1}^+. The active set is modified as iterations proceed, and the effect is that the iterates “follow the border” as the objective function continues to improve. Unfortunately, this projection along the SPSA gradient approximation to the nearest point on the constraint set is not easy to compute for the general case where the constraint set is formed by nonlinear inequalities. Mature, classical optimization codes such as MATLAB®’s CONSTR function contain extensive,
robust code to achieve the projection. Published implementations of constrained SPSA to
date have avoided such complexities and have been applied only to problems with simple
bound constraints of the form \(x^L \leq x \leq x^U \).

Note that our system of systems problem formulation is dominated by these
simple bound constraints on MOPs, with the exceptions being the cost constraint and the
secondary MOE constraint. In the next section, we will show how the model can be
reformulated using penalty functions to eliminate these complex constraints. To finish
off our discussion of constrained SPSA, the following three adaptations to the algorithm
described above are made:

1. As done in Fu and Hill\(^{25}\), when computing \(x_k^+ = \hat{x}_k + c_k \Delta_k \), \(x_k^- = \hat{x}_k - c_k \Delta_k \), and

\[
\hat{x}_{k+1}^+ = \hat{x}_k - a_k \tilde{g}(\hat{x}_k)
\]

in Steps 3 and 5 above, project them to the nearest feasible point
on the constraint set prior to evaluating the objective function. This is particularly
critical for the system of systems upgrade application because many of the MOPs are
probabilities or other physical quantities that have no practical meaning outside of the
constraint set. In the case of simple bound constraints, this is trivial to implement.

2. As suggested by Spall\(^{31}\), incorporate a “blocking function” to accelerate and ensure
monotonic convergence of the SPSA algorithm. Inspection of the gradient
approximation (Step 4) reveals that it should not be expected to be a particularly good
approximation to the true objective function gradient in the sense that the more
expensive forward or central difference formulae are constructed. Although
convergence is guaranteed, the poor quality of the SPSA gradient means that the

sequence of iterates, \(\{ \hat{x}_k \} \), does not necessarily produce a monotonically increasing objective function sequence. The blocking function consists of rejecting an iterate that degrades the objective function by more than a specified small amount and the next iteration is begun with the current iterate as its starting point; i.e., \(\hat{x}_{k+1} = \hat{x}_k \).

3. When the SPSA iterates get near the solution, they will tend to “jitter” about the optimum. When using a large, fixed number of iterations to obtain a solution, the average of the last several iterates will provide a better estimate of the optimum than simply the last iterate.\(^{32}\)

A MATLAB® implementation of this constrained SPSA algorithm is included as Appendix B, with results from a simple, illustrative problem—provided only to establish confidence in the author’s implementation.

As will be shown in Chapter 7, this first order SPSA algorithm exhibited poor convergence on the MCM system of systems problem. This is attributed to inherent difficulties that a first order process encounters when the problem has large scaling differences in the components being estimated—and we have about two orders of magnitude variation in this problem. Recently, a second order version of SPSA has been developed, which emulates the convergence acceleration and scaling invariant properties of deterministic Newton-Raphson algorithms\(^{33}\). This algorithm (called “2SPSA”) requires five function evaluations per iteration, but produced much better results than the

first order version (hereafter referred to as “1SPSA”). Results will be discussed in Chapter 7 and 8, with code and detailed results presented in Appendices D-F.

Model Reformulation via Penalty Function Method

As mentioned above, we are motivated to simplify the constraint set of our system of systems upgrade optimization problem to the point where the only constraints remaining are those of the simple bound type. Two classes of methods were considered: Lagrangian multiplier and penalty function methods, which turn out to be very similar in practice. The penalty function approach was selected as most appropriate for this application due to its conceptual simplicity and ease of implementation. Although attractive at first glance, Lagrangian multiplier methods34 have drawbacks that inhibit a robust, practical implementation. For example, the resulting objective function can be unpredictably unbounded below and the more robust augmented Lagrangian35 function methods require an outside iterative loop to solve for the Lagrangian multipliers, thereby greatly increasing the complexity and number of function evaluations. A straightforward Lagrangian multiplier method was successfully implemented on the same 3 dimensional constrained test problem described in Appendix D (formulated for SPSA checkout), but would not converge when applied to the full MCM system of systems problem, indicating a modified objective function that is unbounded below—a condition that will arise unpredictably in large dimensional problems.

To reformulate the MCM problem using a penalty function, note that both the cost and quality constraints should be active. That is, the optimal solution will turn out to cost the maximum allowable amount, and the performance/quality MOE will be minimally satisfied. (This was borne out in the results using CONSTR, and is a good “sanity check” on the model formulation.) Continuing with the notation established in this section, our optimization problem has the following streamlined form, now assuming equality constraints:

\[
\text{Max } G(x), \text{ subject to :}
\]
\[
C(x) = c^U
\]
\[
q(x) = q_T
\]
\[
x^L \leq x \leq x^U
\]

Following the MATLAB®/SPSA minimization convention and re-ordering:

\[
\text{Min } -G(x), \text{ subject to :}
\]
\[
C(x) - c^U = 0
\]
\[
q(x) - q_T = 0
\]
\[
x^L \leq x \leq x^U
\]

There is a wide variety of practical penalty function methods available\(^{36}\), most of which utilize variants of the quadratic and absolute value penalty functions:

\[
F_q(x) = -G(x) + A_1 \left(C(x) - c^U \right)^2 + A_2 \left(q(x) - q_T \right)^2 \text{ and}
\]
\[
F_A(x) = -G(x) + A_1 \left| C(x) - c^U \right| + A_2 \left| q(x) - q_T \right|.
\]

\(^{36}\) Himmelblau, Chapter 7.
Note that the effect of the penalty function augmentation is to create a function which will have a local minimum that is “near” the constrained optimum of $G(x)$ for sufficiently large gains, A_1 and A_2. The penalty terms provide a positive penalty for increased constraint violation, which of course will never be numerically satisfied exactly. In practice, the gains, A_1 and A_2, on the penalty terms must be large enough so that the effective penalty due to the equality constraints is significant relative to the value of the original objective function, $G(x)$, at its optimum point. If the gains are too small, then objective function convergence will occur at a point that does not satisfy the constraints very closely. Conversely, if the gains are too large, the algorithm-derived gradient estimates will be extremely large and variable for small changes in the constraint violation penalties, making for an inevitably ill-conditioned problem. This is mitigated by the absolute value penalty function relative to the quadratic penalty function, making it workable for the SPSA algorithm variants which have an inherently poor gradient estimate anyway.

Since the optimum values of the original problem are not generally known, the usual approach is to solve a sequence of problems, with gradually increasing gains until the desired degree of constraint satisfaction is achieved. Another approach is to construct a gain function that increases as a function of the number of iterations, approaching an asymptotic limit. Figure 16 plots an asymptotic penalty function gain function that (starts at 1 and grows to 11 after 500 iterations) that showed some degree of utility for solving the MCM problem with SPSA:

$$F_A(x) = -G(x) + \alpha_1(k)|C(x) - c^U| + \alpha_2(k)|q(x) - q_T|$$
where:

\[k = \text{iteration number} \]
\[k_{\text{max}} = \text{iteration at which full gain is achieved} \]
\[\alpha_i(k) = \begin{cases}
\frac{A_i}{2} \sin \left(\frac{k - 1}{k_{\text{max}}} \pi - \frac{\pi}{2} \right) + \frac{A_i}{2} + 1 & \text{for } k < k_{\text{max}} \\
A_i & \text{for } k \geq k_{\text{max}}
\end{cases} \]

For the MCM problem we do know the optimum before we start, and can therefore estimate appropriate gains a priori, avoiding the need to solve for the gains in an expensive outer optimization loop. The overall MOE minimum is on the order of 20 hours. Therefore, \(A_1 \) and \(A_2 \) should be chosen so that their term’s contribution to the penalty is on the order of about 10% of the optimal MOE value when their constraints are “close enough”. E.g., if we want the cost constraint to be satisfied to approximately 0.1 and the quality constraint to 0.001, then \(A_1=20 \) and \(A_2=2,000 \) produce approximately 2

![Asymptotic Penalty Gain Function](image-url)
hours of penalty each, a sufficient amount to drive an optimization algorithm to satisfy the original constraints when utilizing the absolute value penalty function. Several additional orders of magnitude are necessary to produce a similar effect from the quadratic penalty function.

There are distinct advantages and disadvantages to the two penalty terms above, as indicated in the following table:

<table>
<thead>
<tr>
<th>Penalty Function</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadratic Penalty</td>
<td>Differentiable</td>
<td>Arbitrarily large gains required for equivalence to original problem</td>
</tr>
<tr>
<td>Function</td>
<td>Initial estimate need not be close to optimum for convergence</td>
<td>Adversely affects algorithms with poor gradient estimators.</td>
</tr>
<tr>
<td>Absolute Value Penalty</td>
<td>Gains need not be arbitrarily large to ensure equivalence to original problem—avoids inevitable ill-conditioning</td>
<td>Not differentiable</td>
</tr>
<tr>
<td>Function</td>
<td></td>
<td>Weaker penalty leaves local minima so that initial estimate must be close to optimum for convergence</td>
</tr>
</tbody>
</table>

Many strategies of gains, penalty functions, and algorithm parameters were attempted and results catalogued in the course of this study. Results reported in Chapter 7 will reflect the finding that quadratic penalty function worked best with CONSTR and the absolute value penalty function worked best with SPSA, in spite of the theoretical SPSA assumption that the loss function is differentiable. The extremely large gains necessary to ensure the transformed quadratic penalty function formulation is equivalent
to the original problem poses severe stability problems for SPSA, which generates a poor gradient estimator in order to conserve function evaluations.

Limitations and Scope of Research

Unfortunately, there are several areas which can prevent efficient solution of specific problems, and therefore limit generalization of results. Some of those potential issues and mitigation approaches are as follows:

- Recall that we had side-stepped the force structure issue, represented by the integer-valued vector \(\mathbf{m} \). In a domain where the nominal numbers for each system exceeds some moderate number, say 10, then it is probably reasonable to solve the continuous case and take the nearest integer values—keeping in mind that the goal is really to achieve some substantive improvement over the existing system of systems, and the decision-maker will realize that there are sources of error in the process that would dominate this level of approximation. On the other hand, if it is expected that there would be only a small number of each system, say 1-5, then we could put an exhaustive search loop around the constrained optimization algorithm. It is expected that this latter situation is more widely applicable.

- Non-differentiability of the objective function when using simulation can violate convergence proof assumptions of certain algorithms, such as SPSA. Since the simulations are representations of physical systems, they are generally well-behaved as long as functionality is preserved and the optimization is over technical performance measures vice scenario or CONOPS parameters. Use of the absolute
value penalty function creates a non-differentiable objective function, though this did not prevent SPSA convergence in practice. Force level optimization when considering small numbers of systems may also generate discontinuities. However, an exhaustive search method would not require the objective function to be well-behaved. The Taguchi method for obtaining robust designs is a sort of exhaustive search over discrete parameters and seems applicable to the integer-valued force level problem, especially in the face of an ill-behaved objective function.\(^{37, 38}\)

- Local vs. Global optimum. If \(E = g(m, E_1, \ldots, E_n) = G(m, p_1, \ldots, p_n) \) is a concave function over a convex constraint set and the “optimum” point satisfies the Kuhn-Tucker conditions, then it is a global minimum solution. Unfortunately, these are difficult conditions to verify, especially if we are ultimately dealing with function evaluations provided by simulation or a complicated multivariate expression. Initial formulation of a closed-form analytic model should aid in generating initial conditions that are sufficiently “close” to the optimum. Moreover, if we keep in mind what we are trying to accomplish—the upgrading of a system of systems—then we should not be terribly concerned that our solution might not be at a global maximum, but rather be “satisfied” to find an upgrade suite that represents some significant improvement over the present situation as indicated by the objective function improvement over the threshold or nominal system of systems MOE. Convergence to a local vice global maximum did indeed occur for the MCM system of systems, and is

discussed in Chapter 7. In Chapter 8, a strategy for generating good initial MOP estimates is postulated and demonstrated for the simulation case.

• Choosing test problems with interesting initial conditions and constraint sets. It is possible that an ill-conceived problem formulation could yield search results that consistently gravitate towards just one or two parameters. To demonstrate the method, an attempt has been made to create the MCM system of systems model that basically already “in balance”. As will be seen in some of the results in Chapters 7 and 8, this has the drawback of creating a rather “shallow” objective function, making it a difficult problem for optimization algorithms.

The severity of the issues mentioned above will vary from problem to problem, and of course become more challenging as we migrate towards larger, more realistic problems. Therefore, the plan of research was to work from the well-understood deterministic domain towards the stochastic optimization domain motivated by the desire to utilize M&S for system of systems MOE evaluations. The sequence of optimizations that will be discussed in Chapters 7 and 8 for the MCM problem are:

1. Constrained SQP Optimization
2. Single system vs. system of systems optimization
3. Constrained SQP optimization via penalty function methods
4. First order constrained SPSA optimization via penalty function method
5. Second order constrained SPSA optimization via penalty function method
6. Second order constrained SPSA optimization via penalty function and simulation
CHAPTER 7

PHASE I RESULTS: CLOSED FORM OBJECTIVE FUNCTION

This Chapter presents the results of optimizing the closed form representation of the MCM system of systems model developed in Chapter 5 with the sequence of methods as described in Chapter 6. For ease of reference, the MCM system of system MOP definitions are repeated here:

\[
\begin{align*}
 x(1) &= p_{1,1} = A = \text{System S1 area coverage rate during detection pass (nm}^2/\text{day}) \\
 x(2) &= p_{1,2} = P_c = \text{Probability of correctly classifying a detection as mine-like} \\
 &\quad \text{or nonmine like, at range } R_c \\
 x(3) &= p_{1,3} = P_{fa} = \text{Detection false alarm rate (false alarms/nm}^2) \\
 x(4) &= p_{1,4} = T_c = \text{Time required to classify a mine (min)} \\
 x(5) &= p_{1,5} = \sigma = \text{Standard deviation of minelike object localization error (yards)} \\
 x(6) &= p_{2,1} = R_t = \text{Contact localization error standoff which yields an 80\% probability} \\
 &\quad \text{of re-acquisition} \\
 x(7) &= p_{2,2} = T_{pf} = \text{Time spent prosecuting a non-mine classified as a mine or unsuccessfully} \\
 &\quad \text{attempting to re-acquire a correctly classified mine (min)} \\
 x(8) &= p_{2,3} = T_n = \text{Time spent neutralizing (prosecuting) a classified mine (min)}
\end{align*}
\]

The system of systems constrained MOE optimization has been solved for an increasing sequence of multipliers (“costfactor”) on the cost of the threshold system, denoted by C^*, which happens to be $28.066M. This provides the decisionmaker with information to apply the CAIV approach to system upgrade or initial design. Plots are
provided so that one can visualize the top level MOE improvement and corresponding MOP requirements as the system of systems cost upper bound is allowed to increase.

Constrained SQP Optimization

The baseline results are obtained through utilization of MATLAB®'s constrained sequential quadratic programming (SQP) algorithm, described in Chapter 6. Complete MATLAB® code and results for the MCM system of systems optimization is provided in Appendix A. Figure 17 below summarizes those results. The first two plots present the top-level MOE ($E =$ time to complete minefield clearance) as a function of increasing cost factor and dollar cost upper bounds. The next two plots present the corresponding optimal MOPs as a function of increasing cost factor. The MOPs are normalized to their upper and lower bounds, with zero corresponding to their threshold system values and one corresponding to their technology limitations. Several significant insights can be obtained from examination of these plots:

- The system of systems MOE improves steadily to an asymptotic lower bound as the cost limit increases. Due to the imposed technology constraints, after a certain point no amount of money will enhance system performance.

- At the other extreme, if at least $1.25 \cdot C^\ast$ isn’t spent, the quality constraint cannot be met and even a very slow system cannot be achieved.

- A subjective “knee of the curve” can be observed to occur somewhere around 1.8 times the threshold system cost (about $50M$), after which the rate of MOE improvement significantly decreases.
• The component systems’ MOP requirements can be determined from these plots (numerical results are in Appendix A), also as a function of cost factor. One can see which MOPs become stressed (i.e., move away from their threshold system values) and approach their technology constraint limits as the cost constraint is relaxed. Of course, this behavior is dependent upon the PBCM function developed for each MOP in Chapter 5, as well as their significance relative to the objective function and quality constraint.
Figure 17: Constrained SQP Optimization Results for S

Note the hump in the MOE plot at costfactor=2.15, which also corresponds to a step change in the optimal value for x(7). This step change is due the existence of an objective function local minimum created by the unusually flat character of the PBCM.
for $x(7) = p_{2,2} = T_{pf}$ as illustrated in Figure 12. When the cost constraint is relaxed sufficiently to generate movement in $x(7)$, the search algorithm moves from $x(7)=7.0$ to about 4, thereby using up all the additional allowable cost and then some. This additional cost allocated to $x(7)$ forces cutbacks in other parameters, which turn out to be $x(1)$ and $x(3)$ as can also be seen in Figure 17. This translates into reduced overall performance that must correspond to a local, rather than global minimum—since the solution found at costfactor=2.1 is clearly superior and still meets the constraints.

The results can be used to design a specific cost-constrained upgrade to the threshold system of systems. For example, if the allowable cost constraint is twice that of the threshold system, then selecting $p_1 = [85.3,0.961,0.55,3.0,42.0]$ and $p_2 = [423.2,7.0,3.0]$ yields $E = 17.768$, with clearance rate $q=0.846$ at a cost of $56.132M$. This is a substantial enhancement to the threshold system represented by $p_1 = [10.0,0.9,2.0,9.17,90.0]$ and $p_2 = [75.0,6.6,10.0]$ that results in an overarching MOE of $E = 93.33$ hours with clearance rate of only $q=0.620$ at a cost of $28.066M$. Since CONSTR would not converge for costfactors less than 1.25, the analysis indicates that a system that satisfies the stringent requirement for 84.6% clearance will cost at least 25% more than a system of systems composed of the threshold component systems, but would take 38.38 hours to complete the clearance mission with a single pass from each system.
Single System Vs. System Of Systems Optimization

The claim is often made that optimization of each component system does not guarantee overall system of systems optimization\[1\]. However, an analysis is rarely available or offered to quantify the suboptimality of single system optimization. Here, we have optimized S_1 and S_2 separately, and compare the results with those just presented. It is not a straightforward process, due to the wide range of assumptions that can be made regarding the complementary system. To organize the analysis, two distinct single system approaches and sets of assumptions are hypothesized, analyzed, and tabular results offered in Figures 18 and 19. The two classes of single system developer assumptions regarding the other components to the system of systems are as follows:

1. Each system developer assumes the other is conducting a rigorous requirements optimization analysis and each has insight into the other’s process and results.

2. Each system developer has little or no insight into the other’s requirements analysis and will therefore assume that they will be interfacing with a system that is either very good or is marginally effective with regards to those MOPs that are known to interact between systems. This is referred to as “better” or “worse” than the baseline optimization results.

It should be noted that both approaches should still offer more insight than would come from simple, single system (a.k.a. “stovepipe”) analyses, which do not explicitly recognize that each system is part of a system of systems with quantifiable MOEs, quality constraints, technology constraints, and PBCMs for critical MOPs.

Referring to Figure 18, the first set of results is the baseline SQP optimization that is simply repeated from the previous section. The second set of results is obtained from optimizing S_1 and S_2 separately, but utilizing “perfect knowledge” about the baseline system of system optimization results. This is accomplished by holding the other system’s baseline optimization results fixed when optimizing each system one at a time, subject to the stated cost and quality constraints. S_i depends on the S_j MOP $x(6) = p_{2,1} = R$, and S_2 depends on the S_1 MOPs $x(2) = p_{1,2} = P_e$, $x(3) = p_{1,3} = P_{fa}$, and $x(5) = p_{1,5} = \sigma$. (MATLAB® code and complete results are listed and plotted in Appendix B.) The resulting system MOEs are then combined to form the system of systems MOE, $E = E_1 + E_2$. The difference with the system of systems baseline optimization is shown as a percentage of the baseline. This provides insight as to the inherent suboptimality of performing a sequential optimization, even when the “right answer” to the full system of systems problem is known. The suboptimality of single system optimization is quite significant for cost factors below 1.5, but not otherwise. It is interesting to note that the local minima “hump” that is so noticeable in the baseline results is not apparent in the separately optimized results. The quality constraint that $q(x) \geq 0.846$ was active for each costfactor value, and is therefore omitted from the table.
Next, the results of optimizing each system with good, but imperfect knowledge concerning the other’s capability are shown in Figure 18 as a more realistic implementation of having knowledge of the other system’s optimization process and results. \(S_i \) is optimized assuming \(x(6) = 500 \), which is at the “knee-of-the-curve” for \(S_j \)’s re-acquisition range PBCM (Figure 12). A similar inspection and assessment of the \(S_i \) MOP PBCMs for \(x(2), x(3), x(5) \) (see Figures 8,9,11) was done and \(x(2) = 0.955, x(3) = 1.0, x(5) = 42 \) were selected. The resulting recombined MOEs exhibit similar behavior in that the suboptimality is marked for small values of the cost constraint factor, which diminishes as the cost constraint is relaxed. Note that the recombined system of systems clearance rate is slightly better than the constrained value of 0.846, indicating a tradeoff of timeliness for a very modest gain in quality.

<table>
<thead>
<tr>
<th>costfactor</th>
<th>System of Systems Optimization</th>
<th>Perfect Knowledge Single System Optimization</th>
<th>Imperfect Knowledge Single System Optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1.3)</td>
<td>34.32 36.49 0.846</td>
<td>27.88 9.71 37.59 9.5%</td>
<td>27.29 13.16 40.44 17.8% 0.849</td>
</tr>
<tr>
<td>(1.4)</td>
<td>28.38 39.29 0.846</td>
<td>22.50 8.61 31.11 9.6%</td>
<td>22.06 10.65 32.71 15.3% 0.849</td>
</tr>
<tr>
<td>(1.5)</td>
<td>25.35 42.10 0.846</td>
<td>18.32 7.64 25.96 2.4%</td>
<td>18.03 9.31 27.34 7.8% 0.849</td>
</tr>
<tr>
<td>(1.6)</td>
<td>23.07 44.91 0.846</td>
<td>16.42 6.82 23.24 0.7%</td>
<td>16.27 8.26 24.53 6.3% 0.849</td>
</tr>
<tr>
<td>(1.7)</td>
<td>21.27 47.71 0.846</td>
<td>15.17 6.10 21.26 0.0%</td>
<td>15.08 7.38 22.46 5.6% 0.849</td>
</tr>
<tr>
<td>(1.8)</td>
<td>19.74 50.52 0.846</td>
<td>14.38 5.43 19.81 0.3%</td>
<td>14.33 6.60 20.92 6.0% 0.849</td>
</tr>
<tr>
<td>(1.9)</td>
<td>18.55 53.33 0.846</td>
<td>13.81 4.79 18.60 0.3%</td>
<td>13.77 5.89 19.66 6.0% 0.849</td>
</tr>
<tr>
<td>(2.0)</td>
<td>17.77 56.13 0.846</td>
<td>13.36 4.56 17.91 0.8%</td>
<td>13.33 5.24 18.56 4.5% 0.850</td>
</tr>
<tr>
<td>(2.1)</td>
<td>17.18 58.94 0.846</td>
<td>12.98 4.53 17.51 1.9%</td>
<td>12.95 4.63 17.58 2.3% 0.850</td>
</tr>
<tr>
<td>(2.2)</td>
<td>17.35 61.75 0.846</td>
<td>12.65 4.54 17.19 -0.9%</td>
<td>12.63 4.58 17.21 -0.8% 0.851</td>
</tr>
<tr>
<td>(2.3)</td>
<td>16.88 64.55 0.846</td>
<td>12.37 4.44 16.80 -0.5%</td>
<td>12.35 4.56 16.91 0.2% 0.851</td>
</tr>
<tr>
<td>(2.4)</td>
<td>16.40 67.36 0.846</td>
<td>12.11 4.37 16.48 0.5%</td>
<td>12.09 4.91 17.00 3.7% 0.851</td>
</tr>
<tr>
<td>(2.5)</td>
<td>16.12 70.17 0.846</td>
<td>11.89 4.38 16.26 0.9%</td>
<td>11.88 4.41 16.28 1.0% 0.851</td>
</tr>
</tbody>
</table>

Figure 18: Single System Optimization Results
Results from implementing the second approach are shown in Figure 19, again alongside the baseline results. We first optimize both systems separately, with the assumption that the other system’s MOPs will be quite good, or “better” than the optimal constrained system of systems baseline results. Specifically, for the MOPs that are effective at the system interfaces, $x(6) = 550, x(2) = 0.975, x(3) = 0.50, x(5) = 42$ were selected. The resulting set of MOEs are a little bit better than the “perfect knowledge set”, but the combined clearance rate, q, was up to 5% worse—a very significant number in the mine countermeasures domain.

What has happened is that by assuming the other system is being developed for high performance, one “under-engineers” his own system at the interface, and will naturally spend the remaining allowable funds to enhance his own single system MOE, E_i. Note that in this model, the interfacing MOPs have a first-order effect on the quality constraint, q. Hence the MOE times are very good, but the clearance rate is degraded as each system developer assumes that another system will take up the slack to produce an acceptable clearance rate. This is probably the most typical situation, because each system by itself will look good (in this case, fast) but the more complex combined system of systems quality MOE is either not addressed or is viewed as the responsibility of some other, overarching authority to assess the system of systems effectiveness.

Conversely, if one assumes that the other system’s development is not performance-driven, the result is to “over-engineer” the system at the interface and since resources are constrained, this forces degradation in the single system MOE. This effect can be seen in the second set of single system optimization results in Figure 19 which
were obtained with $x(6) = 300, x(2) = 0.975, x(3) = 0.50, x(5) = 52$. The clearance rate is significantly improved at the expense of a significant degradation in the system of systems performance MOE. Here, each system developer has assumed that his system must carry the load to maintain an adequate clearance rate and therefore relaxes parameters that most directly affect timeliness.

As mentioned above, these analyses are each done assuming the same set of constraints and combining the separately obtained results to obtain the system of systems performance. This is in itself a very optimistic assumption in that typical stovepipe developments would not be that well-coordinated in their assumptions. For example, the reconnaissance system manager might be working towards spending no more than twice his threshold system cost whereas the clearance system manager might be limited to 1.5.

<table>
<thead>
<tr>
<th>costfactor E</th>
<th>Cost q</th>
<th>E1</th>
<th>E2</th>
<th>E % Delta</th>
<th>q</th>
<th>E1</th>
<th>E2</th>
<th>E % Delta</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3</td>
<td>34.32</td>
<td>36.49</td>
<td>0.846</td>
<td>26.99</td>
<td>9.50</td>
<td>36.49</td>
<td>6.3%</td>
<td>0.823</td>
<td>29.23</td>
</tr>
<tr>
<td>1.4</td>
<td>28.38</td>
<td>39.29</td>
<td>0.846</td>
<td>21.84</td>
<td>8.44</td>
<td>30.28</td>
<td>6.7%</td>
<td>0.823</td>
<td>23.45</td>
</tr>
<tr>
<td>1.5</td>
<td>25.35</td>
<td>42.10</td>
<td>0.846</td>
<td>17.91</td>
<td>7.54</td>
<td>25.45</td>
<td>0.4%</td>
<td>0.823</td>
<td>19.09</td>
</tr>
<tr>
<td>1.6</td>
<td>23.07</td>
<td>44.91</td>
<td>0.846</td>
<td>16.19</td>
<td>6.75</td>
<td>22.95</td>
<td>-0.6%</td>
<td>0.823</td>
<td>16.76</td>
</tr>
<tr>
<td>1.7</td>
<td>21.27</td>
<td>47.71</td>
<td>0.846</td>
<td>15.04</td>
<td>6.04</td>
<td>21.08</td>
<td>-0.9%</td>
<td>0.823</td>
<td>15.35</td>
</tr>
<tr>
<td>1.8</td>
<td>19.74</td>
<td>50.52</td>
<td>0.846</td>
<td>14.30</td>
<td>5.39</td>
<td>19.69</td>
<td>-0.3%</td>
<td>0.836</td>
<td>14.50</td>
</tr>
<tr>
<td>1.9</td>
<td>18.55</td>
<td>53.33</td>
<td>0.846</td>
<td>13.75</td>
<td>4.77</td>
<td>18.52</td>
<td>-0.2%</td>
<td>0.820</td>
<td>13.90</td>
</tr>
<tr>
<td>2.0</td>
<td>17.77</td>
<td>56.13</td>
<td>0.846</td>
<td>13.31</td>
<td>4.57</td>
<td>17.88</td>
<td>0.6%</td>
<td>0.845</td>
<td>13.43</td>
</tr>
<tr>
<td>2.1</td>
<td>17.18</td>
<td>58.94</td>
<td>0.846</td>
<td>12.94</td>
<td>4.56</td>
<td>17.50</td>
<td>1.9%</td>
<td>0.847</td>
<td>13.04</td>
</tr>
<tr>
<td>2.2</td>
<td>17.35</td>
<td>61.75</td>
<td>0.846</td>
<td>12.62</td>
<td>4.55</td>
<td>17.17</td>
<td>-1.0%</td>
<td>0.845</td>
<td>12.70</td>
</tr>
<tr>
<td>2.3</td>
<td>16.88</td>
<td>64.55</td>
<td>0.846</td>
<td>12.34</td>
<td>4.46</td>
<td>16.80</td>
<td>-0.5%</td>
<td>0.816</td>
<td>12.41</td>
</tr>
<tr>
<td>2.4</td>
<td>16.40</td>
<td>67.36</td>
<td>0.846</td>
<td>12.09</td>
<td>4.41</td>
<td>16.50</td>
<td>0.6%</td>
<td>0.815</td>
<td>12.15</td>
</tr>
<tr>
<td>2.5</td>
<td>16.12</td>
<td>70.17</td>
<td>0.846</td>
<td>11.87</td>
<td>4.38</td>
<td>16.26</td>
<td>0.8%</td>
<td>0.813</td>
<td>11.91</td>
</tr>
</tbody>
</table>

Figure 19: Single System Optimization Assuming Better/Worse Other System Performance
Worse, one system manager may not even be cost constrained, but seeking to maximize performance to the limits of technology. We have quantified significant suboptimalities in single system optimization even under self-consistent system of systems constraints on cost, technology, and the quality MOE. These models and analysis could be used to predict the effects of these other disparate approaches on system of system effectiveness.

In summary, this single system vs. system of systems optimization comparison illustrates what might be called common sense to the acquisition executive. If we are not resource constrained, then the correct course of action is simply to optimize each component system for performance without regard to cost—and it doesn’t matter if this is implemented separately or as a system of systems. This has been the situation in Defense for many decades. But as the cost constraint is tightened it becomes increasingly important to consider the full impact of design decisions on the whole to get the most performance per unit dollar. Our results in this regard vividly illustrate the maxim,

“We are short of money, therefore we must think.”

Constrained SQP Optimization Via Penalty Function Method

The penalty function method described in Chapter 6 was applied to our MCM problem in order to incorporate the nonlinear constraints into the objective function. Appendix C contains MATLAB® code and results from implementing the method utilizing the CONSTR optimization algorithm. The plots that constitute Figure 20 demonstrate well-behaved but suboptimal results relative to the baseline. These results
were obtained utilizing the quadratic penalty function, which was found to be less sensitive to initial conditions than the absolute value penalty function whose results are also displayed. The quadratic penalty function formulation converged when initialized with the threshold system MOPs, whereas the absolute value penalty function would not converge unless it was initialized much closer to the optimal values—in this case, random perturbations of +/-20% from the baseline solution MOPs were sufficiently close to ensure convergence, though not always to a local minimum equivalent to the original problem. Also, CONSTR took anywhere from 2-20 times the number of iterations required for the baseline to converge within the selected nominal termination criteria. The degree of suboptimality can be seen explicitly in the Figure 21 table and the plot in Figure 25. Note that as the cost constraint is relaxed, the agreement converges.

Keep in mind that the penalty function approach on the closed form MCM problem formulation is used simply to establish and understand its nominal behavior prior to attempting stochastic optimization using simulation. Therefore, these results provide a best case limit for subsequent SPSA implementations. The dramatic increase in the number of required iterations is an indication that the transformed objective function is much “shallower”, primarily due to an effective relaxation of the constraint requirements—which is quite realistic from a management point of view. Therefore, the resulting minimum is nearly achieved in a rather large region rather than a single crisp point, implying that there should be some implications for flexibility in generating system requirements for the “optimal” CAIV sequence.
Figure 20: Constrained SQP Optimization (Penalty Function) Results for S
<table>
<thead>
<tr>
<th>Costfactor</th>
<th>Baseline Results</th>
<th>Quadratic P.F.</th>
<th>Absolute Value P.F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25</td>
<td>35.082</td>
<td>38.60</td>
<td>311</td>
</tr>
<tr>
<td>1.30</td>
<td>36.486</td>
<td>34.32</td>
<td>452</td>
</tr>
<tr>
<td>1.35</td>
<td>37.889</td>
<td>30.75</td>
<td>374</td>
</tr>
<tr>
<td>1.40</td>
<td>39.292</td>
<td>28.38</td>
<td>398</td>
</tr>
<tr>
<td>1.45</td>
<td>40.696</td>
<td>26.83</td>
<td>430</td>
</tr>
<tr>
<td>1.50</td>
<td>42.099</td>
<td>25.35</td>
<td>407</td>
</tr>
<tr>
<td>1.55</td>
<td>43.502</td>
<td>24.13</td>
<td>381</td>
</tr>
<tr>
<td>1.60</td>
<td>44.906</td>
<td>23.07</td>
<td>394</td>
</tr>
<tr>
<td>1.65</td>
<td>46.309</td>
<td>22.13</td>
<td>474</td>
</tr>
<tr>
<td>1.70</td>
<td>47.712</td>
<td>21.27</td>
<td>372</td>
</tr>
<tr>
<td>1.75</td>
<td>49.115</td>
<td>20.48</td>
<td>397</td>
</tr>
<tr>
<td>1.80</td>
<td>50.519</td>
<td>19.74</td>
<td>418</td>
</tr>
<tr>
<td>1.85</td>
<td>51.922</td>
<td>19.07</td>
<td>287</td>
</tr>
<tr>
<td>1.90</td>
<td>53.325</td>
<td>18.55</td>
<td>344</td>
</tr>
<tr>
<td>1.95</td>
<td>54.729</td>
<td>18.13</td>
<td>368</td>
</tr>
<tr>
<td>2.00</td>
<td>56.132</td>
<td>17.77</td>
<td>322</td>
</tr>
<tr>
<td>2.05</td>
<td>57.535</td>
<td>17.46</td>
<td>232</td>
</tr>
<tr>
<td>2.10</td>
<td>58.939</td>
<td>17.18</td>
<td>338</td>
</tr>
<tr>
<td>2.15</td>
<td>60.342</td>
<td>17.66</td>
<td>505</td>
</tr>
<tr>
<td>2.20</td>
<td>61.745</td>
<td>17.35</td>
<td>525</td>
</tr>
<tr>
<td>2.25</td>
<td>63.148</td>
<td>17.07</td>
<td>482</td>
</tr>
<tr>
<td>2.30</td>
<td>64.552</td>
<td>16.82</td>
<td>503</td>
</tr>
<tr>
<td>2.35</td>
<td>65.955</td>
<td>16.60</td>
<td>488</td>
</tr>
<tr>
<td>2.40</td>
<td>67.358</td>
<td>16.40</td>
<td>635</td>
</tr>
<tr>
<td>2.45</td>
<td>68.762</td>
<td>16.24</td>
<td>565</td>
</tr>
<tr>
<td>2.50</td>
<td>70.165</td>
<td>16.12</td>
<td>430</td>
</tr>
</tbody>
</table>

Figure 21: Penalty Function vs. Baseline Numerical Comparison
First Order Constrained SPSA Optimization Via Penalty Function Method

Designed for stochastic optimization, the 1SPSA algorithm is itself a stochastic process due to the nature of generating the gradient approximation, as described in Chapter 6. To better understand this behavior, a simple three-dimensional constrained optimization problem was posed and solved with 1SPSA. The problem description and results summary are shown in Appendix D. The points of interest are that the algorithm always found the solution exactly, while on the average taking about the same number of iterations (9.8 vs. 9) as did CONSTR, which was also implemented as a control.

A variety of penalty functions and algorithm parameters were investigated and applied with 1SPSA on the closed form MCM problem formulation, with limited success. The wide range in parameter values at or near the optimal values cannot be handled well by a first order algorithm. The best results were obtained with the absolute value penalty function, starting each solution by randomly perturbing the baseline solution by 20%—an initial uncertainty level that a domain-knowledgeable system developer can probably guess at for their system. Figure 22 displays the usual plots for a 2500 iteration (5000 function evaluations) implementation, and Appendix D has the detailed output, including the SPSA algorithm control parameters that were utilized. While the top level MOE plot is not too noisy, there are some shortcomings (1) the resulting MOP plots are quite scattered, and (2) the clearance rate constraint is not well-satisfied, with q ranging from 0.810 to 0.866, and (3) the cost constraint is not well-satisfied, with the “solution” cost exceeding the upper bound by up to $5M. Regarding the first criticism, recall that we
would like to use the MOP solutions to specify requirements for the component systems. Since this behavior is so apparently erratic, the algorithm is unsatisfactory for this purpose, on this problem. Actually, the problem with satisfying the clearance rate and cost constraints is more severe, in that the iterates do not “solve” the constrained problem.

Figure 22: ISPSA Results--5000 function evaluations
Second Order Constrained SPSA Optimization Via Penalty Function Method

To address the shortfalls of 1SPSA on this difficult problem, second order SPSA was implemented as mentioned in Chapter 6. As can be seen by inspection of the complete code and results listed in Appendix E, it can generate solutions that satisfy the full set of constraints, and approaches the MOE optimum values produced by CONSTR on the penalty function reformulation. Excellent satisfaction of both cost and quality constraints were obtained, unlike 1SPSA. Unfortunately, it still suffers from apparently erratic MOP estimates, which would be difficult to translate into system requirements. A wide variety of penalty function weightings, algorithm control parameters, blocking, Hessian averaging, and solution averaging techniques were applied in an attempt to obtain more stable MOP estimates with limited success. Figure 23 illustrates the results obtained with the same number of function evaluations (5000, with 1000 iterations) on the absolute value penalty function, with initial conditions randomly perturbed 20% from the baseline solution.
To better understand this erratic behavior, and to determine the best the algorithm (which is itself stochastic in nature) can produce on this problem, it was re-solved by initializing the algorithm with the baseline solution obtained from MATLAB®’s CONSTR. The following results were obtained, also with 5000 function evaluations (Figure 24):

Figure 23: 2SPSA Results--5000 function evaluations
These results are excellent, and indicate that 2SPSA is stable and can produce good MOP results if it is initialized “close enough” to the optimum. It also confirms the previous finding that the transformed objective function is quite shallow. Of course, this is difficult to achieve when one is approaching a new problem for the first time. It should
be noted that similar well-behaved results were obtained when the initial values were only
10% from the optimum, but getting that close to the optimum is probably impossible for a
system architect to achieve, a priori. Also, recalling our experience with the penalty
function control cases, the absolute value penalty function may be converging to nearby
local minima that aren’t optimal solutions to the original problem. This effect may
actually account for some of the “noise” in Figure 24 rather than having been generated
from the inherent algorithm uncertainty.

Figure 25 plots the MOEs obtained from each of the four algorithms that have
been applied. There is good agreement with all four algorithms, even the two SPSA
algorithms, which is encouraging as preparation for the stochastic simulation situation.
Although the results look good at the MOE level, we have to look carefully at the degree to which the constraints have been satisfied with 1SPSA and 2SPSA. Figure 26 offers a table of results that compares not only the final MOE values, but the cost and quality values resulting from each optimization. The cost upper bound is in the second column, and each algorithm is trying to produce q(x)=0.846—which was exactly satisfied with both the baseline and quadratic penalty function methods solved with CONSTR.

<table>
<thead>
<tr>
<th>Costfactor</th>
<th>Cost Baseline Results</th>
<th>Quadratic P.F.</th>
<th>1SPSA: 5000 Fn. Evals</th>
<th>2SPSA: 5000 Fn. Evals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25</td>
<td>35.082</td>
<td>38.60</td>
<td>311</td>
<td>38.59</td>
</tr>
<tr>
<td>1.30</td>
<td>36.468</td>
<td>34.32</td>
<td>452</td>
<td>66.52</td>
</tr>
<tr>
<td>1.35</td>
<td>37.889</td>
<td>30.75</td>
<td>374</td>
<td>44.94</td>
</tr>
<tr>
<td>1.40</td>
<td>39.292</td>
<td>28.38</td>
<td>398</td>
<td>38.95</td>
</tr>
<tr>
<td>1.45</td>
<td>40.696</td>
<td>26.83</td>
<td>430</td>
<td>34.56</td>
</tr>
<tr>
<td>1.50</td>
<td>42.099</td>
<td>25.35</td>
<td>407</td>
<td>39.93</td>
</tr>
<tr>
<td>1.55</td>
<td>43.502</td>
<td>24.13</td>
<td>381</td>
<td>28.39</td>
</tr>
<tr>
<td>1.60</td>
<td>44.906</td>
<td>23.07</td>
<td>394</td>
<td>26.82</td>
</tr>
<tr>
<td>1.65</td>
<td>46.309</td>
<td>22.13</td>
<td>474</td>
<td>25.33</td>
</tr>
<tr>
<td>1.70</td>
<td>47.712</td>
<td>21.27</td>
<td>372</td>
<td>24.10</td>
</tr>
<tr>
<td>1.75</td>
<td>49.115</td>
<td>20.48</td>
<td>397</td>
<td>23.02</td>
</tr>
<tr>
<td>1.80</td>
<td>50.519</td>
<td>19.74</td>
<td>418</td>
<td>22.07</td>
</tr>
<tr>
<td>1.85</td>
<td>51.922</td>
<td>19.07</td>
<td>267</td>
<td>21.20</td>
</tr>
<tr>
<td>1.90</td>
<td>53.325</td>
<td>18.55</td>
<td>344</td>
<td>20.40</td>
</tr>
<tr>
<td>1.95</td>
<td>54.729</td>
<td>18.13</td>
<td>368</td>
<td>19.66</td>
</tr>
<tr>
<td>2.00</td>
<td>56.132</td>
<td>17.77</td>
<td>322</td>
<td>18.98</td>
</tr>
<tr>
<td>2.05</td>
<td>57.535</td>
<td>17.46</td>
<td>232</td>
<td>18.45</td>
</tr>
<tr>
<td>2.10</td>
<td>58.939</td>
<td>17.18</td>
<td>338</td>
<td>18.02</td>
</tr>
<tr>
<td>2.15</td>
<td>60.342</td>
<td>16.76</td>
<td>505</td>
<td>17.66</td>
</tr>
<tr>
<td>2.20</td>
<td>61.745</td>
<td>17.35</td>
<td>525</td>
<td>17.35</td>
</tr>
<tr>
<td>2.25</td>
<td>63.148</td>
<td>17.07</td>
<td>482</td>
<td>17.07</td>
</tr>
<tr>
<td>2.30</td>
<td>64.552</td>
<td>16.82</td>
<td>503</td>
<td>16.82</td>
</tr>
<tr>
<td>2.35</td>
<td>65.955</td>
<td>16.60</td>
<td>484</td>
<td>16.60</td>
</tr>
<tr>
<td>2.40</td>
<td>67.358</td>
<td>16.40</td>
<td>635</td>
<td>16.40</td>
</tr>
<tr>
<td>2.45</td>
<td>68.762</td>
<td>16.24</td>
<td>565</td>
<td>16.24</td>
</tr>
<tr>
<td>2.50</td>
<td>70.165</td>
<td>16.12</td>
<td>430</td>
<td>16.12</td>
</tr>
</tbody>
</table>

Figure 26: Comparison of Optimization Algorithm MOE, Cost, and q(x) Results
To better compare 1SPSA vs. 2SPSA satisfaction of the constraints, Figures 27 and 28 are plots that compare both algorithms’ final clearance rate and cost, respectively. While 2SPSA provides excellent results in this regard, 1SPSA does not, and therefore, almost none of its results are truly useful.

Optimization Algorithm Comparison: q(x)=0.846

Figure 27: Comparison of 1SPSA vs. 2SPSA Clearance Rate Results
A final note regarding the nature of stochastic optimization is in order. When performing a stochastic optimization, each point on the CAIV plot is a random realization resulting from both the stochastic nature of the underlying function as well as that of the algorithm itself. Therefore, to obtain useable MOP estimates, many runs at each costfactor should be done and the most self-consistent composite set of runs should be selected as representative of solving the full range of the CAIV problem. This was done to obtain results in Chapter 8 that utilize the simulation with 2SPSA.
CHAPTER 8

PHASE II RESULTS: SIMULATION OBJECTIVE FUNCTION

Simulation Description

The MCM system of systems model was implemented as a simulation, patterned directly after the parameter dependency diagram developed in Chapter 5. It contains 12 functional blocks, as shown below (Figure 29), with parameters defined explicitly in Chapter 5.

![MCM Simulation Block Diagram](image)

Figure 29 MCM Simulation Block Diagram
The simulation was implemented as a MATLAB® function which produces one Monte Carlo realization of E and q with each function call. The simulation randomly generates the specified events in accordance with the MOPs. For example, looking at Block 4, if there are 100 mines in the minefield (i.e., $M_0=100$) and $P_d=0.90$, then the number of detected mines (D_m) is generated simply as 100 Bernoulli success/failure trials with probability of success equal to 0.90. The randomly generated D_m is then passed to Block 7, which in turn similarly generates the number of correctly classified mines, and so on. Eventually, the MOEs for that realization are produced and the resulting penalty function evaluation is returned by the simulation function MCMSIM after calculating the resultant system cost.

Second Order Constrained SPSA Optimization Via Penalty Function And Simulation

The resulting penalty function values are noisy and the amount of noise directly affects 2SPSA parameter selection. To characterize the noise, an auxiliary program was written that takes x as input, calls MCMSIM many times and generates statistics. For example, at the optimum for costfactor=2.0 and using the absolute value penalty function with gains $A_1=3$ and $A_2=100$, the standard deviation for $F_A(x)$ and E are 2.3 and 0.38, respectively. Unfortunately, these modest gains for the cost and quality penalties did not produce acceptably close convergence. The values used for the previous analyses ($A_1=50$, $A_2=1000$) were used instead, with better convergence properties—but at the cost of greatly increased noise on the penalty function $F_A(x)$: a mean and sigma values of 46 and 21 at costfactor equal to 2.0. This level of noise is extremely difficult to deal with,
and is an artificiality of the penalty function method. A quick analysis of the quadratic penalty function indicates that the resulting noise on $F_q(x)$ is unacceptably high when gains guaranteed to produce constraint agreement are used.

In stochastic optimization, the issue arises as to what the final answer is to the problem at hand. Specifically, what are the values for the MOEs E and q that are associated with the solution vector x (MOPs)? Since MCMSIM produces a random realization of the objective function, it must be called many times and results averaged to generate expected values for E and q. The 2SPSA code was therefore augmented to average 100 function calls to generate the average MOEs that are displayed.

To characterize the effects this substantial noise would have on 2SPSA, the 2SPSA code was initialized with the analytic model’s optimal results for each value of the costfactor and optimized using the simulation as the objective function. The results are displayed in Appendix F and indicate that the algorithm is stable and would converge (or at least not wander far from) the optimal solution were it initialized sufficiently “close” to the optimum. Another insight is that the problem from this type of control run is that the final MOE values are relatively insensitive to values of $x(2)$ and $x(3)$ but very sensitive to $x(4)$. As in the CONSTR baseline results, the value of $x(4)$ took a step change at costfactor=2.5, where the problem changes character from a flat objective function to one that is much sharper. Also interesting is the level of noise in satisfaction of the clearance rate constraint that can be observed in the summary table in Appendix F. The noise is consistent with the characterization mentioned above, giving an indicator of the problem difficulty and noise in the simulation.
As in Chapter 7, initial values for x were chosen as random 20% perturbations from the optimal values as determined by the baseline (noise-free, analytic model) CONSTR results. Many runs were conducted at 1000 iterations, with some run out to 2000 and 4000 iterations without significantly enhancing the results. Figure 30 displays composite results of six sets of 1000-iteration runs that best satisfy the cost and clearance rate constraints. They were obtained with 2SPSA algorithm parameters $\alpha=0.602$, $A=50$, $c=0.02$, $a=10$, blocking the use of any iterate that increased the current value of the objective function by more than 3, and averaging the last three unblocked iterates to obtain the final estimate. Although the MOE results are well-behaved, the MOP estimates are still noisy, exhibiting the same character as those obtained with the algorithm initialized at the optimum.

Figure 31 displays a comparison of the 2SPSA simulation MOE results against the various methods applied to the analytic model. Also included are 1 sigma bars on the average MOE obtained with the 2SPSA simulation results, as discussed above. In the MOE domain, the 1000-iteration SPSA simulation results compare favorably with the deterministic results.

The cost constraint agreement is excellent, diverging generally less than $10K. Figure 32 below shows the degree of convergence to the clearance rate constraint of 0.846 and the +/- one sigma bounds obtained numerically. This too shows excellent agreement as did the 2SPSA results obtained on the analytic model.

Practicality questions remain, however, as (1) we have used knowledge of the analytic model results to select the initial iterate and (2) the MOP estimates are too
irregular to confidently assign system design parameters in a CAIV approach to the system of systems upgrade problem, as a small change in the cost constraint would produce unreasonably irregular changes in the corresponding MOPs.

Figure 30: 2SPSA Simulation Results--5000 Function Evaluations
Figure 31: 2SPSA Simulation vs. Analytic Model Results

Figure 32: 2SPSA Simulation Results for Clearance Rate
Practical Selection of Initial MOP Estimates and Final Results

The question arises as to how, in the absence of prior analytic results, one would select an initial set of MOP values for the simulation optimization. Recall that for the algorithm comparisons above, we randomly perturbed the true optimum by 20% to initialize each 1SPSA and 2SPSA run. One “prior-free” way to do this is to first estimate the minimum value of the costfactor multiplier that would represent essentially no cost constraint—and therefore the optimization solution vector would move to the technology upper bound. In the absence of understanding the sensitivity of the objective function to each MOP, we could then assume that the optimal MOP values would tend to be proportional to the costfactor across its interval constraints. Therefore, when costfactor=1, we assume the optimum would be the threshold value, \(x^* \) and then linearly ramp up (or down) to its technology constraint as the costfactor constraint is relaxed to its asymptotic value. In our MCM problem notation with the asymptotic costfactor equal to 2.5,

\[
\begin{align*}
x_0(j) &= x^L(j) + \left(\frac{\text{costfactor} - 1}{1.5} \right) (x^U(j) - x^L(j)) \quad \text{for } j \text{ such that } x^*(j) = x^L(j) \\
x_0(j) &= x^U(j) - \left(\frac{\text{costfactor} - 1}{1.5} \right) (x^U(j) - x^L(j)) \quad \text{for } j \text{ such that } x^*(j) = x^U(j)
\end{align*}
\]

This approach was used with 1000 iterations with marginally satisfactory results. Although it produced more stable MOP estimates, the MOEs were consistently worse than the random initialization scheme that was chosen to (1) provide a common challenge to all the algorithms, (2) represent some of the arbitrariness of most initial management
decisions regarding MOPs, and (3) be certain of being “close enough” to the optimum to expect algorithm convergence.

To enhance results and their practical utility, two additional measures were taken. First, the number of iterations was increased to 2000 and a composite profile selected from the results of six separate runs at each costfactor value using the criteria of creating as smooth an overall MOE curve as possible—i.e., no prior information was used from the analytic baseline results. Figure 33 displays the MOE and MOPs normalized to their interval constraints in the same manner as previously presented results. The MOE estimates are very well-behaved as the costfactor constraint increases, and the MOP estimates are erratic yet still patterned.

Secondly, to enhance the practical utility of the MOP results, they were interpolated utilizing second to sixth order polynomials, as appropriate. The 2SPSA-generated MOP estimates and the polynomial interpolated curves are shown in their natural units. The solid red line in Figure 33 is the result of averaging the MOE realizations from 100 executions of the simulation function MCMSIM for each interpolated MOP vector as a function of the costfactor constraint. These final results are excellent and demonstrate practical utility for use in specifying component system MOPs.
Figure 33: 2SPSA Simulation Results (MOE and Normalized MOPs)--2000 Iterations with Ramp Interpolation Initialization
Figure 34: 2SPSA Simulation Results (MOP Values)--2000 Iterations with Ramp Interpolation Initialization
Figure 35 compares these results to the baseline analytic results in the overall MOE domain. The interpolated simulation results are very smooth, approximating the baseline results curve. Of course, we always have to make sure that the quality and cost constraints are reasonably well satisfied, which is indeed the case, as shown in Figures 36 and 37. Actually, the interpolated MOP values result in underspending the cost constraint by as much as $4M (about 6%), though the raw 2SPSA results are much closer.
Figure 36: 2SPSA Simulation Clearance Rate Results

Figure 37: 2SPSA Simulation Cost Results
Also of interest is the distribution of costs between the optimized systems, S_1 and S_2. Figure 38 displays the resultant cost factor for each system as a function of the overall system of systems cost factor constraint. The distribution of costs varies as the cost factor constraint is relaxed and the impact of certain parameters are automatically traded off.

![Figure 38: 2SPSA Simulation Costfactor Results by Individual System](image)

Finally, referring back to the baseline analytic results from Chapter 7, we found that at a representative cost factor constraint value of 2.0, CONSTR produced

\[p_1 = [85.3, 0.961, 0.55, 3.0, 42.0] \] and

\[p_2 = [423.2, 7.0, 3.0] \]

yielding $E = 17.8$, with clearance rate $q=0.846$ at a cost of $56.1M$. Our final results with utilizing nonlinear, constrained, stochastic optimization with the simulation as the means to evaluate the objective.
function, produced \(p_1 = [74.3, 0.965, 1.1, 3.2, 55.8] \) and \(p_2 = [495.6, 4.4, 3.3] \) yielding \(E = 18.7 \), with clearance rate \(q = 0.841 \) at a cost of $54.0M. The overall MOE is about 5% worse for $2M less cost and a very slight decrease in clearance rate of 0.005.

These runs have highlighted two fundamental difficulties created by the penalty function approach to constrained stochastic optimization: (1) sufficiently large penalty gains to guarantee constraint agreement also makes the transformed objective function very “flat” and (2) the penalty function multiplies the effect of the simulation noise to the point where it makes convergence very difficult. These factors should motivate further research in more direct methods for constrained stochastic optimization to enhance the likelihood of successful utilization of advanced M&S to support system of systems acquisition decisions.
CHAPTER 9

VERIFICATION AND VALIDATION ISSUES

This Chapter concerns how Verification, Validation and Accreditation (VV&A) for the system of systems upgrade process would be approached when extending the methodology beyond a proof of principle demonstration. Implementation of these VV&A approaches on a practical problem of significant scope and fidelity is beyond the scope of the dissertation effort. The discussion is included here for purposes of scoping the practical aspects of gaining widespread acceptance for a newly proposed process.

A commonly accepted set of definitions for VV&A of models and simulation (M&S) are as follows40:

Verification: The process of determining that a model implementation accurately represents the developer’s conceptual description and specifications.

Validation: The process of determining the degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model.

Accreditation: An official determination that a model is acceptable for a specific purpose.

There are two parts to verification: *logical verification* that ensures that the basic equations and algorithms are correct, while *code verification* checks whether these representations or abstractions of the real world are correctly implemented in the computer.

Note that both V&V are considered to be processes. Since models and simulations are abstractions of the real world, complete validation is considered to be achievable for only the most simple of models. Hence it is almost never considered appropriate to refer to a complex M&S as “validated”. This is where accreditation comes in, representing a decision by an authoritative body that a given level of validation is sufficient to support a given decision process or application.

There is a large body of literature on the V&V of software systems, and a lesser extent on the VV&A of M&S. This dissertation has examined a constrained optimization process that utilizes both an analytic model and a simulation to investigate upgrading a representative systems of systems. The issues in verifying and validating a process such as this is not unlike those associated with an expert system. An expert system implements an acknowledged process, although this process is not an expert system per se, due to the lack of an acknowledged knowledge base. Practical implementation of this process in its mature form would generally utilize previously developed models and simulations, each of which presumably brings its own VV&A
approach arising from the single system development which it supports. VV&A of the selected models and simulations is not part of the verifying and validating the process per se, but would be expected to have already been accomplished on the core models and simulations that would map component system MOPs to system of systems MOEs. The discussion below is therefore adapted from literature on V&V of expert systems, which seem more applicable to V&V of a new process.

What is Important and Why

When applied to a software system, validation means building the right system, and verification means building the system right. For a process, validation means implementation of the right process for the problem, whereas verification means implementing the intended, self-consistent and repeatable process. Therefore, although verification is a necessary condition, we are ultimately concerned with validation, since a highly efficient implementation of an invalid (or inappropriate) process would be useless. In the context of the proposed process, we will not be solving the system of systems upgrade problem directly, but an abstraction of it—and we are therefore justifying the level of abstraction through the validation process. Specific concerns that are applicable to the validation of the proposed process\footnote{O’Keefe, R.M, Balci, O., and Smith, E.P., “Validating Expert System Performance”, IEEE Expert, Winter 1987, pp. 81-87.}.

\footnote{Pace, D.K., “Issues in Validating Simulations with Heterogeneous Levels of Fidelity”, Second High Fidelity Modeling and Simulation Workshop in the DIS Environment, Johns Hopkins University, 23 March 1995.}
• **What to validate.** Candidate items to validate include (1) intermediate results, (2) the final result, and/or (3) the reasoning of the process. O’Keefe et al, recommend the reasoning process as the overall validation standard. His logic is that although a poor reasoning process can produce a correct result on a trial problem, it is unlikely to be successfully scaled up to a problem with full complexity. Also, it may be impossible to classify the final result as decidedly right or wrong. Domain experts can be assembled to classify the intermediate results, final result, and process reasoning into categories such as: ideal, acceptable, sub-optimal, and unacceptable.

• **What to validate against.** The process can be validated against known results or against domain expert opinion as mentioned above. Known results can be generated on carefully structured test cases, in particular system of systems models with closed form expressions for the component system MOEs and the overall MOE. Domain expert opinion could be obtained by examination of “successful” Cost and Operational Effectiveness Assessment (COEA) studies, but there is no guarantee that they are correct—indeed, the operating hypothesis is that the proposed system of systems upgrade process would be superior to the typical COEA approach that concentrates on just one system.

• **What to validate with.** For expert systems, validation efforts generally concentrate on comparisons against documented test cases. But here, the sample of possible COEA test cases will be very small, and as mentioned above, would not produce a range of suggested enhancements across the full system of systems, but their solutions would necessarily be confined to one system. The process constraints could be set up
to force enhancements to only one component system, or the system of systems could be composed of the degenerate case of one system, but this would not be a comprehensive validation check case. O’Keefe et al, recommend testing against a small number of complex cases and asking a panel of experts to assess how well the process handles them.

- **When to validate.** No agreement exists on this in the context of expert system validation. Initial validation of the process reasoning seems adequate, with subsequent re-validation as the process applications are extended.

- **Controlling the cost of validation.** This is generally measured in terms of time and the cost to obtain applicable data, which can be substantial for a large system of systems.

- **Controlling bias.** Several categories of bias must be guarded against, even when using experts in the validation process, such as:

 1. bias for or against a quantitative optimization approach
 2. developer bias in selection of test cases/scenarios that would favor his/her particular system’s potential contribution to the whole
 3. bias for or against a centralized authority imposing system of systems perspectives or requirements on system developers
Selection Strategies For Ultimate Design Of The Process VV&A Approach(es)

Validation of the reasoning process would necessarily be qualitative. Potential qualitative approaches include:

- **Face validation.** Experts in the problem domain (i.e., mine countermeasures, COEA studies, stochastic optimization, etc.) subjectively compare the process performance against their expert experience, assessing the process results at face value with regard to prescribed acceptable performance range.

- **Predictive validation.** This approach utilizes historic test cases with known results and assessments of the errors previously obtained. Here, it will be necessary to find a test case where multiple systems have been upgraded in an attempt to enhance a system of systems. Again, the assessment will be against some acceptable performance range standard.

- **Field tests.** This is a long term approach that would be used only after initial validation, in an attempt to widen the validated domain.

- **Sensitivity analysis.** This is performed by systematically changing model parameters and constraint sets and observing impact on the solutions. This is a particularly useful approach in this application, as the available test cases may only be special cases of the process in that generally only one component system of a particular system of systems is considered for upgrading or replacement.

This area of validation of M&S and expert systems is one in which there is no consensus on approach. My initial judgment is that a combination of face validation, predictive validation and sensitivity analysis will be appropriate.
Perspectives on the Limitations of V&V Approaches

There are going to be limits and concerns related to any approach to verification and validation. One of the most important is related to completeness and complexity. This is of particular concern here, as we are expanding the scope of systems engineering into the system of systems domain. At the system of systems level, the relationship of component systems’ MOPs to the overarching MOE becomes increasingly non-intuitive for all but the most significant parameters, as the complexity of the system of systems grows. Therefore, the value of expert opinion wanes as the completeness of the representation or abstraction increases.

Secondly, there is the problem of acquiring sufficient data, or test cases to perform the qualitative validation described above. Since the whole approach represents a whole new way at looking at the system of systems upgrade process, it may be that the accumulated experience of available test cases will serve simply as knowledge acquisition for expert face validation.

Finally, and perhaps most significantly, we don’t even know how well the current acquisition decision process “works” in a cost-constrained environment. We do know that in the absence of cost constraints, it doesn’t matter whether one optimizes at the system of system of systems level. We also know that those two factors are relatively

new concerns in DoD acquisition policy and implementation: (1) concern with cost rather than performance as the independent variable in trade studies, and (2) the system of systems perspective. These new factors make it unlikely that an applicable process baseline could ever be established.
CHAPTER 10

SUMMARY AND CONCLUSIONS

A systematic approach to considering how best to upgrade specific, complex systems of systems has been postulated and demonstrated. The process treats cost as the independent variable and seeks to find the “best” point design for upgrading a particular system of systems, subject to stated cost and technology constraints, relative to an overarching measure of effectiveness. The design requirements so generated represent an improved system of systems that may involve upgrading all component systems simultaneously, not just one at a time. Extension of the typical COEA/AOA approach to the system of systems environment would hypothesize a manageable suite of point designs and assess them against a common metric generally functionalized by cost. In contrast, this approach automatically generates a continuum of “optimal” designs not only functionalized by total system of systems cost, but also taking into account realistic technology constraints as well.

The process has been demonstrated on a naval mine countermeasures system of systems representation of sufficient complexity and detail to demonstrate the feasibility of the approach. This proof of principle demonstration features a constrained, nonlinear optimization algorithm whose objective function is a closed-form representation of the primary system of systems MOE, with constraints represented by functionalized Performance Based Cost Models, technology-driven bounds on system MOPs, and a secondary system of systems MOE. Various optimization approaches have been demonstrated and differences quantified, including the suboptimality of considering just
one system at a time. Due to the nature of complex system of systems interactions, implementation of this optimization technique on problems of national interest will require M&S to represent the mapping of system measures of performance to single system MOEs and on to the overarching system of systems MOE. A stochastic simulation of the MCM system of systems was therefore implemented and optimized utilizing a constrained variant of the Stochastic Perturbation Simultaneous Approximation method.

In short, a disciplined, quantitative approach to developing system of systems upgrade options for very complex engineering situations has been developed and demonstrated. Application of this approach which can result in more effective and comprehensive systems acquisition and technology investment strategies, with the secondary benefit that the process can be used as a framework to determine how to utilize campaign-level M&S to support acquisition decisions.

Conclusions

The approach and methodology supports the quantitative elements of the System of Systems (S2) Engineering Process, especially those related to system performance optimization and development of transition or upgrade alternatives. Inclusion of PBCMs and associated overall cost constraints enables the decisionmaker to proceed based upon cost as the independent variable considerations. General methodology was developed and feasibility has been demonstrated through a proof of principle analysis of a naval mine countermeasures system of systems with realistic performance based cost models and technology constraints, and utilizing both classical and stochastic optimization algorithms.
In quantifying the sub-optimality of single-system optimization relative to simultaneously optimizing the entire system of systems, several significant insights were obtained and verified by examining some reasonable assumptions that might be held by component systems’ management concerning the concurrent system engineering processes of other systems. For example, if a system engineer assumes that the other component systems are being developed for high performance, he will “under-engineer” his own system with respect to interfacing parameters and will tend to allocate his resources to enhancement of his single system MOE. Conversely, if a system engineer assumes that the other systems are not performance-driven, the result is to “over-engineer” his system at the interface and since resources are constrained, this forces degradation in his single system MOE. In both cases, the overall system of systems is sub-optimal, because all system engineers are making the same erroneous assumptions. These effects are accentuated with restrictive cost constraints and become insignificant as overall cost constraints are relaxed to the point where the most advanced technology is affordable for all system components.

Due to the complex interaction between systems (including multiple units of similar systems), closed form analytic expressions for system of systems performance are giving way to simulation-based representations. Therefore, we developed an efficient methodology that can utilize stochastic simulation to evaluate the system of system’s measure of effectiveness. Transformation of the constrained nonlinear stochastic optimization problem formulation to include only interval constraints enabled the application of a straightforward constrained optimization projection adaptation of the second-order SPSA algorithm. Although feasible, the inherent ill-conditioning of the
selected penalty function approach and the number of simulation-based functions
evaluations still required for convergence limits practical, large scale applications and
therefore motivates future research to enhance efficiency.

Future Research

Several interesting avenues for further research have become apparent in working
through the general system of systems optimization approach and the proof of principle
demonstration. The following areas need to be addressed to varying degrees in order to
implement the methodology on systems of systems of national interest, scope and
complexity:

1. **Nonlinear constrained stochastic optimization.** Efficient methods for nonlinear
 constrained stochastic optimization will be necessary to utilize simulations of
 reasonable fidelity to evaluate system of systems MOEs as part of optimization
 objective functions. The penalty function approach utilized here is a simple, brute
 force method that “works”, but brings with it certain ill-conditioning that should be
 avoided. An approach that incorporates the efficient function evaluation properties of
 2SPSA into a classical nonlinear programming algorithm such as SQP should be
 effective.

2. **Incorporation of performance based cost modeling into system engineering.** The
development of a PBCM should be an integral part of the system engineering process,
as they are necessary for any reasonable CAIV approach, including this one.
 Although research into methods and standards for software development cost
 estimating is active, similar efforts should be initiated for appropriate categories of
full systems, and incorporated into system engineering standards efforts.

Furthermore, the modeling and simulation community will increasingly seek to integrate PBCMs into campaign-level simulations to reflect the cost of acquiring and using certain systems of systems. Therefore, a PBCM should be a requirement for all acquisition programs.

3. Extension to force level analysis. Although the general formulation included notation for force level analysis, only one system of each type was treated by the optimization approach utilized in this dissertation. Due to the small numbers of systems that generally make up a system of systems, an integer programming approach tailored to this problem structure is necessary to extend the analysis to determine how many systems of each type are appropriate to optimize the system of systems MOE.

4. Faster than real-time simulations. The trend in modeling and simulation is towards full-fidelity, “physics-based” models with graphical interfaces that provide realistic visualization to enable training and face validation by subject matter experts. The associated level of fidelity comes at the expense of execution speed that is at odds with the needs of quantitative analyses that generally utilize Monte Carlo implementations to enhance stochastic simulation sample size—and clearly at odds with the approach utilized here that may need several thousand simulation-generated function evaluations to optimize a system of system at just one cost constraint value. Research into methods of quantifying the effects of lowering the model fidelity on our system of systems optimization method is necessary to complement the research into efficient constrained nonlinear stochastic optimization algorithms.
APPENDIX A
CONSTRAINED SQP OPTIMIZATION MATLAB® CODE, EXAMPLE, AND RESULTS

% MCM System of Systems
% % CONSTR w/o Explicit Gradient
% % Filename: \matlab\dissertation\MCM32.m
% Output file initialization
fid=fopen('c:\matlab\dissertation\mcm32 output.doc','w');
fprintf(fid,'output from execution of MCM32.m\n\n');
%==
% MCM Initialization
%==
% x(1)=p11= S1 area coverage rate (nm^2/day)
% x(2)=p12= S1 classification probability
% x(3)=p13= S1 FAR (#/nm^2)
% x(4)=p14= S1 time to classify (min)
% x(5)=p15= S1 navigation accuracy (yards)
% x(6)=p21= S2 Re-acquisition range (yards)
% x(7)=p22= S2 time to prosecute a false target (min)
% x(8)=p23= S3 time to neutralize (min)
pd=0.90; %S1 detection system probability of detection
x0=[10,0.9,2.0,9.17,90,75,6.6,10.0]; %Might need to start at feasible point. This won't
meet q(x) constraint.
vlb=[10.0,0.9,0.25,3.0,42,75,1.0,3.0]; % lower bound constraint on x
vub=[100,0.98,2.0,9.17,90,700,7.0,10.0]; % upper bound constraint on x
x1=[10,0.9,2.0,9.17,90,75,6.6,10.0]; %original PBCM for Pc
y1=[3,4.483,7.655,11.445]; %revised PBCM that reflects COTS/NDI development
px1=polyfit(x1,y1,3);
px2=polyfit(x1,y1,2);
px3=polyfit(x1,y1,3);
px4=polyfit(x1,y1,2);
px5=polyfit(x1,y1,2);
px6=polyfit(x1,y1,2);
px7=polyfit(x1,y1,2);
px8=polyfit(x1,y1,2);
%compute threshold system cost

% Insert cost factor loop
i=0
for costfactor=1.25:0.05:2.5 %Note problem is infeasible with costfactor<1.25
i=i+1
fprintf(fid,'Run with Costfactor = %10.3f',costfactor);
fprintf(fid,'cost = %10.3f
',costfactor);

% quality constraint lower bound--remember that constraints are less-thans, not gt's.

fprintf(fid,'q=');fprintf(fid,'%10.3f',q);

fprintf(fid,'Initial Values
');

% Modify x0 so that it satisfies initial quality constraint, g(2)

% Print out initial system values for f and constraints, g.

% Print out threshold system values for f and constraints, g.

% Define parameters for the objective function
p1=dp;
p2=lda;
p3=lda;
p4=t;
p5=sm;
p6=cub;
p7=qlb;
[f,g]=mcmfun(x0,p1,p2,p3,p4,p5,p6,p7)

fprintf(fid,'Final Values
');

%f =

% % Modify x0 so that it satisfies initial quality constraint, g(2)
% x0(2)=0.96
% x0(5)=45
% x0(6)=600
% [f,g]=mcmfun(x0,p1,p2,p3,p4,p5,p6,p7)
% % Print out initial system values for f and constraints, g.
% grad=[];
% % need to set to null matrix in order to pass p1....p7 to mcmfun
% option(1)=1-1; % print output table
% options(2)=e-5; % relax termination criteria
% options(3)=e-3; % relax f termination criteria
% options(4)=e-5; % relax constraint violation limits
% options(9) = 0; % if =1, check analytic gradient
% if grad=[]; % if =1, check analytic gradient
% [x, options]=constr('mcmgrad',x0,options,vlb,vub,'mcmgrad',p1,p2,p3,p4,p5,p6,p7)
% [f,g]=mcmfun(x0,p1,p2,p3,p4,p5,p6,p7)
fprintf(fid,'Final Values\n');

cost =

px0=polyfit(x1,y1,2);
%compute threshold system cost
cost0=polyval(px1,x0(1))+polyval(px2,x0(2))+polyval(px3,x0(3))+polyval(px4,x0(4))+polyval(px5,x0(5))+polyval(px6,x0(6))+polyval(px7,x0(7))+polyval(px8,x0(8))
costfactor=1.5; %nominal value

qa=0.846 %quality constraint lower bound--remember that constraints are less-thans, not gt's.

cub=costfactor*cost0 %system of systems cost constraint
qlb=0.846 %quality constraint lower bound--remember that constraints are less-thans, not gt's.

lambda=m0/sminefield; %mine density, (#/nm^2)
dmine=600; %average distance between mines, (yards)
ttransit=dmine/(2000*vtransit); %transit time during classification (hours)
lambdaf=1.0; %false target density (#/nm^2)

% Define parameters for the objective function
p1=dp;
p2=lda;
p3=lda;
p4=t;
p5=sm;
p6=cub;
p7=qlb;
[f,g]=mcmfun(x0,p1,p2,p3,p4,p5,p6,p7)
fprintf(fid,'Initial Values\n');

%f =

q=p1*x(2)*exp(-x(5)/(4.481*x(6)))
f1=(p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) + p1*p3))
f2=(p5/60)*(p1*x(2)*x(8)*p2*exp(x(5)/(4.481*x(6)))+(-exp(x(5)/(4.481*x(6))))*p1*x(2)*x(7)*p2 + (1-x(2))*(x(3)+p1*p3)*x(7))
E=f1+f2;

%f =

q=p1*x0(2)*exp(-x0(5)/(4.481*x0(6)))
fprintf(fid,'f=');fprintf(fid,'%10.3f',f);fprintf(fid,' E=');fprintf(fid,'%10.3f',E);fprintf(fid,' cost=');fprintf(fid,'%10.3f',cost);fprintf(fid,' q=');fprintf(fid,'%10.3f
',q);

% CONSTR Initialization and Call
% fprintf(fid,'CONSTR Initialization and Call\n');
function [f,g] = mcmfun(x,p1,p2,p3,p4,p5,p6,p7)
%updated Px2, 7/3/97
px1 = [-4.503408803940725e-005, -5.386095666335044e-003, 2.159330101073730e-001, 1.334245377520354e+000];
px2 = [2.834645669291690e+002, -5.076377952756583e+002, 2.274598425197177e+002];
px3 = [-2.048380952380952e+000, 9.987333333333321e+000, -1.794233333333325e+001, 2.032238095238094e+000];
px4 = [1.159691730856429e-001, -2.175732453433467e+000, 1.520381256718985e+001];
px5 = [2.061825086032983e-004, -3.775958229500408e-002, 1.794233333333325e+000];
px6 = [1.504875482450802e-007, -1.578229837871938e-004, 5.516694369186904e-002, -1.813253427503106e+000];
px7 = [-2.850358103957624e-001, 3.846213159671302e+000, -1.72642387731832e-001, 3.334408692656030e+001];
px8 = [2.102445770705637e-001, -4.10959368478483e+000, 2.53972390313297e+001];
f1 = (p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) + p1*p3));
f2 = (p5/60)*(p1*x(2)*x(8)*p2*exp(-x(5)/(4.481*x(6)))+(1-exp(-x(5)/(4.481*x(6))))*p1*x(2)*x(7)*p2 + (1-x(2))*(x(3)+p1*p3)*x(7));
\(f = f_1 + f_2 \);

\% evaluate cost constraint
\[g(1) = polyval(px1,x(1)) + polyval(px2,x(2)) + polyval(px3,x(3)) + polyval(px4,x(4)) + polyval(px5,x(5)) + polyval(px6,x(6)) + polyval(px7,x(7)) + polyval(px8,x(8)) - p6; \]

\% evaluate negative of quality constraint
\[g(2) = -p1*x(2)*exp(-x(5)/(4.481*x(6))) + p7; \]

\%p1=pd
\%p2=lambda
\%p3=lambdaft
\%p4=ttransit
\%p5=sminesfield
\%p6=cub
\%p7=qlb

\begin{verbatim}
function \([df,dg]\) = mcmgrad(x,p1,p2,p3,p4,p5,p6,p7)
df = \[
\]
dg = \[
\]
\end{verbatim}

09/10/97 4:58 PM Baseline 9-10-97.doc
output from execution of MCM32.m.

\[
x0=
10.000\quad 0.900\quad 2.000\quad 9.170\quad 90.000\quad 75.000\quad 6.600\quad 10.000
\]
\[
vlb=
10.000\quad 0.900\quad 0.250\quad 3.000\quad 42.000\quad 75.000\quad 1.000\quad 3.000
\]
\[
vub=
100.000\quad 0.980\quad 2.000\quad 9.170\quad 90.000\quad 700.000\quad 7.000\quad 10.000
\]

Run with Costfactor = 1.250 cub= 35.082 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 38.597 cost= 35.082 q= 0.846
x= 57.379 0.963 2.000 4.983 45.108 417.391 7.000 8.793
Function evaluations= 311

Run with Costfactor = 1.300 cub= 36.486 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 34.316 cost= 36.486 q= 0.846
x= 58.915 0.963 2.000 3.915 44.820 417.374 7.000 8.555
Function evaluations= 452

Run with Costfactor = 1.350 cub= 37.889 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 30.747 cost= 37.889 q= 0.846
x= 60.058 0.963 2.000 3.017 44.418 417.371 7.000 8.355
Function evaluations= 374

Run with Costfactor = 1.400 cub= 39.292 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 28.375 cost= 39.292 q= 0.846
x= 65.201 0.963 2.000 3.000 44.632 417.375 7.000 7.162
Function evaluations= 398

Run with Costfactor = 1.450 cub= 40.696 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 26.831 cost= 40.696 q= 0.846
x= 67.996 0.963 2.000 3.000 44.802 417.387 7.000 6.282
Function evaluations= 430

Run with Costfactor = 1.500 cub= 42.099 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 25.349 cost= 42.099 q= 0.846
x= 68.194 0.962 1.342 3.000 43.341 417.304 7.000 6.213
Function evaluations= 407

Run with Costfactor = 1.550 cub= 43.502 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 24.131 cost= 43.502 q= 0.846
x= 69.825 0.962 1.249 3.000 42.959 417.274 7.000 5.603
Function evaluations= 381

Run with Costfactor = 1.600 cub= 44.906 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 23.073 cost= 44.906 q= 0.846
x= 71.172 0.962 1.181 3.000 42.596 417.237 7.000 5.045
Function evaluations= 372

Run with Costfactor = 1.650 cub= 46.309 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 22.129 cost= 46.309 q= 0.846
x= 72.316 0.961 1.080 3.000 42.000 417.254 7.000 4.532
Function evaluations= 397

Run with Costfactor = 1.700 cub= 47.712 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 21.270 cost= 47.712 q= 0.846
x= 73.310 0.961 1.040 3.000 42.000 417.519 7.000 4.055
Function evaluations= 372

Run with Costfactor = 1.750 cub= 49.115 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 20.478 cost= 49.115 q= 0.846
x= 74.189 0.961 1.004 3.000 42.000 417.757 7.000 3.607
Function evaluations= 397

Run with Costfactor = 1.800 cub= 50.519 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 19.740 cost= 50.519 q= 0.846
x= 74.979 0.961 0.967 3.000 42.000 417.804 7.000 3.184
Function evaluations= 418

Run with Costfactor = 1.850 cub= 51.922 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 19.071 cost= 51.922 q= 0.846
x= 77.328 0.961 0.900 3.000 42.000 418.623 7.000 3.000
Function evaluations= 287
Run with Costfactor = 1.900 cub= 53.325 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 18.549 cost= 53.325 q= 0.846
x= 80.440 0.961 0.765 3.000 42.000 420.090 7.000 3.000
Function evaluations= 344

Run with Costfactor = 1.950 cub= 54.729 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 18.125 cost= 54.729 q= 0.846
x= 83.033 0.961 0.651 3.000 42.000 421.627 7.000 3.000
Function evaluations= 368

Run with Costfactor = 2.000 cub= 56.132 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 17.768 cost= 56.132 q= 0.846
x= 85.261 0.961 0.552 3.000 42.000 423.201 7.000 3.000
Function evaluations= 322

Run with Costfactor = 2.050 cub= 57.535 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 17.458 cost= 57.535 q= 0.846
x= 87.217 0.961 0.463 3.000 42.000 424.790 7.000 3.000
Function evaluations= 323

Run with Costfactor = 2.100 cub= 58.939 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 17.183 cost= 58.939 q= 0.846
x= 88.965 0.961 0.383 3.000 42.000 426.399 7.000 3.000
Function evaluations= 338

Run with Costfactor = 2.150 cub= 60.342 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 17.658 cost= 60.342 q= 0.846
x= 85.153 0.963 0.570 3.000 45.839 417.389 3.948 3.000
Function evaluations= 505

Run with Costfactor = 2.200 cub= 61.745 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 17.346 cost= 61.745 q= 0.846
x= 87.149 0.963 0.481 3.000 45.694 417.395 3.921 3.000
Function evaluations= 525

Run with Costfactor = 2.250 cub= 63.148 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 17.070 cost= 63.148 q= 0.846
x= 88.941 0.963 0.400 3.000 45.508 417.412 3.894 3.000
Function evaluations= 482

Run with Costfactor = 2.300 cub= 64.552 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 16.822 cost= 64.552 q= 0.846
x= 90.539 0.963 0.326 3.000 45.239 417.380 3.876 3.000
Function evaluations= 503

Run with Costfactor = 2.350 cub= 65.955 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 16.596 cost= 65.955 q= 0.846
x= 92.010 0.963 0.257 3.000 44.947 417.360 3.857 3.000
Function evaluations= 488

Run with Costfactor = 2.400 cub= 67.358 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 16.399 cost= 67.358 q= 0.846
x= 95.302 0.963 0.250 3.000 45.572 417.461 3.797 3.000
Function evaluations= 635

Run with Costfactor = 2.450 cub= 68.762 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 16.236 cost= 68.762 q= 0.846
x= 98.430 0.973 0.250 3.000 46.343 417.398 3.737 3.000
Function evaluations= 565

Run with Costfactor = 2.500 cub= 70.165 qlb= 0.846
Initial Values
f= 93.871 E= 93.871 cost= 28.066 q= 0.620
Final Values
Total time, E= 16.122 cost= 70.165 q= 0.846
x= 100.000 0.973 0.250 3.000 64.008 412.202 3.162 3.000
Function evaluations= 430

<table>
<thead>
<tr>
<th>cost factor</th>
<th>cub</th>
<th>E</th>
<th>cost</th>
<th>qfinal</th>
<th>fun. evals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25</td>
<td>35.082</td>
<td>38.597</td>
<td>35.082</td>
<td>0.846</td>
<td>311</td>
</tr>
<tr>
<td>1.30</td>
<td>36.486</td>
<td>34.316</td>
<td>36.486</td>
<td>0.846</td>
<td>452</td>
</tr>
<tr>
<td>1.35</td>
<td>37.889</td>
<td>30.747</td>
<td>37.889</td>
<td>0.846</td>
<td>374</td>
</tr>
<tr>
<td>1.40</td>
<td>39.292</td>
<td>28.375</td>
<td>39.292</td>
<td>0.846</td>
<td>398</td>
</tr>
<tr>
<td>1.45</td>
<td>40.696</td>
<td>26.831</td>
<td>40.696</td>
<td>0.846</td>
<td>430</td>
</tr>
<tr>
<td>1.50</td>
<td>42.099</td>
<td>25.349</td>
<td>42.099</td>
<td>0.846</td>
<td>407</td>
</tr>
<tr>
<td>1.55</td>
<td>43.502</td>
<td>24.131</td>
<td>43.502</td>
<td>0.846</td>
<td>381</td>
</tr>
<tr>
<td>1.60</td>
<td>44.906</td>
<td>23.073</td>
<td>44.906</td>
<td>0.846</td>
<td>394</td>
</tr>
<tr>
<td>1.65</td>
<td>46.309</td>
<td>22.129</td>
<td>46.309</td>
<td>0.846</td>
<td>474</td>
</tr>
<tr>
<td>1.70</td>
<td>47.712</td>
<td>21.270</td>
<td>47.712</td>
<td>0.846</td>
<td>372</td>
</tr>
<tr>
<td>1.75</td>
<td>49.115</td>
<td>20.478</td>
<td>49.115</td>
<td>0.846</td>
<td>397</td>
</tr>
<tr>
<td>1.80</td>
<td>50.519</td>
<td>19.740</td>
<td>50.519</td>
<td>0.846</td>
<td>418</td>
</tr>
<tr>
<td>1.85</td>
<td>51.922</td>
<td>19.071</td>
<td>51.922</td>
<td>0.846</td>
<td>287</td>
</tr>
<tr>
<td>1.90</td>
<td>53.325</td>
<td>18.454</td>
<td>53.325</td>
<td>0.846</td>
<td>344</td>
</tr>
<tr>
<td>1.95</td>
<td>54.729</td>
<td>18.125</td>
<td>54.729</td>
<td>0.846</td>
<td>368</td>
</tr>
<tr>
<td>2.00</td>
<td>56.132</td>
<td>17.768</td>
<td>56.132</td>
<td>0.846</td>
<td>322</td>
</tr>
<tr>
<td>2.05</td>
<td>57.535</td>
<td>17.458</td>
<td>57.535</td>
<td>0.846</td>
<td>323</td>
</tr>
<tr>
<td>2.10</td>
<td>58.939</td>
<td>17.183</td>
<td>58.939</td>
<td>0.846</td>
<td>338</td>
</tr>
<tr>
<td>2.15</td>
<td>60.342</td>
<td>16.858</td>
<td>60.342</td>
<td>0.846</td>
<td>505</td>
</tr>
<tr>
<td>2.20</td>
<td>61.745</td>
<td>16.546</td>
<td>61.745</td>
<td>0.846</td>
<td>525</td>
</tr>
<tr>
<td>2.25</td>
<td>63.148</td>
<td>16.270</td>
<td>63.148</td>
<td>0.846</td>
<td>482</td>
</tr>
<tr>
<td>2.30</td>
<td>64.552</td>
<td>15.922</td>
<td>64.552</td>
<td>0.846</td>
<td>503</td>
</tr>
<tr>
<td>2.35</td>
<td>65.955</td>
<td>15.596</td>
<td>65.955</td>
<td>0.846</td>
<td>488</td>
</tr>
<tr>
<td>2.40</td>
<td>67.358</td>
<td>15.399</td>
<td>67.358</td>
<td>0.846</td>
<td>635</td>
</tr>
<tr>
<td>2.45</td>
<td>68.762</td>
<td>16.236</td>
<td>68.762</td>
<td>0.846</td>
<td>565</td>
</tr>
<tr>
<td>2.50</td>
<td>70.165</td>
<td>16.122</td>
<td>70.165</td>
<td>0.846</td>
<td>430</td>
</tr>
</tbody>
</table>
System of Systems MOE as Function of Cost

System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

Time to Complete Mission (hours)

Cost ($M)

MOPs 1-4 (percent of technology threshold)

x1

x2

x3

x4

MOPs 5-8 (percent of technology threshold)

x5

x6

x7

x8
SINGLE SYSTEM CONSTRAINED SQP OPTIMIZATION CODE AND RESULTS

MCM System S1—Single System Optimization Code:

```matlab
% MCM System One of Two--Single System Optimization
% CONSTR w/o Explicit Gradient
% 
% Filename: \matlab\dissertation\MCM32s1.m
% Output file initialization
fid=fopen('c:\matlab\dissertation\mcm32s1 output.doc','w');
fprintf(fid,'output from execution of MCM32s1.m\n');

%================================================================================
% MCM Initialization--System S1 only
%================================================================================
% x(1)=p11= S1 area coverage rate (nm^2/day)
% x(2)=p12= S1 classification probability
% x(3)=p13= S1 FAR (#/nm^2)
% x(4)=p14= S1 time to classify (min)
% x(5)=p15= S1 navigation accuracy (yards)
% s2x6(1)=417.352;s2x6(2)=417.320;s2x6(3)=417.268;s2x6(4)=417.201;s2x6(5)=418.311;
s2x6(6)=419.238;s2x6(7)=419.491;s2x6(8)=420.166;s2x6(9)=420.781;s2x6(10)=421.338;
s2x6(11)=421.861;s2x6(12)=422.339;s2x6(13)=422.792;s2x6(14)=424.387;s2x6(15)=426.622;
s2x6(16)=428.734;s2x6(17)=430.719;s2x6(18)=432.599;s2x6(19)=434.390;s2x6(20)=436.950;
s2x6(21)=439.408;s2x6(22)=419.837;s2x6(23)=420.239;s2x6(24)=420.626;s2x6(25)=421.301;
s2x6(26)=421.916;s2x6(27)=416.997;
pd=0.90; %S1 detection system probability of detection
x0=[10,0.9,2.0,9.17,90]; %Might need to start at feasible point. This won't meet q(x)
constraint.
vlb=[10.0,0.9,0.25,3.0,42]; % lower bound constraint on x
vub=[100,0.98,2.0,9.17,90]; % upper bound constraint on x
% Compute px1, polynomial fit cost function parameters for x(1)
x1=[10,57,82,94];
y1=[3,4.483,7.655,11.445];
px1=polyfit(x1,y1,3);
% Compute px2, polynomial fit cost function parameters for x(2)
x1=[0.9,0.95,0.96,0.98];
y1=[1.2,.5,.4,.2]; %revised PBCM that reflects COTS/NDI development
px2=polyfit(x1,y1,2);
% Compute px3, polynomial fit cost function parameters for x(3)
x1=[0.9,0.95,0.96,0.98];
y1=[3,4.483,7.655,11.445];
px3=polyfit(x1,y1,3);
% Compute px4, polynomial fit cost function parameters for x(4)
x1=[3.513,3.89,4.77,9.17];
y1=[9.191,8.190,7.574,5.0];
px4=polyfit(x1,y1,2);
% Compute px5, polynomial fit cost function parameters for x(5)
x1=[90,60,48,42];
y1=[0.050,0.250,0.450,0.550];
px5=polyfit(x1,y1,2);
%compute threshold system cost
cost0=polyval(px1,x0(1))+polyval(px2,x0(2))+polyval(px3,x0(3))+polyval(px4,x0(4))+polyval(px5,x0(5));
costfactor=1.5; %nominal value
%Insert costfactor loop
for costfactor=1.2:.05:2.5 %Note problem is infeasible with costfactor<1.25
i=1
x6=s2x6(i)
x6=300%Hardwired to "reasonable", knee-of-the-curve guess
costfactor
```
cub = costfactor * cost0 % system of systems cost constraint
qlb = 0.846 % quality constraint lower bound
fprintf(fid, 'n');
fprintf(fid, 'Run with Costfactor = ');fprintf(fid, '%10.3f', costfactor);fprintf(fid, ' cub = ');fprintf(fid, '%10.3f', cub);fprintf(fid, ' qlb = ');fprintf(fid, '%10.3f
', qlb);
sminefield = 20; % minefield area, (nm^2)
mu = 100; % number of mines in minefield, initially
lambda = m0 / sminefield; % mine density, (#/nm^2)
dmine = 600; % average distance between mines, (yards)
vtransit = 7; % SL vehicle transit speed (knots)
ttransit = dmine / (2000 * vtransit); % transit time during classification (hours)
lambdaft = 1.0; % false target density (#/nm^2)

% Define parameters for the objective function
p1 = pd;
p2 = lambda;
p3 = ttransit;
p4 = vtransit;
p5 = sminefield;
p6 = cub;
p7 = qlb;
[f, g] = mcmfun1(x0, p1, p2, p3, p4, p5, p6, p7, x6)
fprintf(fid, 'Initial Values
');
x = x0;
cost = polyval(px1, x(1)) + polyval(px2, x(2)) + polyval(px3, x(3)) + polyval(px4, x(4)) + polyval(px5, x(5))
q = p1 * x(2) * exp(-x(5)/(4.481 * x6));
f1 = (p5/60) * (24 * 60 / x(1)) + p2 * x(2) * x(4) * p1 + (2 * x(4) - p4) * ((1-x(2)) * p1 * p2 + x(3) + p1 * p3));
E = f1;
qu = p1 * x(0) * exp(-x0(5)/(4.481 * x6));
fprintf(fid, 'E = ');fprintf(fid, '%10.3f', E);
fprintf(fid, 'f = ');fprintf(fid, '%10.3f', f);
f1 = (p5/60) * (24 * 60 / x(1)) + p2 * x(2) * x(4) * p1 + (2 * x(4) - p4) * ((1-x(2)) * p1 * p2 + x(3) + p1 * p3));
E = f1;
qu = p1 * x(0) * exp(-x0(5)/(4.481 * x6));
fprintf(fid, 'E = ');fprintf(fid, '%10.3f', E);
fprintf(fid, 'f = ');fprintf(fid, '%10.3f', f);
fprintf(fid, 'q = ');fprintf(fid, '%10.3f
', q);
% Print out threshold system values for f and constraints, g.

options(1) = 1; % print output table
options(2) = 1e-5; % relax x termination criteria
options(3) = 1e-3; % relax f termination criteria
options(4) = 1e-5; % relax constraint violation limits
options(9) = 0; % if = 1, check analytic gradient
[x, options] = constr('mcmfun1', x0, options, vlb, vub, 'mcmgrads1', p1, p2, p3, p4, p5, p6, p7, x6)
if (options(9) == 1)
 grad = []; % need to set to null matrix in order to pass p1....p7 to mcmfun
 cost = polyval(px1, x(1)) + polyval(px2, x(2)) + polyval(px3, x(3)) + polyval(px4, x(4)) + polyval(px5, x(5))
 q = p1 * x(2) * exp(-x(5)/(4.481 * x6));
f1 = (p5/60) * (24 * 60 / x(1)) + p2 * x(2) * x(4) * p1 + (2 * x(4) - p4) * ((1-x(2)) * p1 * p2 + x(3) + p1 * p3));
 E = f1;
 fprintf(fid, 'S1 Recon Time, E = ');fprintf(fid, '%10.3f', E);
 fprintf(fid, 'f = ');fprintf(fid, '%10.3f', f);
 fprintf(fid, 'q = ');fprintf(fid, '%10.3f
', q);
end
% Plot option 1: Plot System of systems MOE as CAIV
figure
function [f,g] = mcmfun(x,p1,p2,p3,p4,p5,p6,p7,x6)
% Function to just optimize system S1 alone, with S2's parameter x6 passed by argument

%updated Px2, 7/3/97
px1=[4.503408803940725e-005, -5.386095666335044e-003, 2.159330101073730e-001, 1.334245377520354e+000];
px2=[2.834645669291690e+002, -5.07637795275683e+002, 2.274598425197177e+002];
px3=[-2.048380952380911e+000, 9.987333333333214e+000, -1.794233333333325e+001];
px4=[1.159691730856429e-001, -2.175732453433467e+000, 1.520381256718985e+001];
px5=[2.061825086032983e-004, -3.775958229500408e+002, 1.77803488786043e+000];
f1 = (p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) + p1*p3));
f=f1;
% evaluate cost constraint
g(1) = polyval(px1,x(1))+polyval(px2,x(2))+polyval(px3,x(3))+polyval(px4,x(4))+polyval(px5,x(5))-p6;
% evaluate negative of quality constraint
g(2) = -p1*x(2)*exp(-x(5)/(4.481*x6))+p7;
%p1=pd
%p2=lda
%p3=lamda
%p4=transit
%p5=sminefield
%p6=cub
%p7=qlb

S1 Optimization Results with Imperfect Knowledge of S2:

output from execution of MCM32s1.m
S1 Imperfect.doc 09/14/97 8:19 PM

x0=
 10.000 0.900 2.000 9.170 90.000
vib=
 10.000 0.900 0.250 3.000 42.000
vub=
100.000 0.980 2.000 9.170 90.000

Run with Costfactor = 1.250 cub= 20.307 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778

140
<table>
<thead>
<tr>
<th>Iteration</th>
<th>Time (s)</th>
<th>Cost (s)</th>
<th>q</th>
<th>Function evaluations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Values</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>f= 80.811</td>
<td>E= 80.811</td>
<td>cost= 16.246</td>
<td>q= 0.778</td>
</tr>
<tr>
<td></td>
<td>S1 Recon Time, E=</td>
<td>27.286</td>
<td>cost= 21.932</td>
<td>q= 0.846</td>
</tr>
<tr>
<td></td>
<td>x= 56.808</td>
<td>0.963</td>
<td>2.000</td>
<td>5.406</td>
</tr>
<tr>
<td></td>
<td>Function evaluations=</td>
<td>172</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Values</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>f= 80.811</td>
<td>E= 80.811</td>
<td>cost= 21.932</td>
<td>q= 0.846</td>
</tr>
<tr>
<td></td>
<td>S1 Recon Time, E=</td>
<td>24.478</td>
<td>cost= 22.744</td>
<td>q= 0.846</td>
</tr>
<tr>
<td></td>
<td>x= 57.880</td>
<td>0.963</td>
<td>2.000</td>
<td>4.651</td>
</tr>
<tr>
<td></td>
<td>Function evaluations=</td>
<td>172</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Values</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>f= 80.811</td>
<td>E= 80.811</td>
<td>cost= 22.744</td>
<td>q= 0.846</td>
</tr>
<tr>
<td></td>
<td>S1 Recon Time, E=</td>
<td>22.061</td>
<td>cost= 23.556</td>
<td>q= 0.846</td>
</tr>
<tr>
<td></td>
<td>x= 58.808</td>
<td>0.963</td>
<td>2.000</td>
<td>3.996</td>
</tr>
<tr>
<td></td>
<td>Function evaluations=</td>
<td>136</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Values</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>f= 80.811</td>
<td>E= 80.811</td>
<td>cost= 23.556</td>
<td>q= 0.846</td>
</tr>
<tr>
<td></td>
<td>S1 Recon Time, E=</td>
<td>19.909</td>
<td>cost= 24.369</td>
<td>q= 0.846</td>
</tr>
<tr>
<td></td>
<td>x= 59.575</td>
<td>0.963</td>
<td>2.000</td>
<td>3.409</td>
</tr>
<tr>
<td></td>
<td>Function evaluations=</td>
<td>133</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Values</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>f= 80.811</td>
<td>E= 80.811</td>
<td>cost= 24.369</td>
<td>q= 0.846</td>
</tr>
<tr>
<td></td>
<td>S1 Recon Time, E=</td>
<td>18.028</td>
<td>cost= 25.181</td>
<td>q= 0.846</td>
</tr>
<tr>
<td></td>
<td>x= 63.112</td>
<td>0.964</td>
<td>1.207</td>
<td>3.000</td>
</tr>
</tbody>
</table>
Function evaluations= 155
Run with Costfactor = 1.700 cub= 27.618 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 15.081 cost= 27.618 q= 0.846
x= 73.868 0.965 1.078 3.000 58.688
Function evaluations= 187

Run with Costfactor = 1.750 cub= 28.430 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 14.670 cost= 28.430 q= 0.846
x= 76.226 0.966 0.973 3.000 60.101
Function evaluations= 191

Run with Costfactor = 1.800 cub= 29.242 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 14.326 cost= 29.242 q= 0.846
x= 78.274 0.966 0.885 3.000 61.499
Function evaluations= 183

Run with Costfactor = 1.850 cub= 30.055 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 14.030 cost= 30.055 q= 0.846
x= 80.083 0.967 0.807 3.000 62.876
Function evaluations= 179

Run with Costfactor = 1.900 cub= 30.867 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 13.769 cost= 30.867 q= 0.846
x= 81.703 0.967 0.736 3.000 64.224
Function evaluations= 214

Run with Costfactor = 1.950 cub= 31.679 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 13.536 cost= 31.679 q= 0.846
x= 83.174 0.968 0.673 3.000 65.563
Function evaluations= 207

Run with Costfactor = 2.000 cub= 32.491 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 13.325 cost= 32.491 q= 0.846
x= 84.519 0.968 0.614 3.000 66.873
Function evaluations= 172

Run with Costfactor = 2.050 cub= 33.304 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 13.132 cost= 33.304 q= 0.846
x= 85.760 0.969 0.559 3.000 68.159
Function evaluations= 190

Run with Costfactor = 2.100 cub= 34.116 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 12.953 cost= 34.116 q= 0.846
x= 86.914 0.970 0.508 3.000 69.435
Function evaluations= 189

Run with Costfactor = 2.150 cub= 34.928 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 12.787 cost= 34.928 q= 0.846
x= 87.991 0.970 0.460 3.000 70.690
Function evaluations= 199

Run with Costfactor = 2.200 cub= 35.741 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 12.632 cost= 35.741 q= 0.846
x= 89.003 0.971 0.414 3.000 71.926
Function evaluations= 204

Run with Costfactor = 2.250 cub= 36.553 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 12.486 cost= 36.553 q= 0.846
x= 89.957 0.971 0.370 3.000 73.145
Function evaluations= 212

Run with Costfactor = 2.300 cub= 37.365 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 12.348 cost= 37.365 q= 0.846
x= 90.859 0.972 0.329 3.000 74.355
Function evaluations= 154

Run with Costfactor = 2.350 cub= 38.177 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 12.218 cost= 38.177 q= 0.846
x= 91.716 0.972 0.289 3.000 75.546
Function evaluations= 190

Run with Costfactor = 2.400 cub= 38.990 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 12.094 cost= 38.990 q= 0.846
x= 92.532 0.973 0.251 3.000 76.727
Function evaluations= 157

Run with Costfactor = 2.450 cub= 39.802 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 11.979 cost= 39.802 q= 0.846
x= 94.477 0.974 0.250 3.000 79.711
Function evaluations= 123

Run with Costfactor = 2.500 cub= 40.614 qlb= 0.846
Initial Values
f= 80.811 E= 80.811 cost= 16.246 q= 0.778
Final Values
S1 Recon Time, E= 11.877 cost= 40.614 q= 0.846
x= 96.309 0.975 0.250 3.000 82.769
Function evaluations = 125

<table>
<thead>
<tr>
<th>cost factor</th>
<th>cub</th>
<th>E</th>
<th>cost</th>
<th>qfinal</th>
<th>fun. evals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25</td>
<td>20.307</td>
<td>30.766</td>
<td>20.307</td>
<td>0.846</td>
<td>115</td>
</tr>
<tr>
<td>1.30</td>
<td>21.119</td>
<td>27.286</td>
<td>21.119</td>
<td>0.846</td>
<td>175</td>
</tr>
<tr>
<td>1.35</td>
<td>21.932</td>
<td>24.478</td>
<td>21.932</td>
<td>0.846</td>
<td>172</td>
</tr>
<tr>
<td>1.40</td>
<td>22.744</td>
<td>22.061</td>
<td>22.744</td>
<td>0.846</td>
<td>148</td>
</tr>
<tr>
<td>1.45</td>
<td>23.556</td>
<td>19.909</td>
<td>23.556</td>
<td>0.846</td>
<td>136</td>
</tr>
<tr>
<td>1.50</td>
<td>24.369</td>
<td>18.028</td>
<td>24.369</td>
<td>0.846</td>
<td>133</td>
</tr>
<tr>
<td>1.55</td>
<td>25.181</td>
<td>17.152</td>
<td>25.181</td>
<td>0.846</td>
<td>188</td>
</tr>
<tr>
<td>1.60</td>
<td>25.993</td>
<td>16.266</td>
<td>25.993</td>
<td>0.846</td>
<td>174</td>
</tr>
<tr>
<td>1.65</td>
<td>26.805</td>
<td>15.592</td>
<td>26.805</td>
<td>0.846</td>
<td>155</td>
</tr>
<tr>
<td>1.70</td>
<td>27.618</td>
<td>15.081</td>
<td>27.618</td>
<td>0.846</td>
<td>187</td>
</tr>
<tr>
<td>1.75</td>
<td>28.430</td>
<td>14.670</td>
<td>28.430</td>
<td>0.846</td>
<td>191</td>
</tr>
<tr>
<td>1.80</td>
<td>29.242</td>
<td>14.326</td>
<td>29.242</td>
<td>0.846</td>
<td>183</td>
</tr>
<tr>
<td>1.85</td>
<td>30.055</td>
<td>14.030</td>
<td>30.055</td>
<td>0.846</td>
<td>179</td>
</tr>
<tr>
<td>1.90</td>
<td>30.867</td>
<td>13.769</td>
<td>30.867</td>
<td>0.846</td>
<td>214</td>
</tr>
<tr>
<td>1.95</td>
<td>31.679</td>
<td>13.536</td>
<td>31.679</td>
<td>0.846</td>
<td>207</td>
</tr>
<tr>
<td>2.00</td>
<td>32.491</td>
<td>13.325</td>
<td>32.491</td>
<td>0.846</td>
<td>172</td>
</tr>
<tr>
<td>2.05</td>
<td>33.304</td>
<td>13.132</td>
<td>33.304</td>
<td>0.846</td>
<td>190</td>
</tr>
<tr>
<td>2.10</td>
<td>34.116</td>
<td>12.953</td>
<td>34.116</td>
<td>0.846</td>
<td>189</td>
</tr>
<tr>
<td>2.15</td>
<td>34.928</td>
<td>12.787</td>
<td>34.928</td>
<td>0.846</td>
<td>199</td>
</tr>
<tr>
<td>2.20</td>
<td>35.741</td>
<td>12.632</td>
<td>35.741</td>
<td>0.846</td>
<td>204</td>
</tr>
<tr>
<td>2.25</td>
<td>36.553</td>
<td>12.486</td>
<td>36.553</td>
<td>0.846</td>
<td>212</td>
</tr>
<tr>
<td>2.30</td>
<td>37.365</td>
<td>12.348</td>
<td>37.365</td>
<td>0.846</td>
<td>154</td>
</tr>
<tr>
<td>2.35</td>
<td>38.177</td>
<td>12.218</td>
<td>38.177</td>
<td>0.846</td>
<td>190</td>
</tr>
<tr>
<td>2.40</td>
<td>38.990</td>
<td>12.094</td>
<td>38.990</td>
<td>0.846</td>
<td>157</td>
</tr>
<tr>
<td>2.45</td>
<td>39.802</td>
<td>11.979</td>
<td>39.802</td>
<td>0.846</td>
<td>123</td>
</tr>
<tr>
<td>2.50</td>
<td>40.614</td>
<td>11.877</td>
<td>40.614</td>
<td>0.846</td>
<td>125</td>
</tr>
</tbody>
</table>
MCM System S2—Single System Optimization Code:

```matlab
% MCM System Two of Two--Single System Optimization
% CONSTR w/o Explicit Gradient
% % Filename: \matlab\dissertation\MCM32s2.m
% % Output file initialization
fid=fopen('c:\matlab\dissertation\MCM32s2 output.doc','w');
fprintf(fid,'output from execution of MCM32s2.m\n\n');
%================================================================================
% % MCM Initialization
% %================================================================================
% x2=p12= S1 classification probability
% x3=p13= S1 FAR (#/nm^2)
% x5=p15= S1 navigation accuracy (yards)
% x(6)=p21= S2 Re-acquisition range (yards)
% x(7)=p22= S2 time to prosecute a false target (min)
% x(8)=p23= S3 time to neutralize (min)
% pd=0.90; %S1 detection system probability of detection
% x0=[0,0,0,0,0,75,6.6,10.0]; %Might need to start at feasible point. This won't meet q(x)
% constraint.
% vlb=[0,0,0,0,0,75,1.0,3.0]; % lower bound constraint on x
% vub=[0,0,0,0,0,700,7.0,10.0]; % upper bound constraint on x
% %Try to get away with not re-coding x6-x8, so set up dummy x1-x5 with zero initial
% conditions and bounds
% fprintf(fid,'vlb=\n');fprintf(fid,'%10.3f',vlb);fprintf(fid,'\n');
% fprintf(fid,'vub=\n');fprintf(fid,'%10.3f',vub);fprintf(fid,'\n');
% s2x2(1) = .963; s2x2(2) = .963; s2x2(3) = .963; s2x2(4) = .963; s2x2(5) = .963;
% s2x2(6) = .962; s2x2(7) = .962; s2x2(8) = .962; s2x2(9) = .961; s2x2(10) = .961;
% s2x2(11) = .961; s2x2(12) = .961; s2x2(13) = .961; s2x2(14) = .961; s2x2(15) = .961;
% s2x2(16) = .961; s2x2(17) = .961; s2x2(18) = .961; s2x2(19) = .963; s2x2(20) = .963;
% s2x2(21) = .963; s2x2(22) = .963; s2x2(23) = .963; s2x2(24) = .963; s2x2(25) = .964;
% s2x2(26) = .973;
% s2x3(1) = 2; s2x3(2) = 2; s2x3(3) = 2; s2x3(4) = 2; s2x3(5) = 2;
% s2x3(6) = 1.342; s2x3(7) = 1.249; s2x3(8) = 1.181; s2x3(9) = 1.126; s2x3(10) = 1.080;
% s2x3(11) = 1.040; s2x3(12) = 1.004; s2x3(13) = 0.901; s2x3(14) = 0.765; s2x3(15) = 0.651;
% s2x3(16) = 0.552; s2x3(17) = 0.463; s2x3(18) = 0.383; s2x3(19) = 0.270; s2x3(20) = 0.481;
% s2x3(21) = 0.400; s2x3(22) = 0.326; s2x3(23) = 0.257; s2x3(24) = 0.250; s2x3(25) = 0.250;
% s2x3(26) = 0.250;
% s2x5(1) = 45.108; s2x5(2) = 44.820; s2x5(3) = 44.418; s2x5(4) = 44.418; s2x5(5) = 44.820;
% s2x5(6) = 43.341; s2x5(7) = 43.502; s2x5(8) = 42.596; s2x5(9) = 42.245; s2x5(10) = 42;
% s2x5(11) = 42; s2x5(12) = 42; s2x5(13) = 42; s2x5(14) = 42; s2x5(15) = 42;
% s2x5(16) = 42; s2x5(17) = 42; s2x5(18) = 42; s2x5(19) = 45.839; s2x5(20) = 45.694;
```
\begin{verbatim}
% Compute px6, polynomial fit cost function parameters for x(6)
x1=[129,457,622,75];
y1=[3,4.8,7.655,1.5];
px6=polyfit(x1,y1,3);
% Compute px7, polynomial fit cost function parameters for x(7)
x1=[10,8,7,5,3);
y1=[5.3,6,7,10,15];
px7=polyfit(x1,y1,2);
%compute threshold system cost
% cost0=polyval(px6,x0(6))+polyval(px7,x0(7))+polyval(px8,x0(8))
costfactor=1.5; %nominal value
%Insert costfactor loop
i=0
for costfactor=1.25:0.05:2.5 %Note problem is infeasible with costfactor<1.25
i=i+1
x2=s2x2(i);x3=s2x3(i);x5=s2x5(i);
x2=.958;x3=1.0;x5=55;
costfactor
cub=costfactor*cost0 %system of systems cost constraint
qlb=0.846 %quality constraint lower bound
fprintf(fid,'
');
fprintf(fid,'Run with Costfactor = ');fprintf(fid,'%10.3f',costfactor);fprintf(fid,' cub=');fprintf(fid,'%10.3f',cub);fprintf(fid,' qlb=');fprintf(fid,'%10.3f
',qlb);
sminefield=20; %minefield area, (nm^2)
m0=100; %number of mines in minefield, initially
lambda=m0/sminefield; %mine density, (#/nm^2)
dmine=600; %average distance between mines, (yards)
vtransit=7; %S1 vehicle transit speed (knots)
ttransit=dmine/(2000*vtransit); % transit time during classification (hours)
lambdaft=1.0; %false target density (#/nm^2)
% Define parameters for the objective function
p1=pd;
p2=lambda;
p3=lambdaft;
p4=ttransit;
p5=sminefield;
p6=cub;
p7=qlb;
[f,g]=mcmfuns2(x0,p1,p2,p3,p4,p5,p6,p7,x2,x3,x5)
fprintf(fid,'Initial Values
');
x=x0;
cost = polyval(px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8))
q=p1*x2*exp(-x5/(4.481*x0(6)));
f2 = (p5/60)*(p1*x2*x(8)*p2*exp(-x5/(4.481*x0(6)))*(1-exp(-x5/(4.481*x0(6))))+p1*x2*x(7)*p2 + (1-x2)*(x3+p1*p3)*x(7));
E=f2;
q=p1*x2*exp(-x5/(4.481*x0(6)));
fprintf(fid,'f=');fprintf(fid,'%10.3f',f);fprintf(fid,' E=');
fprintf(fid,'%10.3f',E);fprintf(fid,' cost=');
fprintf(fid,'%10.3f',cost);fprintf(fid,' q=');fprintf(fid,'%10.3f
',q);
% Print out threshold system values for f and constraints, g.
%==
% CONSTR Initialization and Call
%==
[f,g]=mcmfuns2(x0,p1,p2,p3,p4,p5,p6,p7,x2,x3,x5)
\end{verbatim}
cost = polyval(px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8))

q2 - (p5/60)*p1*x2*x(8)*p2*exp(-x5/(4.481*x(6)))+(1-exp(-x5/(4.481*x(6))))*p1*x2*x(7)*p2
+ (1-x2)*x(3)*p1*p3*x(7));

E=f2

fprintf(fid,'S2 Clearance time, E='');fprintf(fid,'%10.3f',E);

fprintf(fid,' Function evaluations= ');
fprintf(fid,'%8.0f
',options(10));

cf(i)=costfactor; fval(i)=f;

costval(i)=cub;fval(i)=option(10);cost(i)=cost;gfinal(i)=g;

z6(i)=abs((z6(i)-x0(6))/(vlb(6)-vub(6)));

z7(i)=abs((z7(i)-x0(7))/(vlb(7)-vub(7)));

z8(i)=abs((z8(i)-x0(8))/(vlb(8)-vub(8)));

end

% Plot option 1: Plot System of systems MOE as CAIV

figure

plot(cf,fval,'-*b')

title('System S2 MOE as Function of Cost')

xlabel('Cost Factor on Threshold System Costs')

ylabel('Time to Complete Mission (hours)')

figure

plot(costval,fval,'-*b')

title('System S2 MOE as Function of Cost')

xlabel('Cost (M)')

ylabel('Time to Complete Mission (hours)')

figure

plot(cf,z6,'-b*',cf,z7,'-r+',cf,z8,'-go')

legend('x6','x7','x8')

title('System S2 MOPs as Function of Cost')

xlabel('Cost Factor on Threshold System Costs')

ylabel('MOPs 6-8 (percent of technology threshold)')

% print table of results to file

fprintf(fid,'cost factor');fprintf(fid,' cub');fprintf(fid,' E');fprintf(fid,' cost');fprintf(fid,' qfinal');fprintf(fid,' fun. evals
');

for j=1:i

fprintf(fid,'%10.2f',cf(j));fprintf(fid,'%10.3f',cost(j));

fprintf(fid,'%10.3f',fval(j));fprintf(fid,'%10.3f',qfinal(j));fprintf(fid,'%10.0f
',fevals(j));

end

status=fclose(fid)

function [f, g] = mcmfuns2(x,p1,p2,p3,p4,p5,p6,p7,x2,x3,x5)

% MCM function for optimizing system S2 only

px6=[1.504875482450802e-007, -1.578229837871938e-004, 5.516694369186904e-002, -1.813253427503106e+000];

px7=[-2.850358103957624e-001, 3.846213159671302e+000, -1.726423877731832e+001, 3.334408692656030e+001];

px8=[2.102445277065673e-001, -4.109593768487843e-000, 2.53972390331297e+001];

f2 = (p5/60)*p1*x2*x(8)*p2*exp(-x5/(4.481*x(6)))+(1-exp(-x5/(4.481*x(6))))*p1*x2*x(7)*p2
+ (1-x2)*x(3)*p1*p3*x(7));

f=f2;

% evaluate cost constraint

g(1) = polyval(px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8))=p6;

% evaluate negative of quality constraint

g(2) = -p1*x2*exp(-x5/(4.481*x(6))))+p7;

p1=pd
p2=lambda
p3=lambdaft
p4=ttransit
p5=sminefield
p6=cub
p7=qlb
S2 Optimization Results with Imperfect Knowledge of S1:

output from execution of MCM32s2.m
S2 Imperfect.doc 09/14/97 9:14 PM

x0=
 0.000 0.000 0.000 0.000 0.000 75.000 6.600 10.000
vlb=
 0.000 0.000 0.000 0.000 0.000 75.000 1.000 3.000
vub=
 0.000 0.000 0.000 0.000 0.000 700.000 7.000 10.000

Run with Costfactor = 1.250 cub= 14.775 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 4.585 cost= 25.086 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 6.966 3.000
Function evaluations= 504

Run with Costfactor = 1.300 cub= 15.366 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 13.155 cost= 15.366 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 9.077
Function evaluations= 91

Run with Costfactor = 1.350 cub= 15.957 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 11.578 cost= 15.957 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 7.958
Function evaluations= 82

Run with Costfactor = 1.400 cub= 16.548 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 10.653 cost= 16.548 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 7.302
Function evaluations= 82

Run with Costfactor = 1.450 cub= 17.139 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 9.927 cost= 17.139 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 6.787
Function evaluations= 82

Run with Costfactor = 1.500 cub= 17.730 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 9.308 cost= 17.730 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 6.349
Function evaluations= 73

Run with Costfactor = 1.550 cub= 18.321 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
<table>
<thead>
<tr>
<th>Function evaluations</th>
<th>S2 Clearance time, E=</th>
<th>cost=</th>
<th>q=</th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td>8.761</td>
<td>18.321</td>
<td>0.846</td>
</tr>
<tr>
<td></td>
<td>x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 5.960</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Run with Costfactor = 1.600
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 8.912 cost= 18.912 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 5.608
Function evaluations= 82

Run with Costfactor = 1.650
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 7.806 cost= 19.503 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 5.283
Function evaluations= 82

Run with Costfactor = 1.700
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 7.379 cost= 20.094 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 4.980
Function evaluations= 91

Run with Costfactor = 1.750
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 6.978 cost= 20.685 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 4.626
Function evaluations= 100

Run with Costfactor = 1.800
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 6.597 cost= 21.276 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 4.269
Function evaluations= 100

Run with Costfactor = 1.850
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 6.236 cost= 21.867 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 4.002
Function evaluations= 100

Run with Costfactor = 1.900
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 5.889 cost= 22.458 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 3.924
Function evaluations= 100

Run with Costfactor = 1.950
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 5.557 cost= 23.049 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 3.688
Function evaluations= 100
Run with Costfactor = 2.000 cub= 23.641 qlb= 0.846
Initial Values
 f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
 S2 Clearance time, E= 5.238 cost= 23.641 q= 0.846
 x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 3.461
Function evaluations= 100

Run with Costfactor = 2.050 cub= 24.232 qlb= 0.846
Initial Values
 f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
 S2 Clearance time, E= 4.929 cost= 24.232 q= 0.846
 x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 3.243
Function evaluations= 109

Run with Costfactor = 2.100 cub= 24.823 qlb= 0.846
Initial Values
 f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
 S2 Clearance time, E= 4.630 cost= 24.823 q= 0.846
 x= 0.000 0.000 0.000 0.000 0.000 592.043 7.000 3.031
Function evaluations= 109

Run with Costfactor = 2.150 cub= 25.414 qlb= 0.846
Initial Values
 f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
 S2 Clearance time, E= 4.582 cost= 25.414 q= 0.846
 x= 0.000 0.000 0.000 0.000 0.000 592.043 6.901 3.000
Function evaluations= 127

Run with Costfactor = 2.200 cub= 26.005 qlb= 0.846
Initial Values
 f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
 S2 Clearance time, E= 4.575 cost= 26.005 q= 0.846
 x= 0.000 0.000 0.000 0.000 0.000 592.043 6.774 3.000
Function evaluations= 127

Run with Costfactor = 2.250 cub= 26.596 qlb= 0.846
Initial Values
 f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
 S2 Clearance time, E= 4.568 cost= 26.596 q= 0.846
 x= 0.000 0.000 0.000 0.000 0.000 592.043 6.631 3.000
Function evaluations= 127

Run with Costfactor = 2.300 cub= 27.187 qlb= 0.846
Initial Values
 f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
 S2 Clearance time, E= 4.560 cost= 27.187 q= 0.846
 x= 0.000 0.000 0.000 0.000 0.000 592.043 6.465 3.000
Function evaluations= 127

Run with Costfactor = 2.350 cub= 27.778 qlb= 0.846
Initial Values
 f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
 S2 Clearance time, E= 4.549 cost= 27.778 q= 0.846
 x= 0.000 0.000 0.000 0.000 0.000 592.043 6.264 3.000
Function evaluations= 145

Run with Costfactor = 2.400 cub= 28.369 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 4.906 cost= 28.369 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 4.102 3.331
Function evaluations= 157

Run with Costfactor = 2.450 cub= 28.960 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 4.604 cost= 28.960 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 4.098 3.117
Function evaluations= 147

Run with Costfactor = 2.500 cub= 29.551 qlb= 0.846
Initial Values
f= 13.941 E= 13.941 cost= 11.820 q= 0.759
Final Values
S2 Clearance time, E= 4.407 cost= 29.551 q= 0.846
x= 0.000 0.000 0.000 0.000 0.000 592.043 3.479 3.000
Function evaluations= 118

<table>
<thead>
<tr>
<th>cost factor</th>
<th>cub</th>
<th>E</th>
<th>cost</th>
<th>qfinal</th>
<th>fun. evals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25</td>
<td>14.775</td>
<td>4.585</td>
<td>25.086</td>
<td>0.846</td>
<td>504</td>
</tr>
<tr>
<td>1.30</td>
<td>15.366</td>
<td>13.155</td>
<td>15.366</td>
<td>0.846</td>
<td>91</td>
</tr>
<tr>
<td>1.35</td>
<td>15.957</td>
<td>11.578</td>
<td>15.957</td>
<td>0.846</td>
<td>82</td>
</tr>
<tr>
<td>1.40</td>
<td>16.548</td>
<td>10.653</td>
<td>16.548</td>
<td>0.846</td>
<td>82</td>
</tr>
<tr>
<td>1.45</td>
<td>17.139</td>
<td>9.927</td>
<td>17.139</td>
<td>0.846</td>
<td>82</td>
</tr>
<tr>
<td>1.50</td>
<td>17.730</td>
<td>9.308</td>
<td>17.730</td>
<td>0.846</td>
<td>73</td>
</tr>
<tr>
<td>1.55</td>
<td>18.321</td>
<td>8.761</td>
<td>18.321</td>
<td>0.846</td>
<td>91</td>
</tr>
<tr>
<td>1.60</td>
<td>18.912</td>
<td>8.264</td>
<td>18.912</td>
<td>0.846</td>
<td>82</td>
</tr>
<tr>
<td>1.65</td>
<td>19.503</td>
<td>7.806</td>
<td>19.503</td>
<td>0.846</td>
<td>82</td>
</tr>
<tr>
<td>1.70</td>
<td>20.094</td>
<td>7.379</td>
<td>20.094</td>
<td>0.846</td>
<td>91</td>
</tr>
<tr>
<td>1.75</td>
<td>20.685</td>
<td>6.978</td>
<td>20.685</td>
<td>0.846</td>
<td>91</td>
</tr>
<tr>
<td>1.80</td>
<td>21.276</td>
<td>6.597</td>
<td>21.276</td>
<td>0.846</td>
<td>100</td>
</tr>
<tr>
<td>1.85</td>
<td>21.867</td>
<td>6.236</td>
<td>21.867</td>
<td>0.846</td>
<td>100</td>
</tr>
<tr>
<td>1.90</td>
<td>22.458</td>
<td>5.889</td>
<td>22.458</td>
<td>0.846</td>
<td>100</td>
</tr>
<tr>
<td>1.95</td>
<td>23.049</td>
<td>5.557</td>
<td>23.049</td>
<td>0.846</td>
<td>100</td>
</tr>
<tr>
<td>2.00</td>
<td>23.641</td>
<td>5.238</td>
<td>23.641</td>
<td>0.846</td>
<td>100</td>
</tr>
<tr>
<td>2.05</td>
<td>24.232</td>
<td>4.929</td>
<td>24.232</td>
<td>0.846</td>
<td>109</td>
</tr>
<tr>
<td>2.10</td>
<td>24.823</td>
<td>4.630</td>
<td>24.823</td>
<td>0.846</td>
<td>109</td>
</tr>
<tr>
<td>2.15</td>
<td>25.414</td>
<td>4.582</td>
<td>25.414</td>
<td>0.846</td>
<td>127</td>
</tr>
<tr>
<td>2.20</td>
<td>26.005</td>
<td>4.575</td>
<td>26.005</td>
<td>0.846</td>
<td>127</td>
</tr>
<tr>
<td>2.25</td>
<td>26.596</td>
<td>4.568</td>
<td>26.596</td>
<td>0.846</td>
<td>127</td>
</tr>
<tr>
<td>2.30</td>
<td>27.187</td>
<td>4.560</td>
<td>27.187</td>
<td>0.846</td>
<td>127</td>
</tr>
<tr>
<td>2.35</td>
<td>27.778</td>
<td>4.549</td>
<td>27.778</td>
<td>0.846</td>
<td>145</td>
</tr>
<tr>
<td>2.40</td>
<td>28.369</td>
<td>4.506</td>
<td>28.369</td>
<td>0.846</td>
<td>157</td>
</tr>
<tr>
<td>2.45</td>
<td>28.960</td>
<td>4.604</td>
<td>28.960</td>
<td>0.846</td>
<td>147</td>
</tr>
<tr>
<td>2.50</td>
<td>29.551</td>
<td>4.407</td>
<td>29.551</td>
<td>0.846</td>
<td>118</td>
</tr>
</tbody>
</table>
System S2 MOE as Function of Cost

Time to Complete Mission (hours)

Cost Factor on Threshold System Costs

System S2 MOPs as Function of Cost

MOPs 6-8 (percent of technology threshold)

Cost Factor on Threshold System Costs
APPENDIX C

CONSTRAINED SQP OPTIMIZATION (PENALTY FUNCTION) MATLAB® CODE AND RESULTS

The same basic code it utilized for this method as that shown in Appendix A, with the exception of the objective function, which is listed below.

```matlab
function [f,g] = mcmfunpf(x,p1,p2,p3,p4,p5,p6,p7)
% Modified to have smaller Px2 on 7/3/97
a1=2000; % penalty function gains for absolute value PF
a2=2e6;
px1=[4.503408803940725e-005, -5.386095666335044e-003, 2.159330101073730e-001,
    1.334245377520354e+000];
px2=[2.834645669291690e+002, -5.076377952756583e+002, 2.274598425197177e+002];
px3=[-2.04838095280911e+000, 9.987333333333214e-000, -1.79423333333325e+001,
    2.03223089528094e+001];
px4=[1.159691730856429e-001, -2.175732453433467e+000, 1.520381256718985e+001];
px5=[2.061825086032983e-004, -3.77598229500408e-002, 1.77803488786043e+000];
px6=[1.504875482450802e+000, -1.578229837871938e-004, 5.51664963916904e-002,
    -1.813253427503106e+001];
px7=[ -2.850358103957624e+001, 3.846213159671302e-000, -1.72642387731832e+001,
    3.34408629656030e+001];
px8=[2.102445277065673e-001, -4.10959376848783e+000, 2.539723290331297e+001];

f1 = (p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) + p1*p3));
    f2 = (p5/60)*(p1*x(2)*x(8)*p2*exp(-x(5)/(4.481*x(6)))+(1-exp(-x(5)/(4.481*x(6))))*(1-exp(-x(5)/(4.481*x(6))))*p1*x(2)*x(7)*p2 +
        (1-x(2))*(x(3)+p1*p3)*x(7));
    f = f1 + f2;
    % evaluate cost constraint
    g1=polyval(px1,x(1))+polyval(px2,x(2))+polyval(px3,x(3))+polyval(px4,x(4))+polyval(px5,x(5)) +polyval(px6,x(6)) +polyval(px7,x(7)) +polyval(px8,x(8)) -p6;
    % evaluate negative of quality constraint
    g2 = -p1*x(2)*exp(-x(5)/(4.481*x(6)))+p7;
    f = f1 + f2 + a1*gl*gl + a2*gl*gl;
    g = g1 + g2 + a1*abs(gl)+a2*abs(gl);
    g=[];
%p1=pd
%p2=lambda
%p3=lambdaft
%p4=ttransit
%p5=sminefield
%p6=cub
%p7=qlb
```

output from execution of MCM42pf.m

Run with Costfactor = 1.250
Initial Values
Total time, f=200978.782
Costfactor = 1.250
cost= 28.066
q= 0.620
Final Values
Total time, f= 38.589
cost= 35.083
q= 0.846
x= 57.379 0.963 2.000 4.981 45.127 417.387 7.000 8.793
Function evaluations = 1329
Run with Costfactor = 1.300
Initial Values
Total time, f = 244302.199
Costfactor = 1.300
cost = 28.066 q = 0.620
Final Values
Total time, f = 66.522
cost = 36.491 q = 0.846
x = 21.494 0.962 2.000 8.703 44.724 417.375 4.285 9.622
Function evaluations = 668

Run with Costfactor = 1.350
Initial Values
Total time, f = 295502.600
Costfactor = 1.350
cost = 28.066 q = 0.620
Final Values
Total time, f = 44.935
cost = 37.890 q = 0.846
x = 54.484 0.963 2.000 6.584 45.440 417.385 4.259 9.150
Function evaluations = 792

Run with Costfactor = 1.400
Initial Values
Total time, f = 354579.987
Costfactor = 1.400
cost = 28.066 q = 0.620
Final Values
Total time, f = 38.954
cost = 37.954 q = 0.846
x = 57.161 0.963 2.000 5.120 45.533 417.408 4.243 8.824
Function evaluations = 1658

Run with Costfactor = 1.450
Initial Values
Total time, f = 421534.358
Costfactor = 1.450
cost = 28.066 q = 0.620
Final Values
Total time, f = 34.564
cost = 40.696 q = 0.846
x = 58.769 0.963 2.000 4.026 45.351 417.392 4.231 8.580
Function evaluations = 1778

Run with Costfactor = 1.500
Initial Values
Total time, f = 496365.715
Costfactor = 1.500
cost = 28.066 q = 0.620
Final Values
Total time, f = 30.932
cost = 42.100 q = 0.846
x = 59.942 0.963 2.000 3.113 45.043 417.385 4.222 8.376
Function evaluations = 1846

Run with Costfactor = 1.550
Initial Values
Total time, f = 579074.056
Costfactor = 1.550
cost = 28.066 q = 0.620
Final Values
Total time, f = 28.390
cost = 43.503 q = 0.846
x = 64.779 0.963 2.000 3.000 45.649 417.394 4.177 7.280
Function evaluations = 2356
Run with Costfactor = 1.600
Initial Values
Total time, f=669659.382
Costfactor = 1.600
cost= 28.066 q= 0.620
Final Values
Total time, f= 26.816
cost= 44.906 q= 0.846
x= 65.900 0.963 1.533 3.000 45.352 416.227 4.173 6.928
Function evaluations= 2395

Run with Costfactor = 1.650
Initial Values
Total time, f=768121.693
Costfactor = 1.650
cost= 28.066 q= 0.620
Final Values
Total time, f= 25.329
cost= 46.309 q= 0.846
x= 68.013 0.963 1.366 3.000 45.410 417.394 4.154 6.276
Function evaluations= 2247

Run with Costfactor = 1.700
Initial Values
Total time, f=874460.989
Costfactor = 1.700
cost= 28.066 q= 0.620
Final Values
Total time, f= 24.096
cost= 47.712 q= 0.846
x= 69.876 0.963 1.260 3.000 47.367 429.961 4.147 5.688
Function evaluations= 1966

Run with Costfactor = 1.750
Initial Values
Total time, f=988677.270
Costfactor = 1.750
cost= 28.066 q= 0.620
Final Values
Total time, f= 23.020
cost= 49.116 q= 0.846
x= 71.052 0.963 1.197 3.000 45.337 417.504 4.123 5.098
Function evaluations= 2525

Run with Costfactor = 1.800
Initial Values
Total time, f=1110770.536
Costfactor = 1.800
cost= 28.066 q= 0.620
Final Values
Total time, f= 22.066
cost= 50.519 q= 0.846
x= 72.231 0.963 1.141 3.000 45.808 419.586 4.090 4.582
Function evaluations= 2129

Run with Costfactor = 1.850
Initial Values
Total time, f=1240740.786
Costfactor = 1.850
cost= 28.066 q= 0.620
Final Values
Total time, f= 21.200
cost= 51.922 q= 0.846
x= 73.220 0.963 1.094 3.000 45.681 417.212 4.100 4.099
Function evaluations= 3429

156
Run with Costfactor = 1.900
Initial Values
Total time, f=1378588.022
Costfactor = 1.900
cost= 28.066 q= 0.620
Final Values
Total time, f= 20.402
cost= 53.325 q= 0.846
x= 74.134 0.963 1.052 3.000 46.129 418.973 4.084 3.651
Function evaluations= 3633

Run with Costfactor = 1.950
Initial Values
Total time, f=1524312.242
Costfactor = 1.950
cost= 28.066 q= 0.620
Final Values
Total time, f= 19.660
cost= 54.729 q= 0.846
x= 74.887 0.963 1.015 3.000 45.445 416.088 4.080 3.225
Function evaluations= 4130

Run with Costfactor = 2.000
Initial Values
Total time, f=1677913.448
Costfactor = 2.000
cost= 28.066 q= 0.620
Final Values
Total time, f= 18.981
cost= 56.132 q= 0.846
x= 76.993 0.964 0.924 3.000 46.944 419.530 4.055 3.000
Function evaluations= 3704

Run with Costfactor = 2.050
Initial Values
Total time, f=1839391.638
Costfactor = 2.050
cost= 28.066 q= 0.620
Final Values
Total time, f= 18.448
cost= 56.132 q= 0.846
x= 76.993 0.964 0.924 3.000 46.944 419.530 4.055 3.000
Function evaluations= 4160

Run with Costfactor = 2.100
Initial Values
Total time, f=2008746.813
Costfactor = 2.100
cost= 28.066 q= 0.620
Final Values
Total time, f= 18.022
cost= 58.939 q= 0.846
x= 82.877 0.963 0.672 3.000 46.788 434.541 3.980 3.000
Function evaluations= 5054

Run with Costfactor = 2.150
Initial Values
Total time, f=2185978.973
Costfactor = 2.150
cost= 28.066 q= 0.620
Final Values
Total time, f= 17.661
cost= 60.342 q= 0.846
x= 85.025 0.964 0.567 3.000 48.223 435.763 3.962 3.000
Function evaluations= 5054

Run with Costfactor = 2.200
<table>
<thead>
<tr>
<th>Costfactor</th>
<th>Initial Values</th>
<th>Total time, f</th>
<th>Cost</th>
<th>Final Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.200</td>
<td>Total time, f=2371088.117</td>
<td>Cost=28.066</td>
<td>q=0.620</td>
<td>Final time, f=17.346</td>
</tr>
<tr>
<td>2.200</td>
<td>$x=87.141$</td>
<td>0.963</td>
<td>0.481</td>
<td>3.000</td>
</tr>
<tr>
<td>2.250</td>
<td>Initial Values</td>
<td>Total time, f=2564074.247</td>
<td>Cost=28.066</td>
<td>q=0.620</td>
</tr>
<tr>
<td>2.250</td>
<td>$x=88.943$</td>
<td>0.963</td>
<td>0.401</td>
<td>3.000</td>
</tr>
<tr>
<td>2.300</td>
<td>Initial Values</td>
<td>Total time, f=2764937.362</td>
<td>Cost=28.066</td>
<td>q=0.620</td>
</tr>
<tr>
<td>2.300</td>
<td>$x=90.519$</td>
<td>0.963</td>
<td>0.325</td>
<td>3.000</td>
</tr>
<tr>
<td>2.350</td>
<td>Initial Values</td>
<td>Total time, f=2973677.465</td>
<td>Cost=28.066</td>
<td>q=0.620</td>
</tr>
<tr>
<td>2.350</td>
<td>$x=92.032$</td>
<td>0.963</td>
<td>0.257</td>
<td>3.000</td>
</tr>
<tr>
<td>2.400</td>
<td>Initial Values</td>
<td>Total time, f=3190294.545</td>
<td>Cost=28.066</td>
<td>q=0.620</td>
</tr>
<tr>
<td>2.400</td>
<td>$x=95.287$</td>
<td>0.964</td>
<td>0.250</td>
<td>3.000</td>
</tr>
<tr>
<td>2.450</td>
<td>Initial Values</td>
<td>Total time, f=3414788.615</td>
<td>Cost=28.066</td>
<td>q=0.620</td>
</tr>
<tr>
<td>2.450</td>
<td>$x=98.415$</td>
<td>0.966</td>
<td>0.250</td>
<td>3.000</td>
</tr>
<tr>
<td>2.500</td>
<td>Initial Values</td>
<td>Total time, f=3414788.615</td>
<td>Cost=28.066</td>
<td>q=0.620</td>
</tr>
<tr>
<td>2.500</td>
<td>$x=98.415$</td>
<td>0.966</td>
<td>0.250</td>
<td>3.000</td>
</tr>
</tbody>
</table>
Total time, f=3647159.669
Costfactor = 2.500
cost= 28.066 q= 0.620
Final Values
Total time, f= 16.122
cost= 70.165 q= 0.846
x= 100.000 0.973 0.250 3.000 65.289 417.588 3.166 3.000
Function evaluations= 3268

cost factor cost MOE function evals
1.25 35.082 38.589 1329.000
1.30 36.486 66.522 668.000
1.35 37.889 44.935 792.000
1.40 39.292 38.954 1658.000
1.45 40.696 34.564 1778.000
1.50 42.099 30.932 1846.000
1.55 43.502 28.390 2356.000
1.60 44.906 26.816 2395.000
1.65 46.309 25.329 2247.000
1.70 47.712 24.096 1966.000
1.75 49.115 23.020 2525.000
1.80 50.519 22.066 2129.000
1.85 51.922 21.200 3429.000
1.90 53.325 20.402 3633.000
1.95 54.729 19.660 4130.000
2.00 56.132 18.981 3704.000
2.05 57.535 18.448 5184.000
2.10 58.939 18.022 4160.000
2.15 60.342 17.661 5054.000
2.20 61.745 17.346 4042.000
2.25 63.148 17.070 6250.000
2.30 64.552 16.822 5658.000
2.35 65.955 16.596 3347.000
2.40 67.358 16.399 4955.000
2.45 68.762 16.237 3268.000
2.50 70.165 16.122 3268.000
APPENDIX D

FIRST ORDER CONSTRAINED SPSA MATLAB® CODE, EXAMPLE, AND RESULTS

The following three dimensional nonlinear programming problem was used to check out implementation of the constrained SPSA algorithm and code developed for this dissertation effort:

\[
\begin{align*}
\text{Min } z &= 3x_1^2 + 4x_2^2, \\
\text{subject to :} \\
2x_1 - 3x_2 &\leq 10 \\
2 &\leq x_1 \leq 4 \\
-6 &\leq x_2 \leq 2
\end{align*}
\]

Geometrically, \(z\) is an elliptic cone with its origin at (0,0). The interval constraints form a box with the linear constraint making an intersecting plane. The problem boils down to finding a point on section of the elliptic cone that lies inside the clipped box formed by the constraints. The correct solution is \([2,-2]\), yielding \(z=28\) as the constrained minimum.

Since the objective function is simply a quadratic, the Lagrangian method was used in a straightforward manner to transform the problem:

\[
\begin{align*}
\text{Min } & F(x_1, x_2, x_3) = 3x_1^2 + 4x_2^2 - x_3(-2x_1 + 3x_2 + 10) \\
\text{subject to :} \\
2 &\leq x_1 \leq 4 \\
-6 &\leq x_2 \leq 2 \\
0 &\leq x_3, \text{ where } x_3 \text{ is the Lagrangian multiplier}
\end{align*}
\]

With initial condition vector \([3,-4,0]\), 1SPSA took an average of 9.8 iterations to achieve the exact solution, with an absolute blocking criteria applied. Without blocking, the average number of iterations was 13.4. Other initial conditions were investigated, with similar results. The following code was used to solve this initial problem, and served as the basis for algorithm/code development for the MCM system of systems problem.
% Filename: \lumanrr1\matlab\prob43xx.m
% Output file initialization
fid=fopen('/home/lumanrr1/matlab/output.txt','w');
fprintf(fid,'output from execution of prob43.m\n\n');
%===%
% SPSA Initialization
%===
x0=[3,-4,0] % lower bound constraint on x
x=x0
n=100 % maximum allowable number of iterations
blocks=0 % number of blocked iterations
tolf=0.001 % convergence tolerances
tolx=0.00001 % dimension of x
[p,g]=funa4(x) % evaluate f right away
A=20 % Spall cookbook, about 5% of max iterations
alpha=0.602 % Spall cookbook values
gamma=0.101
%===
% SPSA Loop
%===
for k=1:n
 a_k=a/(k+A)^alpha % strongly dependent on a, A initialization
 c_k=c/k^gamma % strongly dependedt on c: small relative to x
 for j=1:p
 delta(j)=2*round(rand(1))-1;
delta(j);
 end
delta;
xplus=x+c_k*delta % If the elements of x vary significantly in magnitude,
xminus=x-c_k*delta % then should either scale delta or x elements.
end
% check for infeasible vectors
for j=1:p
 if xplus(j)<vlb(j)
xplus(j)=vlb(j);
 end
 if xminus(j)<vlb(j)
xminus(j)=vlb(j);
 end
 if xplus(j)>vub(j)
xplus(j)=vub(j);
 end
 if xminus(j)>vub(j)
xminus(j)=vub(j);
 end
end
fprintf(fid,'x0=');fprintf(fid,'%8.3f %8.3f %8.3f\n',x0);
function [f, g] = funa4(x)
 f = 3*(x(1))^2 + 4*(x(2))^2 + x(3)*(2*x(1)-3*x(2)-10); % Lagrangian
 g=[]; % only constraints are upper and lower bounds
end

function [fplus, g] = funa4(xplus);
 fplus = fplus - (fplus - fminus)./(2*c_k*delta);
 fprintf(fid,'fplus=');fprintf(fid,'%8.3f
',fplus);
end

function [fminus, g] = funa4(xminus);
 fminus = fminus - (fplus - fminus)./(2*c_k*delta);
 fprintf(fid,'fminus=');fprintf(fid,'%8.3f
',fminus);
end

xkp1 = x - a_k*ghat;
 fprintf(fid,'xkp1=');fprintf(fid,'%8.3f
',xkp1);
end

function

% SPSA utilization penalty function MCMFUNPF that was used with MCM42PF.m
% Except that the penalty functions have a gain that increases with k, iteration
% number.
% Filename: \matlab\dissertation\MCMSPSA.m

1SPSA Code for MCM System of Systems:

% MCM System of Systems
% SPSA utilizing penalty function MCMFUNPF that was used with MCM42PF.m
% Except that the penalty functions have a gain that increases with k, iteration
% number.
% Filename: \matlab\dissertation\MCMSPSA.m
% This file utilizes the standard scalar gain, \(a_k \), which will not compensate for scaling differences in variables.

% Output file initialization
fid=fopen('c:\matlab\dissertation\output SPSA.doc','w');
fprintf(fid,'output from execution of MCMapsa.m, scalar gain a_k\n\n');
%==
% MCM Initialization
%==
% \(x(1) = p_{11} \) = S1 area coverage rate (nm\(^2\)/day)
% \(x(2) = p_{12} \) = S1 classification probability
% \(x(3) = p_{13} \) = S1 FAR (#/nm\(^2\))
% \(x(4) = p_{14} \) = S1 time to classify (min)
% \(x(5) = p_{15} \) = S1 navigation accuracy (yards)
% \(x(6) = p_{21} \) = S2 Re-acquisition range (yards)
% \(x(7) = p_{22} \) = S2 time to prosecute a false target (min)
% \(x(8) = p_{23} \) = S2 time to neutralize (min)

pd=0.90; % S1 detection system probability of detection
x0=[10; 0.9; 2.0; 19.7; 90; 75.6; 6.6; 10.0]; % Might need to start at feasible point. This won't meet \(q(x) \) constraint.

x0=
8; % dimension of \(x \)
xstar=x0 % this is the threshold system. But too far from optimal for SPSA to start with.
x0=[70; .95; 1.0; 5.0; 45; 430; 3.5; 6.0]; % pretty near optimal for cost factor around 1.6.
xoptimal=[10.000 0.900 2.000 9.170 90.000 75.000 6.600 10.000;... 57.379 0.963 2.000 4.983 45.108 417.391 7.000 8.793;... 58.915 0.963 2.000 3.195 44.820 417.374 7.000 8.555;... 60.058 0.963 2.000 3.017 44.418 417.371 7.000 8.355;... 65.201 0.963 2.000 3.000 44.632 417.375 7.000 7.162;... 67.996 0.963 2.000 3.000 44.802 417.387 7.000 6.282;... 71.172 0.963 1.181 3.000 42.596 417.237 7.000 5.045;... 72.316 0.961 1.126 3.000 42.425 417.195 7.000 4.532;... 73.310 0.961 1.080 3.000 42.000 417.254 7.000 4.055;... 74.198 0.961 1.040 3.000 42.000 417.519 7.000 3.607;... 74.979 0.961 1.004 3.000 42.000 417.757 7.000 3.184;... 77.328 0.961 0.901 3.000 42.000 418.623 7.000 3.000;... 80.440 0.961 0.765 3.000 42.000 417.250 7.000 3.000;... 83.033 0.961 0.651 3.000 42.000 421.627 7.000 3.000;... 85.261 0.961 0.552 3.000 42.000 423.201 7.000 3.000;... 87.217 0.961 0.463 3.000 42.000 424.790 7.000 3.000;... 88.963 0.961 0.383 3.000 42.000 426.399 7.000 3.000;... 85.153 0.963 0.570 3.000 45.839 417.389 3.948 3.000;... 87.149 0.963 0.481 3.000 45.694 417.395 3.921 3.000;... 88.941 0.963 0.400 3.000 45.508 417.412 3.894 3.000;... 90.539 0.963 0.326 3.000 45.239 417.380 3.876 3.000;... 92.010 0.963 0.257 3.000 45.947 417.360 3.857 3.000;... 95.302 0.963 0.250 3.000 45.572 417.461 3.797 3.000;... 98.430 0.964 0.250 3.000 46.343 417.398 3.737 3.000;... 100.000 0.973 0.250 3.000 64.008 412.202 3.162 3.000;...]

% Compute px1, polynomial fit cost function parameters for x(1)
xv=10.000 0.900 2.000 9.170 90.000 75.000 6.600 10.000; % lower bound constraint on x
yv=[3, 4.483, 7.655, 11.445]; % revised PBCM that reflects COTS/NDI development
px1=polyfit(xv,yv,3); % Compute px2, polynomial fit cost function parameters for x(2)
xv=[10.0, 0.9, 0.25, 3.0, 42.75, 10.0]; % upper bound constraint on x
yv=[2.0, 2.2, 0.2, 2.2, 2.2, 2.2]; % revised PBCM that reflects COTS/NDI development
px2=polyfit(xv,yv,2); % Compute px3, polynomial fit cost function parameters for x(3)
xv=[8.0, 10.319, 13.592, 16.429]; % revised PBCM that reflects COTS/NDI development
yv=[2.1, 0.5, 0.25]; % revised PBCM that reflects COTS/NDI development
px3=polyfit(xv,yv,3); % Compute px4, polynomial fit cost function parameters for x(4)
xv=[3.513, 3.89, 4.77, 9.17]; % revised PBCM that reflects COTS/NDI development
yv=[9.191, 8.190, 7.574, 5.0]; % revised PBCM that reflects COTS/NDI development
px4=polyfit(xv,yv,2);
% Compute px5, polynomial fit cost function parameters for x(5)
x1=[90,60,48,42];
y1=[0.050,0.250,0.450,0.550];
px5=polyfit(x1,y1,2);
% Compute px6, polynomial fit cost function parameters for x(6)
x1=[129,457,622,753];
y1=[3,4.8,7.655,10.1];
px6=polyfit(x1,y1,3);
% Compute px7, polynomial fit cost function parameters for x(7)
x1=[6.6,4.4,3.3,2.64,1.32];
y1=[5.0,7.5,8.190,9.191,16.621];
px7=polyfit(x1,y1,3);
% Compute px8, polynomial fit cost function parameters for x(8)
x1=[10,8,7,5,3];
y1=[5.3,6,7,10,15];
px8=polyfit(x1,y1,2);
%compute threshold system cost
cost0=polyval(px1,xstar(1))+polyval(px2,xstar(2))+polyval(px3,xstar(3))+polyval(px4,xstar(4))+polyval(px5,xstar(5))+polyval(px6,xstar(6))+polyval(px7,xstar(7))+polyval(px8,xstar(8))
%Insert costfactor loop
i=0;
for costfactor=1.25:0.05:2.5 %Note problem is infeasible with costfactor<1.25
 i=i+1;
 for j=1:p %start "near the optimal solution"--perturb randomly by 20%
 del=2*round(rand)-1; %this is +/-1 random number
 x0(j)=(1+0.20*del)*xoptimal(i,j); % results in either 120% or 80% of optimal.
 if x0(j)<vlb(j);x0(j)=vlb(j);end %make sure x0 is feasible
 if x0(j)>vub(j);x0(j)=vub(j);end
 end
 fprintf(fid,
 'i=%d, costfactor=%10.3f,','i,costfactor');
 fprintf(fid,'cub=%10.3f, qlb=%10.3f
',costfactor,cub,qlb);
% Print out threshold system values for f and constraints, g.
%==
% SPSA Initialization
%==

n=2500; % maximum allowable number of iterations
blocks=0; % number of blocked iterations
tolf=0.000015; % convergence tolerances
tolx=0.00001;
\% dimension of x
p=8;
%[f,g]=mcmfunpfs(x0,p1,p2,p3,p4,p5,p6,p7,p8) \% evaluate f right away
\% A=50; \% Spall cookbook, about 5% of max iterations
alpha=0.602; \% Spall cookbook values
gamma=0.101;
c=0.002; \% Value for c used by Ilenda was 0.05. Critical parameter.
\% May need to scale whole problem's x so that the optimal
\% values lie in a similar range.
a=0.02;
a=[.02,1e-4,006,.02,.2,.4,.02,.02] \% Select a consistent with
\% in x during initial iterations. Hence,
\% [a/(A+1)^alpha]*20.0 = 0.1, solve for a.
fprintf(fid,' tolx=');fprintf(fid,'%10.6f',tolx);
fprintf(fid,' tolf=');fprintf(fid,'%10.6f
',tolf);
fprintf(fid,'A=');fprintf(fid,'%8.3f',A);fprintf(fid,'alph=');fprintf(fid,'%8.3f',alpha);
ffprintf(fid,' c=');fprintf(fid,'%8.3f',c);fprintf(fid,' a=');fprintf(fid,'%8.3f
',a);

%===
% Spall Loop
%===
for k=1:n;
p8=k;
fprintf(fid,' iteration #');fprintf(fid,'%3.0f
',k);
a_k=a/(k+A)^alpha; \% strongly dependent on a, A initialization
c_k=c/k^gamma; \% strongly dependednt on c: small relative to x
fprintf(fid,'a_k=');fprintf(fid,'%8.3f',a_k);
fprintf(fid,'c_k=');fprintf(fid,'%8.3f
',c_k);
delta=2*round(rand(p,1))-1;
\% delta
xplus=x+c_k*delta; \% If the elements of x vary significantly in magnitude,
xminus=x-c_k*delta; \% then should either scale delta or x elements.
fprintf(fid,'delta=');fprintf(fid,'%8.3f',delta);
fprintf(fid,'xminus(raw)=');fprintf(fid,'%8.3f',xminus);
fprintf(fid,'xplus(raw)=');fprintf(fid,'%8.3f',xplus);
\% Key is probably the jitter, not magnitude.
\% check for infeasible vectors
for j=1:p; \%if on a border, pull back and adjust c_k component j.
if xplus(j)<vlb(j);
xplus(j)=vlb(j);
end;
if xminus(j)<vlb(j);
xminus(j)=vlb(j);
end;
if xplus(j)>vub(j);
xplus(j)=vub(j);
end;
if xminus(j)>vub(j);
xminus(j)=vub(j);
end;
xplus=x+c_k*delta;
xminus=x-c_k*delta;
\% Update, checking for convergence
[fplus,g]=mcmfunpfs(xplus,p1,p2,p3,p4,p5,p6,p7,p8);
[fminus,g]=mcmfunpfs(xminus,p1,p2,p3,p4,p5,p6,p7,p8);
\% check for infeasible vectors
fplus;
ghat=(fplus-fminus)./(2*c_k*delta);
\% vector gain to compensate for scaling
xkpl=x-a_k*ghat;
\%scalar gain as standard SPSA
fprintf(fid,'fminus=');fprintf(fid,'%8.3f',fminus);
fprintf(fid,'fplus=');fprintf(fid,'%8.3f',fplus);
fprintf(fid,'ghat=');fprintf(fid,'%8.3f',ghat);
fprintf(fid,'\n');
for j=1:p;
 if xkp1(j)<vlb(j);
 xkp1(j)=vlb(j);
 end;
 if xkp1(j)>vub(j);
 xkp1(j)=vub(j);
 end;
end;

xkp1;
%fprintf(fid,'xkp1(constr)=');fprintf(fid,'%8.3f',xkp1);fprintf(fid,'
');
[fkp1,g]=mcmfunpfs(xkp1,p1,p2,p3,p4,p5,p6,p7);
%fprintf(fid,'f_kp1=');fprintf(fid,'%8.3f
',fkp1);

if fkp1<f+1;
 x=xkp1; % Accept new estimate. Otherwise block the update passively.
 f=fkp1;
else;
 blocks=blocks+1;
 fprintf(fid,'Update Blocked. Block number:');%fprintf(fid,'%3.0
',blocks)
end;
end
mcmeval(x,p1,p2,p3,p4,p5,p6,p7)
[f,g]=mcmfunpfs(x,p1,p2,p3,p4,p5,p6,p7,p8)
fprintf(fid,'Final Values
');
cost =
polyval(px1,x(1))+polyval(px2,x(2))+polyval(px3,x(3))+polyval(px4,x(4))+polyval(px5,x(5))+
polyval(px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8))
q=p1*x(2) *exp(-x(5)/(4.481*x(6)))
f1 = (p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) + p1*p3));
f2 = (p5/60)*(p1*x(2)*x(8)*p2*exp(-x(5)/(4.481*x(6)))+(1-exp(-
 x(5)/(4.481*x(6))))*p1*x(2)*x(7)*p2 + (1-x(2))*(x(3)+p1*p3)*x(7));
E=f1+f2
fprintf(fid,'Total time, E=');fprintf(fid,'%10.3f',E);
fprintf(fid,'cost=');fprintf(fid,'%10.3f',cost);fprintf(fid,'
');
q=2*k;
fprintf(fid,'Blocks=');fprintf(fid,'%8.0f
',blocks);
fprintf(fid,'x=');fprintf(fid,'%10.3f',x);fprintf(fid,'
');

% Plot option 1: Plot System of systems MOE as CAIV
figure
plot(cf,fval, '-*b')
title('System of Systems MOE as Function of Cost')
ylabel('Cost Factor on Threshold System Costs')
xlabel('Time to Complete Mission (hours)')
figure
plot(costval,fval, '-*b')
title('System of Systems MOE as Function of Cost')
ylabel('Cost ($M)')
xlabel('Time to Complete Mission (hours)')

% Plot option 2: Plot MOPs as CAIV
figure
plot(cf,z1,'-b',cf,z2,'-r',cf,z3,'-go',cf,z4,'-kx')
legend('x1','x2','x3','x4')
title('System of Systems MOPs as Function of Cost')
xlabel('Cost Factor on Threshold System Costs')
ylabel('MOPs 1-4 (percent of technology threshold)')
figure
plot(cf,z5,'-b',cf,z6,'-r',cf,z7,'-go',cf,z8,'-kx')
legend('x5','x6','x7','x8')
title('System of Systems MOPs as Function of Cost')
xlabel('Cost Factor on Threshold System Costs')
ylabel('MOPs 5-8 (percent of technology threshold)')
% print table of results to file
fprintf(fid,'
');
fprintf(fid,'cost factor');fprintf(fid,' cub');fprintf(fid,' E');fprintf(fid,'
');
for j=1:i
fprintf(fid,'%10.2f',cf(j));fprintf(fid,'%10.3f',costval(j));
fprintf(fid,'%10.3f',fval(j));fprintf(fid,'%10.3f',costi(j));
fprintf(fid,'%10.3f',qfinal(j));fprintf(fid,'%10.0f',fevals(j));
fprintf(fid,'%10.0f
',nblock(j));
end
status=fclose(fid)

function [f,g] = mcmfunpfs(x,p1,p2,p3,p4,p5,p6,p7,p8)
% squared penalty function version
kmax=800;
% k is the iteration number of the SPSA algorithm
A1=20;
A2=0000;
if k<kmax
 a1=0.5*(A1)*sin((k-1)*pi/kmax-pi/2)+A1/2+1;
 a2=0.5*(A2)*sin((k-1)*pi/kmax-pi/2)+A2/2+1;
else
 a1=A1;
 a2=A2;
end
px1=[4.503408803940725e-005, -5.386095666335044e-003, 2.159330101073730e-001, 1.334245377520334e+000];
px2=[-2.805489129580298e+000, -5.076377952756583e-002, 2.274598425197177e+000, -1.9724333333325e+001];
px3=[2.0323809528094e+000, 1.519691730856429e+000, 1.52038156718985e+000, 5.15669439618904e+000];
px4=[-2.006182508062598e+000, -3.7759822505008e+000, 1.77803488786043e+000, -1.726423877313832e+001, 3.84621359671302e-000, -1.726423877313832e+001, 3.33440869265603e+001];
px5=[2.006182508062598e+000, -3.7759822505008e+000, 1.77803488786043e+000, -1.726423877313832e+001, 3.84621359671302e-000, -1.726423877313832e+001, 3.33440869265603e+001];
x=[(p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) + p1*p3));
x=[(p5/60)*(p1*x(2)*x(8)*p2*exp(-x(5)/(4.481*x(6)))+(1-exp(-x(5)/(4.481*x(6))))*p1*x(2)*x(7)*p2 + (1-x(2))*(x(3)+p1*p3)*x(7));
E=f1+f2;
% evaluate cost constraint
g1=polyval(px1,x(1))+polyval(px2,x(2))+polyval(px3,x(3))+polyval(px4,x(4))+polyval(px5,x(5))+polyval(px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8))-p6;
% evaluate negative of quality constraint
g2 = -p1*x(2)*exp(-x(5)/(4.481*x(6))) + p7;
% scalar gain a_k
x0= 70.000 0.950 1.000 5.000 45.000 430.000 3.500 6.000
vlb= 10.000 0.900 0.250 3.000 42.000 75.000 1.000 3.000
vub=
09/11/97 6:48 PM 1SPSA Baseline 9-11-97.doc
Block criteria relaxed to 1.0. Came out pretty good.
output from execution of mcmmspsa2500Final.m, scalar gain a_k

9/11/97 6:48 PM 1SPSA Baseline 9-11-97.doc
Block criteria relaxed to 1.0. Came out pretty good.
output from execution of mcmmspsa2500Final.m, scalar gain a_k
<table>
<thead>
<tr>
<th></th>
<th>Run with Costfactor</th>
<th>cub</th>
<th>qlb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.250</td>
<td>35.082</td>
<td>0.846</td>
</tr>
<tr>
<td>Initial Values</td>
<td>f= 88.894 E= 83.317</td>
<td>cost= 29.646</td>
<td>q= 0.706 tolx= 0.000010 tolf= 0.000015</td>
</tr>
<tr>
<td>A= 50.000</td>
<td>alpha= 0.602 c= 0.002 a= 0.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Values</td>
<td>Total time, E= 71.155</td>
<td>cost= 34.986</td>
<td>q= 0.705</td>
</tr>
<tr>
<td>x= 13.048</td>
<td>0.980 1.090 8.328 89.695 89.340 6.366 7.356</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Run with Costfactor</th>
<th>cub</th>
<th>qlb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.300</td>
<td>36.486</td>
<td>0.846</td>
</tr>
<tr>
<td>Initial Values</td>
<td>f= 43.267 E= 38.874</td>
<td>cost= 40.863</td>
<td>q= 0.861 tolx= 0.000010 tolf= 0.000015</td>
</tr>
<tr>
<td>A= 50.000</td>
<td>alpha= 0.602 c= 0.002 a= 0.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Values</td>
<td>Total time, E= 37.667</td>
<td>cost= 40.349</td>
<td>q= 0.846</td>
</tr>
<tr>
<td>x= 45.835</td>
<td>0.963 1.994 4.886 42.049 334.142 6.902 6.680</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Run with Costfactor</th>
<th>cub</th>
<th>qlb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.350</td>
<td>37.889</td>
<td>0.846</td>
</tr>
<tr>
<td>Initial Values</td>
<td>f= 35.761 E= 35.349</td>
<td>cost= 38.290</td>
<td>q= 0.858 tolx= 0.000010 tolf= 0.000015</td>
</tr>
<tr>
<td>A= 50.000</td>
<td>alpha= 0.602 c= 0.002 a= 0.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Values</td>
<td>Total time, E= 34.544</td>
<td>cost= 37.804</td>
<td>q= 0.810</td>
</tr>
<tr>
<td>x= 47.373</td>
<td>0.926 1.988 4.886 42.049 333.894 6.902 6.680</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Run with Costfactor</th>
<th>cub</th>
<th>qlb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.400</td>
<td>39.292</td>
<td>0.846</td>
</tr>
<tr>
<td>Initial Values</td>
<td>f= 35.161 E= 35.349</td>
<td>cost= 40.694</td>
<td>q= 0.788 tolx= 0.000010 tolf= 0.000015</td>
</tr>
<tr>
<td>A= 50.000</td>
<td>alpha= 0.602 c= 0.002 a= 0.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Values</td>
<td>Total time, E= 32.065</td>
<td>cost= 40.746</td>
<td>q= 0.851</td>
</tr>
<tr>
<td>x= 52.340</td>
<td>0.980 1.615 3.208 53.654 333.883 6.471 6.803</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Run with Costfactor</th>
<th>cub</th>
<th>qlb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.450</td>
<td>40.696</td>
<td>0.846</td>
</tr>
<tr>
<td>Initial Values</td>
<td>f= 39.858 E= 35.349</td>
<td>cost= 43.433</td>
<td>q= 0.782 tolx= 0.000010 tolf= 0.000015</td>
</tr>
<tr>
<td>A= 50.000</td>
<td>alpha= 0.602 c= 0.002 a= 0.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Values</td>
<td>Total time, E= 32.065</td>
<td>cost= 43.686</td>
<td>q= 0.862</td>
</tr>
<tr>
<td>x= 52.340</td>
<td>0.980 1.615 3.208 53.654 333.883 6.471 8.603</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Run with Costfactor</th>
<th>cub</th>
<th>qlb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.500</td>
<td>42.099</td>
<td>0.846</td>
</tr>
<tr>
<td>Initial Values</td>
<td>f= 26.358 E= 23.208</td>
<td>cost= 45.198</td>
<td>q= 0.795 tolx= 0.000010 tolf= 0.000015</td>
</tr>
<tr>
<td>A= 50.000</td>
<td>alpha= 0.602 c= 0.002 a= 0.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Values</td>
<td>Total time, E= 23.240</td>
<td>cost= 44.338</td>
<td>q= 0.862</td>
</tr>
<tr>
<td>x= 81.526</td>
<td>0.958 1.641 3.007 42.041 500.990 7.000 5.077</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Run with Costfactor</th>
<th>cub</th>
<th>qlb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.550</td>
<td>43.502</td>
<td>0.846</td>
</tr>
<tr>
<td>Initial Values</td>
<td>f= 31.370 E= 31.285</td>
<td>cost= 43.433</td>
<td>q= 0.862 tolx= 0.000010 tolf= 0.000015</td>
</tr>
<tr>
<td>A= 50.000</td>
<td>alpha= 0.602 c= 0.002 a= 0.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Values</td>
<td>Total time, E= 30.662</td>
<td>cost= 43.686</td>
<td>q= 0.862</td>
</tr>
<tr>
<td>x= 54.368</td>
<td>0.980 1.661 3.524 52.024 500.858 5.734 7.072</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Run with Costfactor</th>
<th>cub</th>
<th>qlb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.600</td>
<td>44.906</td>
<td>0.846</td>
</tr>
<tr>
<td>Initial Values</td>
<td>f= 27.323 E= 26.697</td>
<td>cost= 44.338</td>
<td>q= 0.788 tolx= 0.000010 tolf= 0.000015</td>
</tr>
<tr>
<td>A= 50.000</td>
<td>alpha= 0.602 c= 0.002 a= 0.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Values</td>
<td>Total time, E= 26.708</td>
<td>cost= 45.738</td>
<td>q= 0.848</td>
</tr>
<tr>
<td>x= 56.366</td>
<td>0.969 1.044 3.006 42.094 334.064 5.687 6.605</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Run with Costfactor = 1.650 cub= 46.309 qlb= 0.846
Initial Values
f= 26.913 E= 26.584 cost= 45.986 q= 0.852 tolx= 0.000010 tolf= 0.000015
A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 25.501 cost= 47.260 Function evaluations= 5000 Blocks= 2438
x= 57.010 0.980 0.976 3.000 51.396 333.643 5.797 5.920

Run with Costfactor = 1.700 cub= 47.712 qlb= 0.846
Initial Values
f= 29.037 E= 24.617 cost= 43.344 q= 0.795 tolx= 0.000010 tolf= 0.000015
A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 23.766 cost= 47.672 Function evaluations= 5000 Blocks= 2471
x= 58.073 0.940 0.483 3.163 42.000 500.474 6.887 5.209

Run with Costfactor = 1.750 cub= 49.115 qlb= 0.846
Initial Values
f= 23.467 E= 21.615 cost= 50.917 q= 0.795 tolx= 0.000010 tolf= 0.000015
A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 22.057 cost= 51.587 Function evaluations= 5000 Blocks= 2434
x= 87.775 0.958 1.415 3.698 42.074 500.725 6.942 3.353

Run with Costfactor = 1.800 cub= 50.519 qlb= 0.846
Initial Values
f= 24.508 E= 19.979 cost= 54.993 q= 0.792 tolx= 0.000010 tolf= 0.000015
A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 20.791 cost= 54.596 Function evaluations= 5000 Blocks= 2429
x= 88.950 0.962 1.101 3.038 50.396 501.052 5.634 4.478

Run with Costfactor = 1.850 cub= 51.922 qlb= 0.846
Initial Values
f= 23.467 E= 17.885 cost= 53.571 q= 0.792 tolx= 0.000010 tolf= 0.000015
A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 20.388 cost= 54.791 Function evaluations= 5000 Blocks= 2450
x= 62.143 0.972 0.363 3.068 42.123 334.208 6.866 3.536

Run with Costfactor = 1.900 cub= 53.325 qlb= 0.846
Initial Values
f= 22.244 E= 19.815 cost= 58.544 q= 0.863 tolx= 0.000010 tolf= 0.000015
A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 20.579 cost= 57.718 Function evaluations= 5000 Blocks= 2460
x= 99.689 0.962 0.914 3.803 50.305 505.697 6.996 3.467

Run with Costfactor = 1.950 cub= 54.729 qlb= 0.846
Initial Values
f= 21.818 E= 20.607 cost= 53.791 q= 0.792 tolx= 0.000010 tolf= 0.000015
A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 20.457 cost= 54.733 Function evaluations= 5000 Blocks= 2444
x= 64.350 0.956 0.602 3.032 50.405 504.265 5.704 3.515

Run with Costfactor = 2.000 cub= 56.132 qlb= 0.846
Initial Values
f= 22.244 E= 19.815 cost= 58.544 q= 0.863 tolx= 0.000010 tolf= 0.000015
A= 50.000 alpha= 0.602 c= 0.002 a= 0.020
Final Values
Total time, E= 20.579 cost= 57.189 Function evaluations= 5000 Blocks= 2444
x= 99.689 0.962 0.914 3.803 50.305 505.697 6.996 3.467

Run with Costfactor = 2.050 cub= 57.535 qlb= 0.846
Initial Values
f= 19.888 E= 19.686 cost= 57.718 q= 0.866 tolx= 0.000010 tolf= 0.000015
<table>
<thead>
<tr>
<th>Initial Values</th>
<th>Run with Costfactor</th>
<th>Final Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>f= 25.242 E= 19.227 cost= 57.476 q= 0.792 tolx= 0.000010 tolf= 0.000015</td>
<td>2.200</td>
<td>x= 61.987 0.980 0.250 3.031 42.274 500.831 3.130 3.116</td>
</tr>
<tr>
<td>f= 21.242 E= 15.125 cost= 56.152 q= 0.863 tolx= 0.000010 tolf= 0.000015</td>
<td>2.300</td>
<td>x= 61.619 0.973 0.257 3.000 55.124 500.295 5.139 3.000</td>
</tr>
<tr>
<td>f= 24.024 E= 19.125 cost= 59.498 q= 0.861 tolx= 0.000010 tolf= 0.000015</td>
<td>2.380</td>
<td>x= 61.043 0.973 0.257 3.007 55.124 500.999 3.283 3.320</td>
</tr>
<tr>
<td>f= 25.381 E= 19.502 cost= 60.127 q= 0.795 tolx= 0.000010 tolf= 0.000015</td>
<td>2.400</td>
<td>x= 62.862 0.961 0.269 3.021 42.005 500.999 2.284 3.071</td>
</tr>
<tr>
<td>f= 18.302 E= 16.198 cost= 69.412 q= 0.795 tolx= 0.000010 tolf= 0.000015</td>
<td>2.450</td>
<td>x= 68.926 0.965 0.378 3.033 42.000 500.866 3.283 3.320</td>
</tr>
<tr>
<td>f= 18.166 E= 16.985 cost= 67.637 q= 0.791 tolx= 0.000010 tolf= 0.000015</td>
<td>2.500</td>
<td>x= 70.612 0.973 0.257 3.000 55.124 500.999 4.284 3.071</td>
</tr>
</tbody>
</table>
Run with Costfactor = 2.500 cub = 70.165 qlb = 0.846

Initial Values
f = 16.824 E = 16.191 cost = 69.584 q = 0.795 tolx = 0.000010 tolf = 0.000015
A = 50.000 alpha = 0.602 c = 0.002 a = 0.020

Final Values
Total time, E = 16.377 cost = 70.334 q = 0.850 Function evaluations = 5000 Blocks = 2467
x = 99.906 0.963 0.283 3.049 42.083 501.176 2.910 3.050

<table>
<thead>
<tr>
<th>cost factor</th>
<th>cub</th>
<th>E</th>
<th>cost</th>
<th>qfinal</th>
<th>fun. evals</th>
<th>#blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25</td>
<td>35.082</td>
<td>71.155</td>
<td>34.986</td>
<td>0.705</td>
<td>5000</td>
<td>2419</td>
</tr>
<tr>
<td>1.30</td>
<td>36.486</td>
<td>37.667</td>
<td>40.349</td>
<td>0.846</td>
<td>5000</td>
<td>2422</td>
</tr>
<tr>
<td>1.35</td>
<td>37.889</td>
<td>34.544</td>
<td>37.804</td>
<td>0.810</td>
<td>5000</td>
<td>2460</td>
</tr>
<tr>
<td>1.40</td>
<td>39.292</td>
<td>33.915</td>
<td>41.980</td>
<td>0.846</td>
<td>5000</td>
<td>2418</td>
</tr>
<tr>
<td>1.45</td>
<td>40.696</td>
<td>32.065</td>
<td>40.746</td>
<td>0.851</td>
<td>5000</td>
<td>2453</td>
</tr>
<tr>
<td>1.50</td>
<td>42.099</td>
<td>23.240</td>
<td>46.095</td>
<td>0.846</td>
<td>5000</td>
<td>2439</td>
</tr>
<tr>
<td>1.55</td>
<td>43.502</td>
<td>30.662</td>
<td>43.686</td>
<td>0.862</td>
<td>5000</td>
<td>2488</td>
</tr>
<tr>
<td>1.60</td>
<td>44.906</td>
<td>26.708</td>
<td>45.738</td>
<td>0.848</td>
<td>5000</td>
<td>2432</td>
</tr>
<tr>
<td>1.65</td>
<td>46.309</td>
<td>25.501</td>
<td>47.260</td>
<td>0.852</td>
<td>5000</td>
<td>2438</td>
</tr>
<tr>
<td>1.70</td>
<td>47.712</td>
<td>23.766</td>
<td>47.672</td>
<td>0.830</td>
<td>5000</td>
<td>2471</td>
</tr>
<tr>
<td>1.75</td>
<td>49.115</td>
<td>22.057</td>
<td>51.587</td>
<td>0.846</td>
<td>5000</td>
<td>2434</td>
</tr>
<tr>
<td>1.80</td>
<td>50.519</td>
<td>20.791</td>
<td>54.596</td>
<td>0.846</td>
<td>5000</td>
<td>2429</td>
</tr>
<tr>
<td>1.85</td>
<td>51.922</td>
<td>18.993</td>
<td>57.732</td>
<td>0.847</td>
<td>5000</td>
<td>2429</td>
</tr>
<tr>
<td>1.90</td>
<td>53.325</td>
<td>20.388</td>
<td>53.791</td>
<td>0.851</td>
<td>5000</td>
<td>2450</td>
</tr>
<tr>
<td>1.95</td>
<td>54.729</td>
<td>20.457</td>
<td>54.733</td>
<td>0.841</td>
<td>5000</td>
<td>2460</td>
</tr>
<tr>
<td>2.00</td>
<td>56.132</td>
<td>20.579</td>
<td>57.189</td>
<td>0.847</td>
<td>5000</td>
<td>2444</td>
</tr>
<tr>
<td>2.05</td>
<td>57.535</td>
<td>19.423</td>
<td>57.575</td>
<td>0.847</td>
<td>5000</td>
<td>2473</td>
</tr>
<tr>
<td>2.10</td>
<td>58.939</td>
<td>19.642</td>
<td>59.005</td>
<td>0.853</td>
<td>5000</td>
<td>2389</td>
</tr>
<tr>
<td>2.15</td>
<td>60.342</td>
<td>19.033</td>
<td>60.448</td>
<td>0.863</td>
<td>5000</td>
<td>2429</td>
</tr>
<tr>
<td>2.20</td>
<td>61.745</td>
<td>19.042</td>
<td>61.897</td>
<td>0.866</td>
<td>5000</td>
<td>2448</td>
</tr>
<tr>
<td>2.25</td>
<td>63.148</td>
<td>18.342</td>
<td>61.312</td>
<td>0.854</td>
<td>5000</td>
<td>2391</td>
</tr>
<tr>
<td>2.30</td>
<td>64.552</td>
<td>18.121</td>
<td>61.619</td>
<td>0.855</td>
<td>5000</td>
<td>2395</td>
</tr>
<tr>
<td>2.35</td>
<td>65.955</td>
<td>18.063</td>
<td>64.211</td>
<td>0.849</td>
<td>5000</td>
<td>2389</td>
</tr>
<tr>
<td>2.40</td>
<td>67.358</td>
<td>16.936</td>
<td>67.868</td>
<td>0.852</td>
<td>5000</td>
<td>2457</td>
</tr>
<tr>
<td>2.45</td>
<td>68.762</td>
<td>17.283</td>
<td>69.190</td>
<td>0.861</td>
<td>5000</td>
<td>2465</td>
</tr>
<tr>
<td>2.50</td>
<td>70.165</td>
<td>16.377</td>
<td>70.334</td>
<td>0.850</td>
<td>5000</td>
<td>2467</td>
</tr>
</tbody>
</table>
% MCM System of Systems
% SPSE utilizing penalty function MCMFUNPF that was used with MCM42PF.m
% Except that the penalty functions have a gain that increases with k, iteration
% number.
% Filename: \matlab\dissertation\MCMSPSA.m
% This file implements constrained, second-order SPSA, with fixed number of
% iterations.
% Output file initialization
clear
fid=fopen('c:\matlab\dissertation\output 2SPSA.doc','w');
fprintf(fid,'output from execution of MCM2spsaAvgFinal.m with stepped blocktol (0.2,0.1),
averaging of last 5 iterates\n\n');
%==
% MCM Initialization
%==
% x(1)=p11= S1 area coverage rate (nm^2/day)
% x(2)=p12= S1 classification probability
% x(3)=p13= S1 FAR (#/nm^2)
% x(4)=p14= S1 time to classify (min)
% x(5)=p15= S1 navigation accuracy (yards)
% x(6)=p21= S2 Re-acquisition range (yards)
% x(7)=p22= S2 time to prosecute a false target (min)
% x(8)=p23= S2 time to neutralize (min)
pd=0.90; %S1 detection system probability of detection
p=8; % dimension of x
xstar=[10;0.9;2.0;9.17;90.00;75.00;6.60;10.00];
%this is the threshold system. But too far from optimal for SPSA to start with.
x0=[70;0.9;1.0;5.0;45;430;3.5;6]; %pretty near optimal for costfactor around 1.6.
xoptimal=[10.0000 0.9000 2.0000 9.1700 90.0000 75.0000 6.6000 10.0000;...
57.3790 0.9630 2.0000 4.9800 45.1080 417.3910 7.0000 8.7930;...
58.9150 0.9630 2.0000 3.9150 44.8200 417.3740 7.0000 8.5550;...
60.0580 0.9630 2.0000 3.0170 44.4180 417.3710 7.0000 8.3550;...
65.2010 0.9630 2.0000 3.0000 44.6320 417.3700 7.0000 6.2820;...
67.9960 0.9630 2.0000 3.0000 44.0200 417.3780 7.0000 6.2130;...
68.1940 0.9620 1.3420 3.0000 43.3410 417.3740 7.0000 5.6030;...
71.1720 0.9620 1.1810 3.0000 42.9590 417.2730 7.0000 5.0450;...
72.3160 0.9610 1.1260 3.0000 42.4590 417.1950 7.0000 4.5320;...
73.3100 0.9610 1.0800 3.0000 42.0000 417.2540 7.0000 4.0550;...
74.1890 0.9610 1.0400 3.0000 42.0000 417.5190 7.0000 3.6070;...
74.9790 0.9610 1.0040 3.0000 42.0000 417.7570 7.0000 3.1840;...
77.3280 0.9610 0.9010 3.0000 42.0000 418.6230 7.0000 3.0000;...
80.4400 0.9610 0.7650 3.0000 42.0000 420.0900 7.0000 3.0000;...
83.0330 0.9610 0.6510 3.0000 42.0000 421.6270 7.0000 3.0000;...
85.2610 0.9610 0.5520 3.0000 42.0000 423.2010 7.0000 3.0000;...
87.2170 0.9610 0.4630 3.0000 42.0000 424.7900 7.0000 3.0000;...
88.9650 0.9610 0.3830 3.0000 42.0000 426.3990 7.0000 3.0000;...
85.1530 0.9630 0.5700 3.0000 45.8390 417.3890 3.9480 3.0000;...
87.1490 0.9630 0.4810 3.0000 45.6940 417.3950 3.9210 3.0000;...
88.9410 0.9630 0.4000 3.0000 45.5080 417.4120 3.8940 3.0000;...
90.5390 0.9630 0.3260 3.0000 45.2390 417.3800 3.8760 3.0000;...
92.0100 0.9630 0.2570 3.0000 45.5720 417.3600 3.8570 3.0000;...
95.3020 0.9630 0.2500 3.0000 45.5720 417.4610 3.7970 3.0000;...
98.4300 0.9640 0.2500 3.0000 46.3430 417.3980 3.7370 3.0000;...
100.0000 0.9730 0.2500 3.0000 64.0080 412.2020 3.1620 3.0000;]
xoptimal(10,0.00)=[10.00;0.90;2.00;9.17;90.00;75.00;6.60;10.00];
x0=[70;0.9;1.0;5.0;45;430;3.5;6]; %pretty near optimal for costfactor around 1.6.
xoptimal(10,0.00)=[10.00;0.90;2.00;9.17;90.00;75.00;6.60;10.00];
vlb=[10.00;0.90;2.00;9.17;90.00;75.00;6.60;10.00];
vub=[100.00;0.98;2.00;9.17;90.00;75.00;6.60;10.00];
% Compute px1, polynomial fit cost function parameters for x(1)
x1=[10;57;82;94];
y1=[3,4,483,7,655,11,445];
px1=polyfit(x1,y1,3);
% Compute px2, polynomial fit cost function parameters for x(2)
% Compute px1, polynomial fit cost function parameters for x(1)
px1=polyfit(x1,y1,2);
% Compute px2, polynomial fit cost function parameters for x(2)
px2=polyfit(x1,y2,2);
% Compute px3, polynomial fit cost function parameters for x(3)
px3=polyfit(x1,y3,2);
% Compute px4, polynomial fit cost function parameters for x(4)
px4=polyfit(x1,y4,2);
% Compute px5, polynomial fit cost function parameters for x(5)
px5=polyfit(x1,y5,2);
% Compute px6, polynomial fit cost function parameters for x(6)
px6=polyfit(x1,y6,3);
% Compute px7, polynomial fit cost function parameters for x(7)
px7=polyfit(x1,y7,3);
% Compute px8, polynomial fit cost function parameters for x(8)
px8=polyfit(x1,y8,2);
% Compute threshold system cost
cost0=polyval(px1,xstar(1))+polyval(px2,xstar(2))+polyval(px3,xstar(3))+polyval(px4,xstar(4))+polyval(px5,xstar(5))+polyval(px6,xstar(6))+polyval(px7,xstar(7))+polyval(px8,xstar(8));
% Insert costfactor loop
i=0;
for costfactor=1.2:0.05:2.5 %Note problem is infeasible with costfactor<1.25
i=i+1;
for j=1:p %start 2SPSA "near the optimal solution" by perturbing randomly by 20%
 del=2*round(rand)-1; %this is +/-1 random number
 x0(j)=(1+0.20*del)*xoptimal(i,j); % results in either 120% or 80% of optimal.
 if x0(j)<vlb(j);x0(j)=vlb(j);end %make sure x0 is feasible
 if x0(j)>vub(j);x0(j)=vub(j);end
end
fprintf(fid,'Run with Costfactor = ');fprintf(fid,'%10.3f',costfactor);
cub=costfactor*cost0; %system of systems cost constraint
fprintf(fid,' cub=');fprintf(fid,'%10.3f',cub);
qlb=0.846; %quality constraint lower bound
fprintf(fid,' qlb=');fprintf(fid,'%10.3f
',qlb);
sminefield=20; %minefield area (nm^2)
dmine=600; %average distance between mines, (yards)
vtransit=7; %S1 vehicle transit speed (knots)
ttransit=dmine/(2000*vtransit); %transit time during classification (hours)
lambdactf=1.0; %false target density (#/nm^2)
lambdaft=1.0; %false target density (#/nm^2)
% Define parameters for the objective function
p1=pd;
p2=lambda;
p3=lambdaft;
p4=ttransit;
p5=sminefield;
p6=cub;
p7=qlb;
p8=1; %Placeholder---p8 will be iteration number of SPSA algorithm.
%f,g=mcmfunpf2s(x0,p1,p2,p3,p4,p5,p6,p7,p8);
%f fprintf(fid,'Initial Values
');
%f fprintf(fid,'x0=');fprintf(fid,'%10.3f',x0);fprintf(fid,'
');
x=x0;
cost=polyval(px1,x(1))+polyval(px2,x(2))+polyval(px3,x(3))+polyval(px4,x(4))+polyval(px5,x(5))+polyval(px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8));
q=p1*x(2)*exp(-x(5)/(4.481*x(6)));
f1 = (p5/60)*(24*60/x(1)+p2*x(2)*x(4))*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) + p1*p3));
f2 = (p5/60)*p1*x(2)*x(8)*p2*exp(-x(5)/(4.481*x(6)))+p1*(1-exp(-x(5)/(4.481*x(6))))*p1*x(2)*x(7)*p2 + (1-x(2))*x(3)+p1*p3)*x(7));
\[E = f_1 + f_2; \]
\[q = p_1 \times x_0(2) \times \exp(-x_0(5)/(4.481 \times x_0(6))); \]
\[
\text{fprintf(fid,'f=');fprintf(fid,'%10.3f',f);fprintf(fid,' E=');fprintf(fid,'%10.3f',E);
\]
\[
\text{fprintf(fid, 'cost=');fprintf(fid,'%10.3f',cost);fprintf(fid,' q=');fprintf(fid,'%10.3f',q);
\]
% Print out threshold system values for f and constraints, g.
% SPSA Initialization

% SPSA Loop

% GENERATION OF AVERAGED GRADIENT AND HESSIAN (NO AVERAGING IF gh_avg=1)
for m=1:gh_avg
 delta=2*round(rand(p,1))-1;
 thetaplus=thetaH+ck*delta;
 thetaminus=thetaH-ck*delta;
 % check for infeasible vectors
 for j=1:p;

end
if thetaplus(j)<vlb(j);
 thetaplus(j)=vlb(j);
end;
if thetaminus(j)<vlb(j);
 thetaminus(j)=vlb(j);
end;
if thetaplus(j)>vub(j);
 thetaplus(j)=vub(j);
end;
if thetaminus(j)>vub(j);
 thetaminus(j)=vub(j);
end;

end;
[yplus,g]=mcmfunpf2s(thetaplus,p1,p2,p3,p4,p5,p6,p7,p8);
[yminus,g]=mcmfunpf2s(thetaminus,p1,p2,p3,p4,p5,p6,p7,p8);
ghat=(yplus-yminus)./(2*ck*delta);

% GENERATE THE HESSIAN UPDATE

deltatilda=2*round(rand(p,1))-1;
thetaplustilda=thetaplus+ck*deltatilda;
thetaminustilda=thetaminus+ck*deltatilda;

% check for infeasible vectors
for j=1:p;
 if thetaplustilda(j)<vlb(j);
 thetaplustilda(j)=vlb(j);
 end;
 if thetaminustilda(j)<vlb(j);
 thetaminustilda(j)=vlb(j);
 end;
 if thetaplustilda(j)>vub(j);
 thetaplustilda(j)=vub(j);
 end;
 if thetaminustilda(j)>vub(j);
 thetaminustilda(j)=vub(j);
 end;
end;

% LOSS FUNCTION CALLS

[yplustilda,g]=mcmfunpf2s(thetaplustilda,p1,p2,p3,p4,p5,p6,p7,p8);
yminustilda,g]=mcmfunpf2s(thetaminustilda,p1,p2,p3,p4,p5,p6,p7,p8);
ghatplus=(yplustilda-yplus)./(ck*deltatilda);
ghatminus=(yminustilda-yminus)./(ck*deltatilda);

% STATEMENT PROVIDING AN AVERAGE OF SP GRAD. APPROX. PER ITERATION

ghatinput=-(m-1)/m*ghatinput+ghat/m;
deltahat=ghatplus-ghatminus;
for j=1:p
 Hhat(:,j)=deltahat(j)./(2*ck*delta);
end
Hhat=0.5*(Hhat+Hhat');
Hhatinput=-(m-1)/m*Hhatinput+Hhat/m;
end
Hbar=(k-N)/(k-N+1)*Hbar+Hhatinput/(k-N+1);
% THE TIME UPDATE (FORM BELOW USES NAIVE DIRECT HESSIAN INVERSE FORM;
% LARGER-SCALE IMPLEMENTATIONS SHOULD USE MORE NUMERICALLY EFFICIENT APPROACH
% SUCH AS GAUSSIAN ELIMINATION TO AVOID DIRECT COMPUTATION OF HESSIAN INVERSE)

thetaHlag=thetaH;
Hbarbar=sqrtm(Hbar*Hbar)+.000001*eye(p)/k;
update=inv(Hbarbar)*ghatinput;
thetaH=thetaH-ak*update;
% check for infeasible updated estimate
for j=1:p
 if thetaH(j)<vlb(j);
 thetaH(j)=vlb(j);
 end;
 if thetaH(j)>vub(j);
 thetaH(j)=vub(j);
 end;
end;
thetaH;

xkp1=thetaH;x=thetaHlag;
[fkp1,g]=mcmfunpf2s(xkp1,p1,p2,p3,p4,p5,p6,p7,p8);
%Blocking test on f.
if k<200; blocktol=0.2; else blocktol=0.1;end;
if fkp1<f+blocktol;
x=xkp1; % Accept new estimate. Otherwise block the update passively.
f=fkp1;
k1=k1+1; %store last 10 iterates for averaging
if k1 < 6;
 s1(k1) = x(1); s2(k1) = x(2); s3(k1) = x(3); s4(k1) = x(4); s5(k1) = x(5); s6(k1) = x(6); s7(k1) = x(7);
 s8(k1) = x(8);
else
 for j = 1:4
 s1(j) = s1(j+1); s2(j) = s2(j+1); s3(j) = s3(j+1); s4(j) = s4(j+1); s5(j) = s5(j+1);
 s6(j) = s6(j+1); s7(j) = s7(j+1); s8(j) = s8(j+1);
 end
 s1(5) = x(1); s2(5) = x(2); s3(5) = x(3); s4(5) = x(4); s5(5) = x(5); s6(5) = x(6);
 s7(5) = x(7); s8(5) = x(8);
end
else
 blocks = blocks + 1;
 thetaH = thetaHlag;
end;
else
 blocks = blocks + 1;
 thetaH = thetaHlag;
end;
end
% average the last 5 unblocked iterates to get final estimate
if k1 > 5;
 k1 = 5;
end
sum1 = 0; sum2 = 0; sum3 = 0; sum4 = 0; sum5 = 0; sum6 = 0; sum7 = 0; sum8 = 0;
for j = 1:k1
 sum1 = sum1 + s1(j);
 sum2 = sum2 + s2(j);
 sum3 = sum3 + s3(j);
 sum4 = sum4 + s4(j);
 sum5 = sum5 + s5(j);
 sum6 = sum6 + s6(j);
 sum7 = sum7 + s7(j);
 sum8 = sum8 + s8(j);
end
x(1) = sum1/k1; x(2) = sum2/k1; x(3) = sum3/k1; x(4) = sum4/k1; x(5) = sum5/k1;
(x(6)) = sum6/k1; x(7) = sum7/k1; x(8) = sum8/k1;
x is now average over last 5 unblocked iterates, or all iterates if less than 5 are blocked.
[f, g] = mcmfunp2s(x, p1, p2, p3, p4, p5, p6, p7, p8)
fprintf(fid, 'Final Values
');
cost = polyval(px1, x(1)) + polyval(px2, x(2)) + polyval(px3, x(3)) + polyval(px4, x(4)) + polyval(px5, x(5)) + polyval(px6, x(6)) + polyval(px7, x(7)) + polyval(px8, x(8))
q = p1*x(2)*exp(-x(5)/(4.481*x(6)))
f1 = (p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) + p1*p3));
f2 = (p5/60)*(p1*x(2)*x(8)*p2*exp(-x(5)/(4.481*x(6)))+(1-exp(-x(5)/(4.481*x(6))))*(p1*x(2)*x(7)*p2 + (1-x(2))*(x(3)+p1*p3)*x(7));
E = f1 + f2
fprintf(fid, 'Total time, E='); fprintf(fid, '%10.3f', E);
fprintf(fid, ' cost='); fprintf(fid, '%10.3f', cost);
fprintf(fid, ' q='); fprintf(fid, '%10.3f', q);
fprintf(fid, ' Function evaluations= '); fprintf(fid, '%8.0f', 5*k);
fprintf(fid, ' Blocks='); fprintf(fid, '%8.0f
'), blocks);
fprintf(fid, 'x='); fprintf(fid, '%10.3f', x); fprintf(fid, '
');
end

% Plot option 1: Plot System of systems MOE as CAIV
figure
plot(cf, fval, '-*b')
title('System of Systems MOE as Function of Cost')
xlabel('Cost Factor on Threshold System Costs')
ylabel('Time to Complete Mission (hours)')

% Plot option 2: Plot MOPs as CAIV
figure
plot(cf, [z1(i)]*abs((z1(i)-xstar(1))/(vlb(1)-vub(1))), [z2(i)]*abs((z2(i)-xstar(2))/(vlb(2)-vub(2))), [z3(i)]*abs((z3(i)-xstar(3))/(vlb(3)-vub(3))), [z4(i)]*abs((z4(i)-xstar(4))/(vlb(4)-vub(4))), [z5(i)]*abs((z5(i)-xstar(5))/(vlb(5)-vub(5))), [z6(i)]*abs((z6(i)-xstar(6))/(vlb(6)-vub(6))), [z7(i)]*abs((z7(i)-xstar(7))/(vlb(7)-vub(7))), [z8(i)]*abs((z8(i)-xstar(8))/(vlb(8)-vub(8))))
end
plot(cf,z5,'-b*',cf,z6,'-r+',cf,z7,'-go',cf,z8,'-kx')
legend('x5','x6','x7','x8')
title('System of Systems MOPs as Function of Cost')
xlabel('Cost Factor on Threshold System Costs')
ylabel('MOPs 5-8 (percent of technology threshold)')

fprintf(fid,'%10.2f',cf(j));fprintf(fid,'%10.3f',costval(j));
fprintf(fid,'%10.3f',fval(j));fprintf(fid,'%10.3f',costi(j));
fprintf(fid,'%10.3f',qfinal(j));fprintf(fid,'%10.0f',fevals(j));
fprintf(fid,'%10.0f
',nblock(j));
end
status=fclose(fid)

function [f,g] = mcmfunpf2s(x,p1,p2,p3,p4,p5,p6,p7,p8)
A1=50;
A2=1e3;
kmax=600;
k=p8; %k is the iteration number of the SPSA algorithm
if k<kmax
 a1=0.5*(A1)*sin((k-1)*pi/kmax-pi/2)+A1/2+1;
a2=0.5*(A2)*sin((k-1)*pi/kmax-pi/2)+A2/2+1;
else
 a1=A1;
a2=A2;
end
px1=[4.503408803940725e-005, -5.386095666335044e-003, 2.159330101073730e-001,
 1.334245377520354e+000];
px2=[2.834645669231690e+002, -5.076377952756583e+002, 2.274598425197177e+002];
px3=[-2.048380952380911e+000, 9.987333333333214e+000, -1.794223333333214e+000, 2.032238095238094e+001];
px4=[1.159691730856429e-001, -2.175732453433467e+000, 1.520381256718985e+001];
px5=[-2.061825086032983e-004, 2.274598425197177e+002, 2.274598425197177e+002];
px6=[1.154875482450802e+001, -5.166943691869042e-002, -1.813253427530160e+001];
px7=[-2.850358103957624e+001, 3.846213159671302e+000, -1.726423877318326e+001, 3.343408692656030e+001];
px8=[-2.102245277065673e+001, -4.109953768487803e+000, 2.539723920331297e+001];
f1 = (p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) + p1*p3));
f2 = (p5/60)*(p1*x(2)*x(8)*p2*exp(-x(5)/(4.481*x(6)))+(1-exp(-x(5)/(4.481*x(6))))*(p1*x(2)*x(7)) + (1-x(2))*(x(3)+p1*p3)*x(7));
% evaluate cost constraint
q1=+polyval(px1,x(1)) +polyval(px2,x(2))+polyval(px3,x3)+polyval(px4,x(4)) +polyval(px5,x(5)) +polyval(px6,x(6)) +polyval(px7,x(7)) +polyval(px8,x(8));
% evaluate negative of quality constraint
q2 = -p1*x(2)*exp(-x(5)/(4.481*x(6)))+p7;
q1+q2,
f=f1+f2+A1*abs(q1)+A2*abs(q2);
G=f1+f2+A1*abs(q1)+A2*abs(q2);
end
Run with Costfactor = 1.200
cub= 33.679
qlb= 0.846
Initial Values
x0= 10.000 0.900 1.600 9.170 72.000 75.000 5.280 8.000
f= 362.523
E= 88.904
cost= 32.051
q= 0.654
tolx= 0.000010
tolf= 0.000050
A= 10.000
alpha= 0.602
c= 0.005
a= 50.000
Final Values
Total time, E= 52.545
cost= 33.695
q= 0.737
Function evaluations= 5000
Blocks= 978
x= 18.548 0.980 1.739 4.921 61.902 76.895 6.994 7.087
Run with Costfactor = 1.250
cub= 35.082
qlb= 0.846
Initial Values
x0= 68.855 0.980 2.000 5.980 42.000 500.869 5.600 10.000
f= 315.989
E= 42.326
cost= 40.163
q= 0.866
tolx= 0.000010
tolf= 0.000050
A= 10.000
alpha= 0.602
c= 0.005
a= 50.000
Final Values
Total time, E= 40.251
cost= 35.109
q= 0.844
Function evaluations= 5000
Blocks= 980
x= 64.176 0.956 1.999 5.600 43.213 502.870 7.000 9.053
Run with Costfactor = 1.300
cub= 36.486
qlb= 0.846
Initial Values
x0= 47.132 0.900 1.600 3.132 53.784 333.899 7.000 10.000
f= 110.994
E= 34.470
cost= 36.247
q= 0.781
tolx= 0.000010
tolf= 0.000050
A= 10.000
alpha= 0.602
c= 0.005
a= 50.000
Final Values
Total time, E= 39.047
cost= 36.483
q= 0.846
Function evaluations= 5000
Blocks= 917
x= 45.805 0.974 1.585 4.488 52.753 333.880 6.956 9.758
Run with Costfactor = 1.350
cub= 37.889
qlb= 0.846
Initial Values
x0= 72.070 0.900 2.000 3.000 53.302 333.897 5.600 6.684
f= 356.863
E= 26.876
cost= 43.202
q= 0.782
tolx= 0.000010
tolf= 0.000050
A= 10.000
alpha= 0.602
c= 0.005
a= 50.000
Final Values
Total time, E= 32.061
cost= 38.170
q= 0.826
Function evaluations= 5000
Blocks= 990
x= 75.543 0.948 1.911 3.656 48.934 333.321 6.960 9.061
Run with Costfactor = 1.400
cub= 39.292
qlb= 0.846
Initial Values
x0= 78.241 0.980 1.600 3.000 52.009 333.900 5.600 8.594
f= 352.992
E= 28.293
cost= 45.555
q= 0.858
tolx= 0.000010
tolf= 0.000050
A= 10.000
alpha= 0.602
c= 0.005
a= 50.000
Final Values
Total time, E= 37.628
cost= 39.292
q= 0.846
Function evaluations= 5000
Blocks= 676
x= 83.273 0.948 1.911 3.686 52.065 333.152 6.885 9.937
Run with Costfactor = 1.450
cub= 40.696
qlb= 0.846
Initial Values
x0= 81.595 0.900 1.600 3.600 42.000 500.864 5.600 7.538
f= 279.433
E= 28.376
cost= 44.696
q= 0.795
tolx= 0.000010
tolf= 0.000050
A= 10.000
alpha= 0.602
c= 0.005
a= 50.000
Final Values
Total time, E= 30.482
cost= 40.697
q= 0.846
Function evaluations= 5000
Blocks= 603
x= 79.004 0.959 1.956 5.039 42.065 333.152 6.858 9.937
Run with Costfactor = 1.500
cub= 42.099
qlb= 0.846
Initial Values
x0= 81.833 0.980 1.610 3.000 52.009 333.843 7.000 7.456
f= 74.647
E= 26.943
cost= 42.945
q= 0.852
tolx= 0.000010
tolf= 0.000050
A= 10.000
alpha= 0.602
c= 0.005
a= 50.000
Final Values
Total time, E= 27.900
cost= 42.105
q= 0.846
Function evaluations= 5000
Blocks= 569
x= 81.656 0.973 1.522 3.270 52.242 333.536 6.959 7.974
Run with Costfactor = 1.550
cub= 43.502
qlb= 0.846
Initial Values
x0= 83.790 0.980 1.499 3.000 42.000 333.819 5.600 6.724
x = 64.517 0.967 0.700 3.554 42.470 336.011 4.754 3.679

Run with Costfactor = 1.950 cub= 54.729 qlb= 0.846
Initial Values
x0= 66.426 0.900 0.781 3.000 42.000 337.302 7.000 3.000
f= 326.228 E= 20.098 cost= 49.770 q= 0.788 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 20.777 cost= 54.728 Function evaluations= 5000 Blocks= 903
x= 66.356 0.967 0.832 3.343 42.248 337.055 4.621 3.016

Run with Costfactor = 2.000 cub= 56.132 qlb= 0.846
Initial Values
x0= 100.000 0.900 0.662 3.600 50.400 507.841 7.000 3.000
f= 223.718 E= 18.994 cost= 59.152 q= 0.792 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 20.968 cost= 56.134 Function evaluations= 5000 Blocks= 936
x= 99.862 0.961 1.325 3.573 50.507 508.225 6.995 3.479

Run with Costfactor = 2.050 cub= 57.535 qlb= 0.846
Initial Values
x0= 69.774 0.900 0.370 3.000 42.000 509.748 7.000 3.000
f= 232.757 E= 18.790 cost= 54.271 q= 0.795 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 18.779 cost= 57.534 Function evaluations= 5000 Blocks= 958
x= 69.611 0.958 0.256 3.077 42.334 509.696 6.724 3.145

Run with Costfactor = 2.100 cub= 58.939 qlb= 0.846
Initial Values
x0= 100.000 0.900 0.460 3.600 50.400 341.119 5.600 3.000
f= 351.322 E= 18.395 cost= 64.352 q= 0.784 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 22.231 cost= 58.939 Function evaluations= 5000 Blocks= 943
x= 97.030 0.970 0.552 4.772 50.497 343.415 6.535 3.494

Run with Costfactor = 2.150 cub= 60.342 qlb= 0.846
Initial Values
x0= 68.122 0.980 0.684 3.600 55.007 333.911 4.738 3.600
f= 329.078 E= 21.734 cost= 54.278 q= 0.784 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 18.912 cost= 60.346 Function evaluations= 5000 Blocks= 974
x= 67.364 0.975 0.261 3.131 54.230 332.306 5.260 3.006

Run with Costfactor = 2.200 cub= 61.745 qlb= 0.846
Initial Values
x0= 100.000 0.980 0.577 3.000 54.833 500.874 3.137 3.600
f= 243.127 E= 17.628 cost= 65.961 q= 0.861 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 20.120 cost= 63.150 Function evaluations= 5000 Blocks= 812
x= 99.685 0.963 1.137 3.661 54.956 501.232 4.931 3.103

Run with Costfactor = 2.250 cub= 63.148 qlb= 0.846
Initial Values
x0= 100.000 0.900 0.320 3.000 54.610 500.894 3.115 3.000
f= 326.717 E= 16.347 cost= 68.246 q= 0.791 tolx= 0.000010 tolf= 0.000050
A= 10.000 alpha= 0.602 c= 0.005 a= 50.000
Final Values
Total time, E= 18.415 cost= 63.150 Function evaluations= 5000 Blocks= 777
x= 99.864 0.966 1.145 3.136 62.152 509.218 3.395 3.041

Run with Costfactor = 2.300 cub= 64.552 qlb= 0.846
Initial Values
<table>
<thead>
<tr>
<th>Cost factor</th>
<th>E</th>
<th>cost</th>
<th>qfinal</th>
<th>fun. evals</th>
<th>#blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.20</td>
<td>33.679</td>
<td>52.545</td>
<td>33.695</td>
<td>0.737</td>
<td>5000</td>
</tr>
<tr>
<td>1.25</td>
<td>35.082</td>
<td>40.251</td>
<td>35.109</td>
<td>0.844</td>
<td>5000</td>
</tr>
<tr>
<td>1.30</td>
<td>36.486</td>
<td>39.047</td>
<td>36.483</td>
<td>0.846</td>
<td>5000</td>
</tr>
<tr>
<td>1.35</td>
<td>37.889</td>
<td>32.061</td>
<td>38.170</td>
<td>0.826</td>
<td>5000</td>
</tr>
<tr>
<td>1.40</td>
<td>39.292</td>
<td>37.628</td>
<td>39.292</td>
<td>0.846</td>
<td>5000</td>
</tr>
<tr>
<td>1.45</td>
<td>40.696</td>
<td>30.482</td>
<td>40.697</td>
<td>0.846</td>
<td>5000</td>
</tr>
<tr>
<td>1.50</td>
<td>42.099</td>
<td>27.900</td>
<td>42.105</td>
<td>0.846</td>
<td>5000</td>
</tr>
<tr>
<td>1.55</td>
<td>43.502</td>
<td>32.265</td>
<td>43.414</td>
<td>0.851</td>
<td>5000</td>
</tr>
<tr>
<td>1.60</td>
<td>44.906</td>
<td>36.752</td>
<td>44.906</td>
<td>0.846</td>
<td>5000</td>
</tr>
<tr>
<td>1.65</td>
<td>46.309</td>
<td>25.668</td>
<td>46.311</td>
<td>0.846</td>
<td>5000</td>
</tr>
<tr>
<td>1.70</td>
<td>47.712</td>
<td>25.618</td>
<td>47.712</td>
<td>0.846</td>
<td>5000</td>
</tr>
<tr>
<td>1.75</td>
<td>49.115</td>
<td>25.512</td>
<td>49.116</td>
<td>0.846</td>
<td>5000</td>
</tr>
<tr>
<td>1.80</td>
<td>50.519</td>
<td>22.765</td>
<td>50.518</td>
<td>0.846</td>
<td>5000</td>
</tr>
<tr>
<td>1.85</td>
<td>51.922</td>
<td>28.971</td>
<td>51.925</td>
<td>0.846</td>
<td>5000</td>
</tr>
<tr>
<td>1.90</td>
<td>53.325</td>
<td>22.177</td>
<td>53.322</td>
<td>0.846</td>
<td>5000</td>
</tr>
<tr>
<td>1.95</td>
<td>54.729</td>
<td>20.777</td>
<td>54.728</td>
<td>0.846</td>
<td>5000</td>
</tr>
<tr>
<td>2.00</td>
<td>56.132</td>
<td>20.968</td>
<td>56.134</td>
<td>0.846</td>
<td>5000</td>
</tr>
<tr>
<td>2.05</td>
<td>57.535</td>
<td>18.779</td>
<td>57.534</td>
<td>0.846</td>
<td>5000</td>
</tr>
<tr>
<td>2.10</td>
<td>58.939</td>
<td>22.231</td>
<td>58.939</td>
<td>0.846</td>
<td>5000</td>
</tr>
<tr>
<td>2.15</td>
<td>60.342</td>
<td>18.912</td>
<td>60.346</td>
<td>0.846</td>
<td>5000</td>
</tr>
<tr>
<td>2.20</td>
<td>61.745</td>
<td>20.120</td>
<td>61.746</td>
<td>0.846</td>
<td>5000</td>
</tr>
<tr>
<td>2.25</td>
<td>63.148</td>
<td>18.415</td>
<td>63.150</td>
<td>0.846</td>
<td>5000</td>
</tr>
<tr>
<td>2.30</td>
<td>64.552</td>
<td>23.948</td>
<td>64.552</td>
<td>0.846</td>
<td>5000</td>
</tr>
</tbody>
</table>
function [E, cost, q, f, g] = mcm_sim(x, m0, lambda, sminefield, pd, lambdaft, dmine, vtransit, cub, qlb, k)

% parameters
p11=x(1); p12=x(2); p13=x(3); p14=x(4); p15=x(5); p21=x(6); p22=x(7); p23=x(8);
Tdetect=Block1(m0, lambda, p11);
Dfa=Block2(sminefield, p13);
Dft=Block3(pd, lambdaft, sminefield);
Dm=Block4(pd, m0);
[Tclass, Cm, Cf]=Block578(Dm, Dfa, Dft, p12, p14, dmine, vtransit);
E=Block6(Tdetect, Tclass);
PL=Block9(p15, p21);
[E2, Nreacq, Nmiss]=Block10(PL, Cm, Cf, p23, p22);
q=Block11(Nreacq, m0);

% evaluate negative of quality constraint
g1=cost-cub;
g2 = -q+qlb;
% E,g1,g2,f
f=E+A1*abs(g1)+A2*abs(g2);
%f=f1+f2+A1*g1*g1+A2*g2*g2;
g=[];

function Tdetect=Block1(m0, lambda, p11)
Tdetect=24*m0/(lambda*p11);
function Dfa=Block2(sminefield, p13)
area=round(sminefield);
Dfa=success(p13, area);
function Dft=Block3(pd, lambdaft, sminefield)
F0=round(lambdaft*sminefield);
Dft=success(pd, F0);
function Dm=Block4(pd, m0)
Dm=success(pd, m0);
function [Tclass, Cm, Cf]=Block578(Dm, Dfa, Dft, p12, p14, dmine, vtransit)
% Number of classifications of detected mines
Cm=success(p12, Dm);
% Number of incorrect classifications of detected mines
Cf=Dm-Cm;
% Total time to classify
Tc=p14;
Tcf=2*Tc*dmine/(vtransit*2000);
Tclass=(1/60)*((Tc*Cm+Cf*Tcf+Tcf*(Dfa+Dft)));
function E=Block6(Tdetect, Tclass)
E=Tdetect+Tclass;
function PL=Block9(p15, p21)
PL=exp(-p15/(4.481*p21));

APPENDIX F
MCM SYSTEM OF SYSTEMS MATLAB® SIMULATION CODE AND RESULTS

function [E, cost, q, f, g] = mcm_sim(x, m0, lambda, sminefield, pd, lambdaft, dmine, vtransit, cub, qlb, k)

p11=x(1); p12=x(2); p13=x(3); p14=x(4); p15=x(5); p21=x(6); p22=x(7); p23=x(8);
Tdetect=Block1(m0, lambda, p11);
Dfa=Block2(sminefield, p13);
Dft=Block3(pd, lambdaft, sminefield);
Dm=Block4(pd, m0);
[Tclass, Cm, Cf]=Block578(Dm, Dfa, Dft, p12, p14, dmine, vtransit);
E=Block6(Tdetect, Tclass);
PL=Block9(p15, p21);
[E2, Nreacq, Nmiss]=Block10(PL, Cm, Cf, p23, p22);
E=Block12(E1, E2);
q=Block11(Nreacq, m0);

% evaluate negative of quality constraint
% g1=cost-cub;
g1=cost-cub;
g2 = -q+qlb;
% E,g1,g2,f
f=E+A1*abs(g1)+A2*abs(g2);
%f=f1+f2+A1*g1*g1+A2*g2*g2;
g=[];

function Tdetect=Block1(m0, lambda, p11)
Tdetect=24*m0/(lambda*p11);
function Dfa=Block2(sminefield, p13)
area=round(sminefield);
Dfa=success(p13, area);
function Dft=Block3(pd, lambdaft, sminefield)
F0=round(lambdaft*sminefield);
Dft=success(pd, F0);
function Dm=Block4(pd, m0)
Dm=success(pd, m0);
function [Tclass, Cm, Cf]=Block578(Dm, Dfa, Dft, p12, p14, dmine, vtransit)
% Number of classifications of detected mines
Cm=success(p12, Dm);
% Number of incorrect classifications of detected mines
Cf=Dm-Cm;
% Total time to classify
Tc=p14;
Tcf=2*Tc*dmine/(vtransit*2000);
Tclass=(1/60)*((Tc*Cm+Cf*Tcf+Tcf*(Dfa+Dft)));
function E=Block6(Tdetect, Tclass)
E=Tdetect+Tclass;
function PL=Block9(p15, p21)
PL=exp(-p15/(4.481*p21));
Nmiss = Cm - Nreacq;
E2 = (1/60)*(Nreacq*p23 + Nmiss*p22 + Cf*p22);

function q = Block11(Nreacq, m0)
q = Nreacq / m0;
end

function E = Block12(E1, E2)
E = E1 + E2;
end

2SPSA Simulation Optimization Results with Perfect Initial Conditions:

output from execution of MCM2spsaAvgsim.m with blocktol=5, averages last 3 iterates, gains A1=50, A2=1000 an initial x=optimum
09/21/97 11:37 AM 2SPSAsim 1000 x0=optimal.doc

vlb =
10.000 0.900 0.250 3.000 75.000 1.000 3.000
vub =
100.000 0.980 2.000 9.170 700.000 7.000 10.000

Run with Costfactor = 1.250, cub = 35.082, qlb = 0.846
Initial Values
x0= 57.379 0.963 2.000 4.983 45.108 7.000 8.793
f= 68.400 E= 34.290 cost= 35.085 q= 0.880 Alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 38.766 cost= 35.076 q= 0.810 Function evaluations= 5000 Blocks= 885
x= 56.037 0.941 1.352 6.954 416.403 6.750 9.367
Average total time, Eavg= 40.212 E sigma= 0.969 Average q= 0.827 q sigma= 0.042

Run with Costfactor = 1.300, cub = 36.486, qlb = 0.846
Initial Values
x0= 58.915 0.963 2.000 3.915 44.820 7.000 8.555
f= 65.324 E= 28.959 cost= 36.493 q= 0.810 Alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 34.542 cost= 36.406 q= 0.920 Function evaluations= 5000 Blocks= 862
x= 58.836 0.967 1.988 5.253 418.608 6.759 8.459
Average total time, Eavg= 33.629 E sigma= 0.706 Average q= 0.844 q sigma= 0.036

Run with Costfactor = 1.350, cub = 37.889, qlb = 0.846
Initial Values
x0= 60.058 0.963 2.000 3.017 44.418 7.000 8.355
f= 31.878 E= 27.108 cost= 37.904 q= 0.850 Alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 28.537 cost= 37.860 q= 0.830 Function evaluations= 5000 Blocks= 923
x= 59.196 0.954 1.683 3.307 417.321 6.984 8.331
Average total time, Eavg= 27.964 E sigma= 0.578 Average q= 0.833 q sigma= 0.034

Run with Costfactor = 1.400, cub = 39.292, qlb = 0.846
Initial Values
x0= 65.201 0.963 2.000 3.000 44.632 7.000 7.162
f= 80.883 E= 24.304 cost= 39.304 q= 0.790 Alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 28.144 cost= 39.406 q= 0.750 Function evaluations= 5000 Blocks= 938
x= 63.202 0.901 1.899 4.643 42.301 417.354 6.584 6.025
Average total time, Eavg= 28.355 E sigma= 0.579 Average q= 0.792 q sigma= 0.040

Run with Costfactor = 1.450, cub = 40.696, qlb = 0.846
Initial Values
x0= 67.996 0.963 2.000 3.000 44.802 417.387 7.000 6.282
f = 49.092 E = 22.714 cost = 40.703 q = 0.820
alpha = 0.602 c = 0.020 a = 10.000

Final Values
Total time, E = 23.039 cost = 40.703 q = 0.830
x = 69.049 0.920 1.984 3.346 46.114 417.417 6.986 5.420
Average total time, Eavg = 23.023 Esigma = 0.434
Average q = 0.830 qsigma = 0.037

Run with Costfactor = 1.500 cub = 42.099 qlb = 0.846
Initial Values
x0 = 68.194 0.962 1.342 3.000 43.341 417.304 7.000 6.213
f = 27.022 E = 22.943 cost = 42.097 q = 0.850
alpha = 0.602 c = 0.020 a = 10.000
Final Values
Total time, E = 22.659 cost = 42.113 q = 0.870
x = 70.984 0.979 1.998 3.001 42.885 418.882 7.000 6.080
Average total time, Eavg = 22.591 Esigma = 0.440
Average q = 0.858 qsigma = 0.037

Run with Costfactor = 1.550 cub = 43.502 qlb = 0.846
Initial Values
x0 = 69.825 0.962 1.249 3.000 42.959 417.274 7.000 5.603
f = 26.120 E = 21.874 cost = 43.507 q = 0.850
alpha = 0.602 c = 0.020 a = 10.000
Final Values
Total time, E = 23.389 cost = 43.552 q = 0.900
x = 71.513 0.977 1.948 3.058 42.124 416.226 6.677 6.115
Average total time, Eavg = 22.801 Esigma = 0.437
Average q = 0.861 qsigma = 0.031

Run with Costfactor = 1.600 cub = 44.906 qlb = 0.846
Initial Values
x0 = 71.172 0.962 1.181 3.000 42.596 417.237 7.000 5.045
f = 36.120 E = 21.518 cost = 44.918 q = 0.860
alpha = 0.602 c = 0.020 a = 10.000
Final Values
Total time, E = 22.408 cost = 44.876 q = 0.740
x = 72.903 0.979 1.594 3.390 42.428 418.895 6.682 5.651
Average total time, Eavg = 21.856 Esigma = 0.461
Average q = 0.859 qsigma = 0.034

Run with Costfactor = 1.650 cub = 46.309 qlb = 0.846
Initial Values
x0 = 72.316 0.961 1.126 3.000 42.245 417.195 7.000 4.532
f = 25.770 E = 20.841 cost = 46.290 q = 0.850
alpha = 0.602 c = 0.020 a = 10.000
Final Values
Total time, E = 22.202 cost = 46.300 q = 0.740
x = 72.953 0.970 1.841 3.043 42.428 417.224 6.831 4.992
Average total time, Eavg = 21.856 Esigma = 0.461
Average q = 0.823 qsigma = 0.043

Run with Costfactor = 1.700 cub = 47.712 qlb = 0.846
Initial Values
x0 = 73.310 0.961 1.080 3.000 42.000 417.254 7.000 4.055
f = 36.061 E = 19.319 cost = 47.697 q = 0.830
alpha = 0.602 c = 0.020 a = 10.000
Final Values
Total time, E = 19.982 cost = 47.617 q = 0.840
x = 73.339 0.950 1.841 3.043 42.795 418.061 6.831 3.585
Average total time, Eavg = 19.105 Esigma = 0.367
Average q = 0.837 qsigma = 0.037

Run with Costfactor = 1.750 cub = 49.115 qlb = 0.846
Initial Values
x0 = 74.189 0.961 1.040 3.000 42.000 417.519 7.000 3.607
f = 44.120 E = 19.431 cost = 49.102 q = 0.870
alpha = 0.602 c = 0.020 a = 10.000
Final Values
Total time, E = 19.982 cost = 49.161 q = 0.860
x = 74.626 0.977 1.210 3.263 42.528 417.385 6.799 3.884
Average total time, Eavg = 19.851 Esigma = 0.423
Average q = 0.855 qsigma = 0.034
Run with Costfactor = 1.800 cub= 50.519 qlb= 0.846
Initial Values
x0= 74.979 0.961 1.004 3.000 42.000 417.757 7.000 3.184
f= 43.092 E= 18.569 cost= 50.508 q= 0.870 a= 10.000
Final Values
Total time, E= 18.429 cost= 50.667 q= 0.820 Function evaluations= 5000 Blocks= 893
x= 77.439 0.940 1.715 3.049 42.450 417.358 6.103 3.453
Average total time, Eavg= 18.746 Esigma= 0.376 Average q= 0.832 qsigma= 0.037

Run with Costfactor = 1.850 cub= 51.922 qlb= 0.846
Initial Values
x0= 77.328 0.961 0.901 3.000 42.000 418.623 7.000 3.000
f= 43.706 E= 17.160 cost= 51.911 q= 0.820 a= 10.000
Final Values
Total time, E= 18.529 cost= 51.909 q= 0.890 Function evaluations= 5000 Blocks= 888
x= 77.849 0.964 1.635 3.208 42.881 418.669 6.479 3.029
Average total time, Eavg= 18.332 Esigma= 0.343 Average q= 0.852 qsigma= 0.033

Run with Costfactor = 1.900 cub= 53.325 qlb= 0.846
Initial Values
x0= 80.440 0.961 0.765 3.000 42.000 420.090 7.000 3.000
f= 21.814 E= 17.393 cost= 53.317 q= 0.850 a= 10.000
Final Values
Total time, E= 18.850 cost= 53.308 q= 0.810 Function evaluations= 5000 Blocks= 904
x= 80.105 0.940 0.584 3.458 42.623 419.849 6.733 3.438
Average total time, Eavg= 18.893 Esigma= 0.410 Average q= 0.826 qsigma= 0.036

Run with Costfactor = 1.950 cub= 54.729 qlb= 0.846
Initial Values
x0= 83.033 0.961 0.651 3.000 42.000 421.627 7.000 3.000
f= 43.357 E= 17.078 cost= 54.723 q= 0.820 a= 10.000
Final Values
Total time, E= 17.601 cost= 54.759 q= 0.820 Function evaluations= 5000 Blocks= 893
x= 83.277 0.966 0.612 3.110 42.588 421.281 6.968 3.190
Average total time, Eavg= 17.482 Esigma= 0.360 Average q= 0.859 qsigma= 0.035

Run with Costfactor = 2.000 cub= 56.132 qlb= 0.846
Initial Values
x0= 85.261 0.961 0.552 3.000 42.000 423.201 7.000 3.000
f= 30.685 E= 16.451 cost= 56.127 q= 0.860 a= 10.000
Final Values
Total time, E= 17.278 cost= 56.211 q= 0.820 Function evaluations= 5000 Blocks= 908
x= 84.923 0.971 0.493 3.244 42.517 423.708 6.999 3.142
Average total time, Eavg= 17.389 Esigma= 0.403 Average q= 0.855 qsigma= 0.031

Run with Costfactor = 2.050 cub= 57.535 qlb= 0.846
Initial Values
x0= 87.217 0.961 0.463 3.000 42.000 424.790 7.000 3.000
f= 30.414 E= 16.284 cost= 57.538 q= 0.860 a= 10.000
Final Values
Total time, E= 16.536 cost= 57.356 q= 0.880 Function evaluations= 5000 Blocks= 918
x= 87.659 0.978 0.568 3.188 42.387 424.798 6.877 3.144
Average total time, Eavg= 17.143 Esigma= 0.398 Average q= 0.862 qsigma= 0.034

Run with Costfactor = 2.100 cub= 58.939 qlb= 0.846
Initial Values
x0= 88.965 0.961 0.383 3.000 42.000 426.399 7.000 3.000
f= 42.309 E= 16.183 cost= 58.941 q= 0.820 a= 10.000
Final Values
Total time, E= 16.663 cost= 59.030 q= 0.820 Function evaluations= 5000 Blocks= 941
x= 88.815 0.977 0.512 3.255 42.271 426.596 6.651 3.154
Average total time, Eavg= 17.132 Esigma= 0.405 Average q= 0.861 qsigma= 0.032

Run with Costfactor = 2.150 cub= 60.342 qlb= 0.846
Initial Values
x0= 85.153 0.963 0.570 3.000 45.839 417.389 3.948 3.000
f= 30.843 E= 16.304 cost= 60.331 q= 0.860 A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 17.923 cost= 60.331 q= 0.860
Average total time, Eavg= 17.816 Esigma= 0.403 Average q= 0.859 qsigma= 0.035

Run with Costfactor = 2.200 cub= 61.745 qlb= 0.846
Initial Values
x0= 87.149 0.963 0.481 3.000 45.694 417.395 3.921 3.000
f= 32.601 E= 16.065 cost= 61.734 q= 0.830 A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 16.071 cost= 61.734 q= 0.830
Average total time, Eavg= 16.563 Esigma= 0.376 Average q= 0.849 qsigma= 0.034

Run with Costfactor = 2.250 cub= 63.148 qlb= 0.846
Initial Values
x0= 88.941 0.963 0.400 3.000 45.508 417.412 3.894 3.000
f= 20.122 E= 16.036 cost= 63.147 q= 0.850 A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 15.952 cost= 63.147 q= 0.850
Average total time, Eavg= 16.444 Esigma= 0.367 Average q= 0.795 qsigma= 0.035

Run with Costfactor = 2.300 cub= 64.552 qlb= 0.846
Initial Values
x0= 90.539 0.963 0.326 3.000 45.239 417.380 3.876 3.000
f= 40.080 E= 15.853 cost= 64.547 q= 0.810 A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 15.782 cost= 64.547 q= 0.810
Average total time, Eavg= 15.838 Esigma= 0.287 Average q= 0.859 qsigma= 0.032

Run with Costfactor = 2.350 cub= 65.955 qlb= 0.846
Initial Values
x0= 92.010 0.963 0.257 3.000 44.947 417.360 3.857 3.000
f= 40.045 E= 15.895 cost= 65.958 q= 0.870 A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 17.042 cost= 65.958 q= 0.870
Average total time, Eavg= 17.359 Esigma= 0.397 Average q= 0.865 qsigma= 0.036

Run with Costfactor = 2.400 cub= 67.358 qlb= 0.846
Initial Values
x0= 95.302 0.963 0.250 3.000 45.572 417.461 3.797 3.000
f= 21.907 E= 15.559 cost= 67.351 q= 0.840 A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 15.782 cost= 67.351 q= 0.840
Average total time, Eavg= 17.359 Esigma= 0.397 Average q= 0.865 qsigma= 0.036

Run with Costfactor = 2.450 cub= 68.762 qlb= 0.846
Initial Values
x0= 98.430 0.964 0.250 3.000 46.343 417.398 3.737 3.000
f= 70.632 E= 15.828 cost= 68.778 q= 0.900 A= 50.000 alpha= 0.602 c= 0.020 a= 10.000

Final Values

Total time, E= 16.469 cost= 68.433 q= 0.850 Function evaluations= 5000 Blocks= 944

x= 98.813 0.980 0.251 3.004 46.567 417.829 4.772 3.394

Average total time, Eavg= 15.802 Esigma= 0.388 Average q= 0.858 qsigma= 0.040

Run with Costfactor = 2.500 cub= 70.165 qlb= 0.846

Initial Values

x0= 100.000 0.973 0.250 3.000 64.008 412.202 3.162 3.000

f= 69.488 E= 15.144 cost= 70.158 q= 0.900 A= 50.000 alpha= 0.602 c= 0.020 a= 10.000

Final Values

Total time, E= 30.983 cost= 70.135 q= 0.900 Function evaluations= 5000 Blocks= 925

x= 96.936 0.980 0.895 8.545 61.870 414.896 1.010 3.005

Average total time, Eavg= 31.005 Esigma= 0.815 Average q= 0.852 qsigma= 0.038

<table>
<thead>
<tr>
<th>cost factor</th>
<th>cub</th>
<th>Avg E</th>
<th>cost</th>
<th>Avg q final</th>
<th>fun. evals</th>
<th>#blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25</td>
<td>35</td>
<td>35.076</td>
<td>0.827</td>
<td>5000</td>
<td>885</td>
<td></td>
</tr>
<tr>
<td>1.30</td>
<td>36</td>
<td>36.406</td>
<td>0.844</td>
<td>5000</td>
<td>862</td>
<td></td>
</tr>
<tr>
<td>1.35</td>
<td>37</td>
<td>37.860</td>
<td>0.833</td>
<td>5000</td>
<td>923</td>
<td></td>
</tr>
<tr>
<td>1.40</td>
<td>39</td>
<td>39.406</td>
<td>0.792</td>
<td>5000</td>
<td>938</td>
<td></td>
</tr>
<tr>
<td>1.45</td>
<td>40</td>
<td>40.715</td>
<td>0.816</td>
<td>5000</td>
<td>907</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>42</td>
<td>42.113</td>
<td>0.858</td>
<td>5000</td>
<td>934</td>
<td></td>
</tr>
<tr>
<td>1.55</td>
<td>43</td>
<td>43.552</td>
<td>0.861</td>
<td>5000</td>
<td>886</td>
<td></td>
</tr>
<tr>
<td>1.60</td>
<td>44</td>
<td>44.876</td>
<td>0.859</td>
<td>5000</td>
<td>909</td>
<td></td>
</tr>
<tr>
<td>1.65</td>
<td>46</td>
<td>46.300</td>
<td>0.823</td>
<td>5000</td>
<td>856</td>
<td></td>
</tr>
<tr>
<td>1.70</td>
<td>47</td>
<td>47.617</td>
<td>0.837</td>
<td>5000</td>
<td>910</td>
<td></td>
</tr>
<tr>
<td>1.75</td>
<td>49</td>
<td>49.161</td>
<td>0.855</td>
<td>5000</td>
<td>856</td>
<td></td>
</tr>
<tr>
<td>1.80</td>
<td>50</td>
<td>50.667</td>
<td>0.832</td>
<td>5000</td>
<td>893</td>
<td></td>
</tr>
<tr>
<td>1.85</td>
<td>51</td>
<td>51.909</td>
<td>0.852</td>
<td>5000</td>
<td>888</td>
<td></td>
</tr>
<tr>
<td>1.90</td>
<td>53</td>
<td>53.308</td>
<td>0.826</td>
<td>5000</td>
<td>904</td>
<td></td>
</tr>
<tr>
<td>1.95</td>
<td>54</td>
<td>54.759</td>
<td>0.859</td>
<td>5000</td>
<td>893</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>56</td>
<td>56.211</td>
<td>0.855</td>
<td>5000</td>
<td>908</td>
<td></td>
</tr>
<tr>
<td>2.05</td>
<td>57</td>
<td>57.356</td>
<td>0.862</td>
<td>5000</td>
<td>918</td>
<td></td>
</tr>
<tr>
<td>2.10</td>
<td>58</td>
<td>59.030</td>
<td>0.861</td>
<td>5000</td>
<td>941</td>
<td></td>
</tr>
<tr>
<td>2.15</td>
<td>60</td>
<td>60.532</td>
<td>0.859</td>
<td>5000</td>
<td>870</td>
<td></td>
</tr>
<tr>
<td>2.20</td>
<td>61</td>
<td>61.688</td>
<td>0.849</td>
<td>5000</td>
<td>922</td>
<td></td>
</tr>
<tr>
<td>2.25</td>
<td>63</td>
<td>62.948</td>
<td>0.857</td>
<td>5000</td>
<td>924</td>
<td></td>
</tr>
<tr>
<td>2.30</td>
<td>64</td>
<td>64.590</td>
<td>0.795</td>
<td>5000</td>
<td>940</td>
<td></td>
</tr>
<tr>
<td>2.35</td>
<td>65</td>
<td>65.224</td>
<td>0.865</td>
<td>5000</td>
<td>938</td>
<td></td>
</tr>
<tr>
<td>2.40</td>
<td>67</td>
<td>67.321</td>
<td>0.859</td>
<td>5000</td>
<td>932</td>
<td></td>
</tr>
<tr>
<td>2.45</td>
<td>68</td>
<td>68.433</td>
<td>0.858</td>
<td>5000</td>
<td>944</td>
<td></td>
</tr>
<tr>
<td>2.50</td>
<td>70</td>
<td>70.135</td>
<td>0.852</td>
<td>5000</td>
<td>925</td>
<td></td>
</tr>
</tbody>
</table>
2SPSA Simulation Composite 2000-Iteration Optimization Results:

COMPOSITE 2000 ITERATION RUN RESULTS:
File “composite Ramp 2000 output 10-8.doc”

output from execution of MCM2spsaAvgsim.m with blocktol=3/1, averages last 3 iterates, gains A1=50,A2=1000, ramp for x0 proportional to costfactor

vlb=
10.000 0.900 0.250 3.000 42.000 75.000 1.000 3.000
vub=
100.000 0.980 2.000 9.170 90.000 700.000 7.000 10.000

Run with Costfactor = 1.250 cub= 35.082 qlb= 0.846
Initial Values
x0= 25.000 0.913 1.708 8.142 82.000 179.167 6.000 8.833
f= 69.228 E= 53.049 cost= 34.223 q= 0.710
A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 38.113 cost= 34.223 q= 0.840
Function evaluations= 10000 Blocks= 1775
x= 29.280 0.962 1.916 82.457 177.871 6.805 8.020
Average total time, Eavg= 37.379 Esigma= 0.664
Average q= 0.784 qsigma= 0.047
Run with Costfactor = 1.300 cub= 36.486 qlb= 0.846
Initial Values
x0= 28.000 0.916 1.650 7.936 80.400 200.000 5.800 8.600
f= 67.004 E= 49.470 cost= 35.174 q= 0.710
A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 34.616 cost= 36.595 q= 0.810
Function evaluations= 10000 Blocks= 1700
x= 39.126 0.940 1.418 3.152 82.181 204.082 6.949 9.847
Average total time, Eavg= 33.591 Esigma= 0.691
Average q= 0.774 qsigma= 0.042
Run with Costfactor = 1.350 cub= 37.889 qlb= 0.846
Initial Values
x0= 31.000 0.919 1.592 7.730 78.800 220.833 5.600 8.367
f= 61.319 E= 48.010 cost= 35.986 q= 0.770
A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 31.892 cost= 37.862 q= 0.840
Function evaluations= 10000 Blocks= 1627
x= 50.156 0.980 1.786 3.381 89.427 226.955 6.835 9.838
Average total time, Eavg= 31.579 Esigma= 0.726
Average q= 0.806 qsigma= 0.041
Run with Costfactor = 1.400 cub= 39.292 qlb= 0.846
Initial Values
x0= 34.000 0.921 1.533 7.525 77.200 241.667 5.400 8.133
f= 58.045 E= 45.637 cost= 36.690 q= 0.800
A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 35.251 cost= 40.624 q= 0.870
Function evaluations= 10000 Blocks= 1532
x= 43.661 0.968 1.517 3.078 80.725 261.692 3.505 7.672
Average total time, Eavg= 34.528 Esigma= 0.657
Average q= 0.814 qsigma= 0.038
Run with Costfactor = 1.500 cub= 40.696 qlb= 0.846
Initial Values
x0= 37.000 0.924 1.475 7.319 75.600 262.500 5.200 7.900
f= 59.454 E= 42.716 cost= 37.317 q= 0.870
A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 26.304 cost= 42.099 q= 0.890
Function evaluations= 10000 Blocks= 1461
x= 46.215 0.969 1.313 3.068 62.550 300.401 6.533 7.626
Average total time, Eavg= 25.557 Esigma= 0.554
Average q= 0.832 qsigma= 0.038
Run with Costfactor = 1.600 cub= 44.906 qlb= 0.846
Initial Values
x0= 40.000 0.927 1.417 7.113 74.000 283.333 5.000 7.667
f= 59.358 E= 41.156 cost= 37.898 q= 0.790
A= 50.000 alpha= 0.602 c= 0.020 a= 10.000
Final Values
Total time, E= 28.408 cost= 43.655 q= 0.790
Function evaluations= 10000 Blocks= 1526
x= 38.211 0.971 1.950 3.010 74.526 314.854 3.284 6.915
Average total time, Eavg= 29.256 Esigma= 0.447
Average q= 0.834 qsigma= 0.036
Run with Costfactor = 1.660 cub= 44.906 qlb= 0.846
Initial Values
x0= 46.000 0.932 1.300 6.702 70.800 325.000 4.600 7.200
193
<table>
<thead>
<tr>
<th>Run with Costfactor</th>
<th>2.000</th>
<th>cub= 56.132</th>
<th>qlb= 0.846</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Values</td>
<td>x= 92.837</td>
<td>0.961</td>
<td>0.959</td>
</tr>
<tr>
<td>Total time, Eavg=</td>
<td>18.194</td>
<td>Esigma= 0.418</td>
<td>Average q= 0.838</td>
</tr>
<tr>
<td>Final Values</td>
<td>x= 61.926</td>
<td>0.976</td>
<td>1.539</td>
</tr>
<tr>
<td>Average total time, Eavg=</td>
<td>20.861</td>
<td>Esigma= 0.363</td>
<td>Average q= 0.847</td>
</tr>
<tr>
<td>Run with Costfactor</td>
<td>2.050</td>
<td>cub= 57.535</td>
<td>qlb= 0.846</td>
</tr>
<tr>
<td>Initial Values</td>
<td>x= 73.000</td>
<td>0.956</td>
<td>0.775</td>
</tr>
<tr>
<td>Total time, Eavg=</td>
<td>20.360</td>
<td>Esigma= 0.418</td>
<td>Average q= 0.838</td>
</tr>
<tr>
<td>Final Values</td>
<td>x= 77.539</td>
<td>0.959</td>
<td>0.673</td>
</tr>
<tr>
<td>Average total time, Eavg=</td>
<td>20.861</td>
<td>Esigma= 0.363</td>
<td>Average q= 0.847</td>
</tr>
<tr>
<td>Run with Costfactor</td>
<td>2.100</td>
<td>cub= 58.939</td>
<td>qlb= 0.846</td>
</tr>
<tr>
<td>Initial Values</td>
<td>x= 76.000</td>
<td>0.959</td>
<td>0.658</td>
</tr>
<tr>
<td>Total time, Eavg=</td>
<td>17.805</td>
<td>Esigma= 0.351</td>
<td>Average q= 0.851</td>
</tr>
<tr>
<td>Final Values</td>
<td>x= 79.608</td>
<td>0.976</td>
<td>1.067</td>
</tr>
<tr>
<td>Average total time, Eavg=</td>
<td>17.805</td>
<td>Esigma= 0.351</td>
<td>Average q= 0.851</td>
</tr>
<tr>
<td>Run with Costfactor</td>
<td>2.200</td>
<td>cub= 61.745</td>
<td>qlb= 0.846</td>
</tr>
<tr>
<td>Initial Values</td>
<td>x= 82.000</td>
<td>0.964</td>
<td>0.600</td>
</tr>
<tr>
<td>Total time, Eavg=</td>
<td>16.730</td>
<td>Esigma= 0.313</td>
<td>Average q= 0.863</td>
</tr>
<tr>
<td>Final Values</td>
<td>x= 79.608</td>
<td>0.976</td>
<td>1.067</td>
</tr>
<tr>
<td>Average total time, Eavg=</td>
<td>17.805</td>
<td>Esigma= 0.351</td>
<td>Average q= 0.851</td>
</tr>
<tr>
<td>Run with Costfactor</td>
<td>2.250</td>
<td>cub= 63.148</td>
<td>qlb= 0.846</td>
</tr>
<tr>
<td>Initial Values</td>
<td>x= 85.000</td>
<td>0.967</td>
<td>0.542</td>
</tr>
<tr>
<td>Total time, Eavg=</td>
<td>16.730</td>
<td>Esigma= 0.313</td>
<td>Average q= 0.863</td>
</tr>
<tr>
<td>Final Values</td>
<td>x= 86.327</td>
<td>0.945</td>
<td>0.737</td>
</tr>
<tr>
<td>Average total time, Eavg=</td>
<td>16.730</td>
<td>Esigma= 0.313</td>
<td>Average q= 0.863</td>
</tr>
<tr>
<td>Run with Costfactor</td>
<td>2.300</td>
<td>cub= 64.552</td>
<td>qlb= 0.846</td>
</tr>
<tr>
<td>Initial Values</td>
<td>x= 88.000</td>
<td>0.969</td>
<td>0.483</td>
</tr>
<tr>
<td>Total time, Eavg=</td>
<td>16.730</td>
<td>Esigma= 0.313</td>
<td>Average q= 0.863</td>
</tr>
<tr>
<td>Final Values</td>
<td>x= 94.376</td>
<td>0.976</td>
<td>1.942</td>
</tr>
<tr>
<td>Average total time, Eavg=</td>
<td>17.878</td>
<td>Esigma= 0.310</td>
<td>Average q= 0.858</td>
</tr>
<tr>
<td>Run with Costfactor</td>
<td>2.350</td>
<td>cub= 65.955</td>
<td>qlb= 0.846</td>
</tr>
</tbody>
</table>
Initial Values

\[
x_0 = \begin{bmatrix} 91.000 & 0.972 & 0.425 & 3.617 & 46.800 & 637.500 & 1.600 & 3.700 \\
& 18.085 & 71.499 & 0.840 & 50.000 & 0.602 & 0.202 & 10.000 \\
\end{bmatrix}
\]

Final Values

\[
E = 16.573 \quad cost = 65.923 \quad q = 0.890 \quad \text{Function evaluations} = 10000 \quad \text{Blocks} = 1528
\]

Average total time, Eavg = 16.786 \quad Esigma = 0.347 \quad \text{Average q} = 0.858 \quad qsigma = 0.035

Run with Costfactor = 2.400 \quad \text{cub} = 67.358 \quad qlb = 0.846

Initial Values

\[
x_0 = \begin{bmatrix} 94.000 & 0.975 & 0.367 & 3.411 & 45.200 & 658.333 & 1.400 & 3.467 \\
& 16.746 & 76.670 & 0.830 & 50.000 & 0.602 & 0.202 & 10.000 \\
\end{bmatrix}
\]

Final Values

\[
E = 17.330 \quad cost = 67.238 \quad q = 0.820 \quad \text{Function evaluations} = 10000 \quad \text{Blocks} = 1466
\]

Average total time, Eavg = 16.750 \quad Esigma = 0.341 \quad \text{Average q} = 0.849 \quad qsigma = 0.035

Run with Costfactor = 2.450 \quad \text{cub} = 68.762 \quad qlb = 0.846

Initial Values

\[
x_0 = \begin{bmatrix} 97.000 & 0.977 & 0.308 & 3.206 & 43.600 & 679.167 & 1.200 & 3.233 \\
& 15.777 & 82.396 & 0.820 & 50.000 & 0.602 & 0.202 & 10.000 \\
\end{bmatrix}
\]

Final Values

\[
E = 16.558 \quad cost = 68.115 \quad q = 0.890 \quad \text{Function evaluations} = 10000 \quad \text{Blocks} = 1519
\]

Average total time, Eavg = 16.166 \quad Esigma = 0.326 \quad \text{Average q} = 0.871 \quad qsigma = 0.036

Run with Costfactor = 2.500 \quad \text{cub} = 70.165 \quad qlb = 0.846

Initial Values

\[
x_0 = \begin{bmatrix} 100.000 & 0.980 & 0.250 & 3.000 & 42.000 & 700.000 & 1.000 & 3.000 \\
& 14.443 & 88.709 & 0.790 & 50.000 & 0.602 & 0.202 & 10.000 \\
\end{bmatrix}
\]

Final Values

\[
E = 16.610 \quad cost = 70.097 \quad q = 0.830 \quad \text{Function evaluations} = 10000 \quad \text{Blocks} = 1496
\]

Average total time, Eavg = 16.593 \quad Esigma = 0.415 \quad \text{Average q} = 0.864 \quad qsigma = 0.030

Note: Last 3 columns are from interpolating MOP values and feeding back into the simulation.
Interpolated MOP values, x1-x8

<table>
<thead>
<tr>
<th>Cost Factor</th>
<th>MOP Value 1</th>
<th>MOP Value 2</th>
<th>MOP Value 3</th>
<th>MOP Value 4</th>
<th>MOP Value 5</th>
<th>MOP Value 6</th>
<th>MOP Value 7</th>
<th>MOP Value 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25</td>
<td>32.382</td>
<td>0.953</td>
<td>1.763</td>
<td>3.779</td>
<td>85.656</td>
<td>178.329</td>
<td>6.855</td>
<td>8.155</td>
</tr>
<tr>
<td>1.30</td>
<td>35.572</td>
<td>0.959</td>
<td>1.691</td>
<td>3.706</td>
<td>82.681</td>
<td>201.225</td>
<td>6.663</td>
<td>9.602</td>
</tr>
<tr>
<td>1.35</td>
<td>38.699</td>
<td>0.964</td>
<td>1.626</td>
<td>3.639</td>
<td>79.896</td>
<td>223.780</td>
<td>6.476</td>
<td>9.895</td>
</tr>
<tr>
<td>1.40</td>
<td>41.766</td>
<td>0.968</td>
<td>1.565</td>
<td>3.576</td>
<td>77.288</td>
<td>246.016</td>
<td>6.292</td>
<td>9.463</td>
</tr>
<tr>
<td>1.45</td>
<td>44.774</td>
<td>0.971</td>
<td>1.510</td>
<td>3.520</td>
<td>74.847</td>
<td>267.953</td>
<td>6.113</td>
<td>8.630</td>
</tr>
<tr>
<td>1.50</td>
<td>47.724</td>
<td>0.972</td>
<td>1.460</td>
<td>3.468</td>
<td>72.562</td>
<td>289.613</td>
<td>5.939</td>
<td>7.630</td>
</tr>
<tr>
<td>1.55</td>
<td>50.616</td>
<td>0.974</td>
<td>1.414</td>
<td>3.420</td>
<td>70.421</td>
<td>311.016</td>
<td>5.768</td>
<td>6.624</td>
</tr>
<tr>
<td>1.60</td>
<td>53.453</td>
<td>0.974</td>
<td>1.372</td>
<td>3.378</td>
<td>68.412</td>
<td>332.183</td>
<td>5.602</td>
<td>5.714</td>
</tr>
<tr>
<td>1.65</td>
<td>56.235</td>
<td>0.974</td>
<td>1.334</td>
<td>3.340</td>
<td>66.525</td>
<td>353.136</td>
<td>5.441</td>
<td>4.953</td>
</tr>
<tr>
<td>1.70</td>
<td>58.963</td>
<td>0.973</td>
<td>1.300</td>
<td>3.306</td>
<td>64.748</td>
<td>373.896</td>
<td>5.283</td>
<td>4.362</td>
</tr>
<tr>
<td>1.75</td>
<td>61.639</td>
<td>0.972</td>
<td>1.268</td>
<td>3.276</td>
<td>63.071</td>
<td>394.483</td>
<td>5.130</td>
<td>3.935</td>
</tr>
<tr>
<td>1.80</td>
<td>64.263</td>
<td>0.971</td>
<td>1.240</td>
<td>3.251</td>
<td>61.481</td>
<td>414.919</td>
<td>4.981</td>
<td>3.648</td>
</tr>
<tr>
<td>1.85</td>
<td>66.837</td>
<td>0.970</td>
<td>1.214</td>
<td>3.229</td>
<td>59.967</td>
<td>435.224</td>
<td>4.836</td>
<td>3.472</td>
</tr>
<tr>
<td>1.90</td>
<td>69.362</td>
<td>0.968</td>
<td>1.190</td>
<td>3.210</td>
<td>58.519</td>
<td>455.420</td>
<td>4.696</td>
<td>3.372</td>
</tr>
<tr>
<td>1.95</td>
<td>71.839</td>
<td>0.966</td>
<td>1.167</td>
<td>3.195</td>
<td>57.124</td>
<td>475.528</td>
<td>4.560</td>
<td>3.318</td>
</tr>
<tr>
<td>2.00</td>
<td>74.270</td>
<td>0.965</td>
<td>1.146</td>
<td>3.184</td>
<td>55.772</td>
<td>495.568</td>
<td>4.429</td>
<td>3.283</td>
</tr>
<tr>
<td>2.05</td>
<td>76.654</td>
<td>0.964</td>
<td>1.126</td>
<td>3.175</td>
<td>54.451</td>
<td>515.562</td>
<td>4.301</td>
<td>3.249</td>
</tr>
<tr>
<td>2.10</td>
<td>78.994</td>
<td>0.962</td>
<td>1.107</td>
<td>3.169</td>
<td>53.150</td>
<td>535.530</td>
<td>4.178</td>
<td>3.209</td>
</tr>
<tr>
<td>2.15</td>
<td>81.291</td>
<td>0.962</td>
<td>1.089</td>
<td>3.166</td>
<td>51.857</td>
<td>555.494</td>
<td>4.060</td>
<td>3.161</td>
</tr>
<tr>
<td>2.20</td>
<td>83.546</td>
<td>0.961</td>
<td>1.070</td>
<td>3.166</td>
<td>50.563</td>
<td>575.475</td>
<td>3.945</td>
<td>3.112</td>
</tr>
<tr>
<td>2.25</td>
<td>85.759</td>
<td>0.962</td>
<td>1.051</td>
<td>3.167</td>
<td>49.254</td>
<td>595.494</td>
<td>3.835</td>
<td>3.073</td>
</tr>
<tr>
<td>2.30</td>
<td>87.932</td>
<td>0.963</td>
<td>1.031</td>
<td>3.172</td>
<td>47.920</td>
<td>615.571</td>
<td>3.729</td>
<td>3.054</td>
</tr>
<tr>
<td>2.35</td>
<td>90.066</td>
<td>0.964</td>
<td>1.011</td>
<td>3.178</td>
<td>46.549</td>
<td>635.728</td>
<td>3.628</td>
<td>3.056</td>
</tr>
<tr>
<td>2.40</td>
<td>92.163</td>
<td>0.967</td>
<td>0.989</td>
<td>3.186</td>
<td>45.131</td>
<td>655.986</td>
<td>3.530</td>
<td>3.071</td>
</tr>
<tr>
<td>2.45</td>
<td>94.223</td>
<td>0.970</td>
<td>0.966</td>
<td>3.195</td>
<td>43.654</td>
<td>676.366</td>
<td>3.438</td>
<td>3.066</td>
</tr>
<tr>
<td>2.50</td>
<td>96.248</td>
<td>0.975</td>
<td>0.940</td>
<td>3.206</td>
<td>42.106</td>
<td>696.889</td>
<td>3.349</td>
<td>2.979</td>
</tr>
</tbody>
</table>
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

MOPs 1-4 (percent of technology threshold)

MOPs 5-8 (percent of technology threshold)

2SPSA Simulation vs. Analytic Results

2SPSA Simulation (1000 iterations, +/-20% ICs)
2SPSA Simulation (1000 iterations, Ramp ICs)
2SPSA Simulation (2000 iterations, Ramp ICs)
2SPSA Simulation (2000 iterations, Ramp ICs, Interpolated MOPs)

Overall MOE, E

Cost Factor on Threshold System Costs