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ABSTRACT 

Simulation, a popular and widely used method for studying stochastic, complex real-world systems, can accurately 

represent those conditions when its parameters are effectively calibrated. Previous studies on calibration generally 

focused on minimizing the sum of relative error between the observed data from a certain period of time in a typical 

day and the simulation output for the same period. This static approach can be explained as calibration with data 

obtained at one point in time. However, this type of calibration approach cannot capture a realistic distribution of all 

possible traffic conditions and may produce inaccurate calibration results. This paper proposes a calibration 

methodology based on the Bayesian sampling approach. Instead of a single demand matrix and corresponding 

observed traffic conditions that represent a specific point in time, this calibration methodology uses randomly 

generated demand matrices and corresponding traffic conditions from an observed statistical distribution of these 

variables. The goal of using input values generated from an observed distribution of demands is to accurately 

represent a wide range of all likely demand conditions observed at a facility.  Moreover, at each iteration, the 

proposed calibration methodology reestimates optimal parameters by using a stochastic optimization algorithm 

known as the simultaneous perturbation stochastic approximation (SPSA) algorithm. A macroscopic simulation 

model of a portion of I-880 in California based on the cell transmission approach is calibrated with the proposed 

methodology. The proposed enhanced SPSA algorithm outperforms a simple SPSA algorithm based on several case 

scenarios studied as part of this paper.  Future work will focus on calibrating larger networks and microscopic 

simulation models with the same methodology.  
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INTRODUCTION AND MOTIVATION 

Traffic simulation models are increasingly used to evaluate complex real-world traffic problems. However, to 

estimate traffic conditions accurately, an effective calibration of the simulation model is required. In most real-world 

cases, simulation output obtained through default parameters might not always represent observed traffic conditions. 

Thus, proper selection of input parameters is required to enable an accurate representation of the prevailing traffic 

conditions of a modeled transportation facility. A number of studies that address the calibration and validation of 

microscopic and macroscopic simulation models have been conducted in the past. Ding (2003) [1], Ma and 

Abdulhai (2002) [2], Gardes et al. (2002) [3], and Lee et al. (2001) [4] selected mean target headway and mean 

reaction time as the major calibration parameters for PARAMICS-based microscopic simulation models. Kundé 

(2002) [5] used speed–density relationship and capacity to calibrate DynaMIT-P. The default values of selected 

parameters were changed by the simultaneous perturbation stochastic approximation (SPSA) algorithm and the box 

complex algorithm until various observations such as simulated flow and density matched the field observations. 

The SPSA algorithm is better than the box complex algorithm in terms of level-of-fit statistics. Ma and Abdulhai 

(2002) [2] and Lee et al. (2001) [4] used genetic algorithms to determine “best” values for the calibration parameters 

of mean target headway and mean reaction time as their overall methodology. Kim and Rilett (2003) [6] used the 

simplex algorithm to optimize the degree-of-fit for their models in CORSIM and TRANSIMS. Table 1 presents a 

comprehensive summary of some of the most recent calibration studies performed.  

 

Table 1: Summary of Previous Calibration Studies 

 

Authors Simulation 

Tool 

Calibrated Parameters Optimization 

Methodology 

Type of 

Roadway 

Section 

Objective 

Function 

Validation 

Measure 

Ding [1] PARAMICS Mean target headway, 

mean reaction time 

SPSA 

algorithm 

Freeway Flow, 

density 

MAE
(1)
 

Ma and 

Abdulhai [2] 

PARAMICS Mean headway, mean 

reaction time, feedback, 

perturbation, familiarity 

Genetic 

algorithm 

Roadway Traffic 

counts 

MAE
(1)
 

Gardes et al. 

[3] 

PARAMICS Mean target headway, 

mean reaction time 

N/A Freeway Speed, 

Volume 

N/A 

Lee et al. [4] PARAMICS Mean target headway, 

mean reaction time 

Genetic 

algorithm 

Freeway Occupancy, 

Flow 

N/A 

Kundé [5] DynaMIT-P Speed–density 

relationship, Capacity 

Box complex, 

SPSA 

algorithm 

Network Free-flow, 

Minimum 

speed 

RMSE
(1)
 

Kim and Rilett 

[6] 

CORSIM, 

TRANSIMS 

CORSIM: Car-

following factors, 

driver’s aggressiveness 

factor 

TRANSIMS: O-D 

matrix, PT1 parameters 

Simplex 

algorithm 

Freeway Volume MAER
(1)
 

Schultz and 

Rilett [7] 

CORSIM Driver behavior 

parameters, 

vehicle performance 

parameters 

Automated 

Genetic 

algorithm 

Freeway Volume, 

Travel 

time 

MAE
(1)
 

Jha et al. [8] MITSIMLab Parameters of the 

driving behavior 

models and route 

choice model, O-D 

flows, habitual travel 

times 

Iterative 

approach 

Urban 

Network 

Travel 

time 

N/A 

Balakrishna et 

al. [9] 

MITSIMLab Driver behavior model 

parameters  

SPSA 

algorithm 

Freeway, 

Parkway 

Traffic 

Counts 

RMSN
(1)
 

RMSPE
(1)
 

MPE
(1)
 

Toledo et al. MITSIMLab O-D flow, Complex Freeway Speed, RMSE
(1)
, 
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[10] behavioral parameters algorithm and 

arterial 

Density RMSP
(1)
, 

MAE
(1)
, 

MAPE
(1)
 

Hourdakis et 

al. [11] 

AIMSUN Global, local 

parameters 

Trial and 

error 

Freeway Volume RMSP
(1)
 

Park and Qi 

[12] 

VISSIM Eight parameters Genetic 

algorithm 

Intersecti

on  

Average 

travel time 

N/A  

Ma et al [13] Microscopic 

simulation 

Global parameters 

(Mean target head, 

mean reaction time etc) 

Local parameters (link 

headway factor, link 

reaction factor, etc.)  

SPSA 

algorithm 

Freeway Capacity N/A 

Kim et al [14] Microscopic 

Simulation 

Various microscopic 

simulation parameters 

in VISSIM 

Genetic 

Algorithm 

with Non-

parametric 

statistical test 

Freeway Travel 

Time 

Distributi

on 

N/A 

1
 RMSP: root-mean-square percent error RMSE: root-mean-square error MAPE: mean-absolute-percent-error MAE: mean absolute error 
MAER: mean absolute error ratio RMSN: root mean square error RMSPE: root mean square percent error MPE: mean percent error. 
 

Most previous calibration studies focused on minimizing the sum of relative error between observed data and 

simulation output obtained at one or a few points in time. Although this approach might achieve a good fit at these 

specific points, it might not fully capture all possible occurrences of time-dependent traffic conditions. For example, 

the same facility does not have identical traffic characteristics for the morning peak on different days of the same 

week, let alone in different weeks and months.  Thus, this paper proposes a new and enhanced calibration 

methodology based on applying the SPSA stochastic optimization method in conjunction with Bayesian sampling 

techniques to more effectively calibrate traffic simulation models. 

 

Bayesian techniques are typically adopted to capture time-dependent traffic conditions in a better fashion. Molina et 

al. (2005) [15] were the first researchers to propose the calibration of a microscopic simulation model developed in 

CORSIM with a Bayesian approach. The authors applied the Bayesian theory to overcome over- and under tuning of 

parameters and inaccurate data.  

 

This study proposes an enhanced simulation calibration methodology that combines the stochastic optimization 

algorithm and Bayesian sampling techniques. The main purpose of using sampling methodology is to incorporate 

time-varying conditions from a distribution of demand. In our problem, the output of Daganzo’s cell transmission 

traffic simulation model (CTM) [16] is generated as a result of the randomly sampled origin–destination (O-D) 

demands and input parameters calibrated in the previous iteration. The objective of the proposed enhanced SPSA (E-

SPSA) analysis is to find the best simulation parameters given randomly sampled demand values. This study, in 

part, replicates the methodology of Molina et al. [15] in that the initial distribution (prior distribution in the case of 

Molina et al. [15]) of demands is obtained by the Bayesian sampling technique. Including a full Bayesian 

methodology will be part of future work. 

 

This paper consists of (a) a description of the macroscopic simulation model development and proposed 

methodology of calibration, (b) an explanation of the underlying process in the calibration procedure, and (c) a 

presentation of the implementation of the proposed methodology, through a case study of the calibration and 

validation procedure using the CTM. 

 

METHODOLOGY FOR CALIBRATING CTM 

Calibrating the parameters of a traffic simulation model can be formulated as an optimization problem in which the 

analytical form of the objective function is unknown.  This simulation–optimization problem can be more formally 
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stated as the minimization of the sum of measures of accuracy for various inputs to the simulation model. This 

function is calculated at the j
th
 iteration as shown in equation [1]. 
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where 
j

iD  is the O-D demand vector for the i
th
 time interval,  

0

iD  is the starting O-D demand vector for the i
th
 time interval 

j

iΘ  is the parameter vector for the i
th
 time interval,  

0

iΘ  is the starting parameter vector for the i
th
 time interval,  

ii ΘΘ ,  are the lower and upper bounds for the parameter vectors, respectively, 

Ob

iQ  is the vector of the observed set of flows for the i
th
 time interval,  

S

iQ  is the vector of the simulated set of flows for the i
th
 time interval, 

),...,,,,...,,( 2121

j

k

jjj

k

jj DDDA ΘΘΘ  is the autoregressive assignment matrix for the k
th
 period, 

L is the objective function in the optimization process, and 

321 ,, ggg  are measures of accuracy for traffic flows, O-D demands, and the parameter set, respectively. 

In addition to the objective function that does not have a closed-form representation, the calibration problem is a 

“stochastic optimization” problem. Variables of many traffic simulation models have a stochastic component to 

reflect random variations in real-world observations.  Thus, the traffic simulation calibration problem has to be 

approached as a multivariable stochastic optimization problem that does not have a closed form of objective 

function.  

 

The functional form of the objective function in stochastic approximation algorithms is probabilistic. Each algorithm 

can be divided into two general categories: gradient and gradient-free settings. The steepest descent method [17] and 

the Newton-Raphson method [17] are gradient-based deterministic algorithms. Nelder and Mead (1965) [18] 

proposed the nonlinear simplex algorithm, a deterministic method that is based on a gradient-free multivariate 

optimization method.  

 

The stochastic approximation of the objective function (usually termed as loss function L ) can be used in the 
presence or absence of the gradient function )(θg . The stochastic root-finding algorithm of Robbins-Monro [17] 

was generally used for nonlinear problems when the gradient function is available. When the measurement of 

gradient is impossible, such as in the case of simulation, a gradient-free approach is applied. The finite-difference 

(FD) approximation is the most well-known gradient approximation method. However, FD approximation is 

performed only when the noise measurements of the loss function are available. SPSA, one of the well-known 

stochastic approximation algorithms that can be applied in both the stochastic gradient and gradient-free settings, 

can also be applied to solve optimization problems with a large number of variables. 

 

Applying SPSA in the optimization of multivariable loss functions described by Spall [17], [19], [20], and in 

equation [1] led to the basic form below for each parameter in 
j

iΘ :  

)(1 kkkkk ga
∧∧∧

+

∧

−= θθθ                                                                                                                                            [2] 
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Here, )( kk
g

∧∧

θ is the gradient 
θ
θ

θ
∂
∂

=
)(
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L

g  estimated, based on the loss function measurements, at
∧

= kθθ  at the 

thk  iteration. 

The new value of θ , obtained for every iteration, is calculated by subtracting the product of step size and the 
gradient at the present value from the previous value of θ , as shown in equation [3]. With simultaneous 

perturbation, loss measurements are obtained by randomly perturbing the elements of θ
∧

k . Assuming that θ  is p -

dimensional, the SP gradient approximation step can be shown in the following form: 































∆
∆−−∆+

•

•

•
∆

∆−−∆+

=

∧∧

∧∧

∧∧

1

1

2

)()(

2

)()(

)(

pkk

kkkk

kk

kkkk

kk

c

cLcL

c

cLcL

g

θθ

θθ

θ  

 

              =
L
∧

(θ + ck∆k ) − L
∧

(θ − ck∆k )

2ck

∆k1

−1
,∆k2

−1
, ...,∆kp

−1 
T

                                                                                           [3] 

 

Here, the p -dimensional random perturbation vector ∆k = ∆k1,∆k2
, ...,∆kp

−1 
T

is a user-specified vector for 

which the components of ∆k  are usually ±1Bernoulli variables. The gain sequence is used to balance the algorithm 
stability and the desired form of the gain sequence is shown below: 

α)1( Ak

a
ak ++
= ,           γ)1( +

=
k

c
ck                                                                                                     [4]      

If a  is small, the calculations are stable initially; however, this may result in sluggish performance for large 

calculations. On the other hand, a large numerator, 0>ka , which is used to produce nonnegligible step sizes, leads 

to instability early in the calculation. It is most effective to set the numerator c  to a small positive number.  
 

In this study, flows and densities were obtained with a macroscopic simulation model based on the CTM proposed 

by Daganzo (1994) [16]. Since the goal in this paper is to introduce a new calibration methodology, a well-accepted 

but easy-to-implement approach was chosen for the simulation component of the study.  However, it is clear that the 

proposed calibration methodology can be implemented in conjunction with any other simulation tool. The CTM is a 

simple and accurate representation of traffic situations such as acceleration–deceleration, stop and go, and 

shockwaves. CTM limits the flow to the minimum value between the upstream capacity and downstream capacity of 

the cell [16]. The maximum number of vehicles in the undercongested condition is the product of the jam density 

( jK ) and cell length at cell i , and the maximum number of vehicles in the overcongested condition is the capacity 

of the cell 1−i . Figure 1 depicts a representative flow–density relationship for the basic CTM. It is defined as a 

trapezoid, where fV  and jK  indicate free-flow speed and jam density, respectively.  
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Figure 1: Flow-density relationship for the basic cell transmission model [16] 

 

Previously, Munoz et al. (2004)(2006) [21], [22] calibrated a cell-transmission-based model of a portion of 

westbound I-210 in Southern California. Free-flow speed and congestion parameters were calibrated using a 

constrained least-squares fit on the flow–density relationship. The difference between the simulated and the 

observed total travel times is the objective function used to evaluate the performance of the simulation. However, 

this model focused only on the deterministic aspects of the calibration problem.  

This paper proposes using the SPSA approach proposed by Spall (1992) in conjunction with a Bayesian sampling 

methodology. Figure 2 shows a flowchart of the proposed combined E-SPSA calibration and validation 

methodology. 

 

The basic steps of the proposed methodology can be summarized as follows: 

1. Increment iteration: iteration = iteration + 1  

Iteration:  

a. Generate the O-D demand matrix from a probability distribution function of demands 

developed with real-world data by using the Bayesian sampling methodology [23], [24]. 

b. Use the SPSA algorithm to determine the optimal parameters given the demand matrix 

generated. 

2.  Compare the output of simulation for the given demand matrix in the current iteration—namely, flows and 

densities—with the observed distribution of flows and densities to determine the correlation between the two 

distributions.  If it is satisfactory, terminate the iterative process and proceed to the validation step.  If unsatisfactory, 

return to Step 1. 

3. If verification and validation tests are satisfactory, then stop.  If not, return to Step 1.   



Lee and Ozbay 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Proposed combined enhanced SPSA simulation calibration methodology. 

 

Description of Sampling Methodology  

The initial distribution consists of random samples generated from the observed demand matrix, using WinBUGS, a 

software package that performs Markov chain Monte Carlo simulations to randomly generate time-dependent O-D 

demand matrices. Each randomly generated demand )( kd  ( ( )Ik ,...,1∈ , n indicates the number of demand 

matrix) is a random sample of the initial distribution. This initial distribution is used to find the optimal input 

parameter values of the free-flow speed and the jam density. At each iteration, these input parameters are determined 

by using the SPSA algorithm, as discussed in the preceding section.  

 

Cell Transmission Model and Selection of Input 

Parameters 

Determination of the Optimal Parameters that Minimize 

the Error using the SPSA Algorithm   

Yes 

Match? 

End 

Demand Matrix Generation from the Observed 

Distribution of Demands  

Verification and Validation Tests 

Pass? 

Perform Kolmogorov-Smirnov (K-S) Test to 

Compare Histograms based on the Simulation Output 
of the Optimized Input Parameters with Histogram of 

the Observed Values  

Yes 

No 

e-SPSA 

No 

Start 

Data Collection (Freeway Service Patrol Project) 
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IMPLEMENTATION DETAILS OF E-SPSA CALIBRATION METHODOLOGY FOR A FREEWAY 

SEGMENT 

To test the effectiveness of the E-SPSA calibration methodology, a freeway segment with and without ramps was 

considered. 

Demand Matrix Generation from Observed Distribution of Demands  

In traffic simulation models, the vehicular demand is modeled by using traffic zones. In the case of freeway 

segments, these zones are usually placed at a segment upstream of the segment under study. If the study segment is 

relatively short and the flow is observed on all sections (before and after ramps), the demand generated from the 

zone will, on an average, be equal to the flow observed at the segment under study. So, it can be assumed that the 

flow observed at a point on the freeway is the resulting effect of the same amount of demand generated at a zone 

upstream of the segment. In this study, the demand matrices were generated by using the traffic counts (i.e., flows 

from loop detectors). Hence the autoregressive assignment function A  as described in equation [1] will depend only 

on the current O-D demand 
jD1  and parameters 

j

1Θ . In the case study presented (shown in Figure 3), flows are 

observed on all sections. Hence, the demands could be determined uniquely. 

At each iteration, a new demand matrix is formed from the flows, which are randomly selected from the distribution 

of observed flows, which is the prior distribution. Thus, each generated demand matrix is effectively a sample from 

the initial distribution. Depending on the existence of intermediate ramps, a random demand matrix is formed from 

the distribution of observed flows for the two distinct geometries. The basic calibration procedures of demand 

originating from a single zone and demand originating from two zones may differ slightly because of the sampling 

methodology. For the on-ramp scenario, the prior distribution is obtained from the relationship between the flow on 

the mainline and that on a ramp. For generating the demands from two zones, the demands for the mainline and 

ramp (the two components of 
jD1 ) are sampled simultaneously formed from the flows

Ob

iQ . To take into account 

the existence or lack of correlation between the two demands, the demand matrix is generated by using conditional 

or independent samples, respectively. The existence of the autoregressive assignment function shows that there can 

be a correlation (through 
Ob

iQ ) between the ramp demands and mainline demands 
jD1 . 

 

Determination of Optimal Parameters That Minimize the Error Using the SPSA Algorithm  

Based on the randomly generated demand matrix, the calibration parameters are reestimated at each iteration. To 

select the optimum values of the parameters, a stochastic optimization algorithm, the SPSA algorithm, is used. The 

format of the objective function for the given simple freeway section is of the form shown in equation [5]. 

∑∑ 






 −
+

−
=

i lane
real

i

sim

i

real

i

real

i

sim

i

real

i

K

KK

Q

QQ
L

||||
                                                                                                  [5] 

where 

L  : objective function, 
real

iQ : observed flows for a given time period i and lane, 

sim

iQ : simulated flows for a given time period i and lane, 

real

iK : observed density for a given time period i and lane, 

sim

iK : simulated density for a given time period i and lane, and 

i: time period ( )Ii ,...,1∈ . 

It is apparent from the explanation in the section on demand matrix generation that the demands 
jD1 and flows 

S

iQ are directly correlated. If the function for the measure of accuracy can be assumed to be the same—namely, 

relative error—then the objective function will have same terms repeating twice. Therefore, the objective function to 
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be optimized reduces to that shown in equation [5]. Because CTM is a macroscopic simulation model, there is an 

additional term 
real

iK  density that can be measured and calibrated easily. 

 

CTM simulation is then executed multiple times with different random seeds to consider the variability in the 

simulation at each step of the SPSA algorithm. The random seeds are an important factor that is studied to determine 

their effect on the simulation results. In the stochastic analysis, the random seeds produce more accurate results by 

representing measurement noise. In the CTM methodology used, the random seeds directly affect the demand and 

hence the flow. Thus, to minimize the variance of errors, it is important to run the simulation with several different 

random seeds. At the end of each simulation run, the relative error between the observed and the simulated is 

calculated with equation [5]. The SPSA algorithm is implemented to optimized loss function L . Ding [1] suggested 
that the values of a, c, α , and γ  in equation [4] be set to 0.2, 0.5, 0.602, and 0.01, respectively; those values are 
used in this study. 

 

Perform Kolmogorov–Smirnov (K-S) Test  

Random samples from the prior distribution are generated from the observed demand matrix. The SPSA algorithm 

for each generated demand matrix calibrates these parameters. When one iteration of the calibration procedure is 

completed and the optimized parameter values are found by the SPSA algorithm, the evaluation process is 

performed. The distribution of the flows and densities from the cell transmission is compared with the distribution of 

the observed values by using the K-S test. If the two distributions pass the K-S test, the procedure moves to the 

validation step. If they do not pass the test, the sampling process is repeated. The advantage of using a 

nonparametric statistical test such as the K-S test is that it does not depend on the distribution of the parameter in 

question. 

 

CASE STUDY  

The calibration of a single zonal demand case was performed to test the effectiveness of the proposed E-SPSA 

approach. Additionally, the calibration was done with two demand zones over an extended road segment (mainline 

and on-ramp). 

Data Collection 

Data were obtained from the database of the Freeway Service Patrol project for a portion of the I-880 freeway in 

Hayward, California [25]. Data were collected from September 27 to October 29, 1993, from 05:00 to 10:00 and 

from 14:00 to 20:00 for weekdays and were aggregated into 5-minute counts. The data were used differently 

depending on the existence or nonexistence of an intermediate ramp. Flow data for all the time periods for 17 

different days were estimated in the cases with no intermediate ramp. When intermediate ramps were present, data 

were divided into four intervals: depending on morning or evening and on peak (reach the capacity) or nonpeak 

(uncongested) period (05:00 to 07:30, 07:30 to 10:00, 14:00 17:00, and 17:00 to 20:00). In the case of a freeway 

with a single zone (no intermediate ramp), the selected freeway segment is a two-lane one-way road and the length 

of the section is 1 mile. In the case of a freeway with an intermediate ramp, one lane for the mainline and on–ramp, 

respectively, is used and the length of the section is 1.2 miles. 

 

CTM and Selection of Input Parameters 

In the case of single zonal demand (no intermediate ramp), the road segments in CTM are initially modeled as a 

simple road segment to test the effectiveness of the E-SPSA approach. The selected freeway segment is a two-lane 

one-way road and the length of the section is 1 mile. The case of an intermediate ramp is modeled as an extended 

road segment as described by Daganzo [26] (Figure 3). The selected freeway segment is one lane for the mainline 

and on-ramp, respectively, and the length of the mainline is 1.2 miles. Because the zonal demand, one of the major 

input variables, is sensitive to the flow–density relationship, free-flow speed ( fV ) and jam density ( jK ) were 

selected as the input parameters. 
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Figure 3 The network geometry 

Demand Matrix Generation from Observed Distribution of Demands 

When a ramp exists, the demand matrix (formed from flows) is generated depending on whether the flows from the 

two zones are correlated. The main assumption is that there is no correlation between these flows, which makes it 

possible to sample the mainline and ramp flows independently. 

Figure 4 shows the histogram of the observed demand matrix formed from the flows. 

 

 
(a) 

 

 

(b) 

Figure 4 Histogram based on distribution of the 17 days of observed demand matrix: (a) no intermediate ramp and 

(b) intermediate ramp. 

 

Determination of Optimal Parameters That Minimize Error Using the SPSA Algorithm 

No Intermediate Ramp For single zonal demand (no intermediate ramp), the initial values of free-flow speed and 

jam density are taken as 55 mph and 110 vehicles per mile for two lanes, respectively. The SPSA algorithm is used 

to determine the “optimal” values of the calibrated simulation parameters for each iteration. The same procedure is 

repeated until the sum of the relative error between observed and simulated values is less than the acceptable error of 

5%. Each iteration is performed with three different random seeds when using the SPSA algorithm. 
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The input parameters converge when there is only a small difference between the simulated and observed values of 

flow and density. These are the optimized input parameter values for each generated demand matrix. The best fit for 

flow and density is observed for optimized input parameters of 59.6 mph and 107.0 vehicles per mile for two lanes, 

respectively. The sum of relative error is 4.6 %. 

 

Intermediate Ramp For two zonal demand (mainline and on ramp), the resulting output of the calibrated cell 

transmission model is compared with the observed data. The initial parameters of free-flow speed and jam density 

are set to 60 mph and 60 vehicles per mile for four time periods. The sum of relative errors for four time periods 

(05:00 to 07:30, 07:30 to 10:00, 14:00 to 17:00, and 17:00 to 20:00) were found to be 4.71, 4.06, 3.97, and 4.43, 

respectively. Since a trapezoidal flow-density curve is assumed, Qmax ≤ KjVf/2 . KjVf/2 ≈ 1800 veh/h. which is a 

reasonable result. 

 

Results of K-S Test [27] 

The obtained flow and density distributions of the macroscopic simulation output based on the optimized input 

parameters were compared with the observed distributions, using the K-S test [27]. The null hypothesis states that 

simulated flow and density distributions are not statistically different from the distributions of observed flow and 

density values, respectively. If the null hypothesis is rejected, new demand is generated from the observed 

distribution of demands. For the single zonal demand case, the K-S test values for flow and density distributions are 

0.019 and 0.139, respectively. These values are less than the critical values of 0.247 and 0.340 obtained from the K-

S table at the 95% confidence level. For the two zonal demand cases, the critical K-S values from the K-S table are 

greater than the K-S values for flow and density distributions, as shown in Table 2. For the scenario with two simple 

road segments, the null hypothesis could not be rejected, so there is no reason to doubt its validity; the null 

hypothesis states that the simulation flow and density distributed are not different from the observed distributions. 

Figure 5 shows the distribution of simulated flow and density values when the optimized values of input parameters 

are used.  
Table 2 Kolmogorov-Smirnov Values for Each Time Period (Intermediate Ramp Case) 

Time K-S Value of 

Flow 

K-S Value of 

Density 

Critical Value from K-S 

Table for Flow (95 %) 

Critical Value from K-S 

for Density (95 %) 

05:00~07:30 0.096 0.089 0.340 0.544 

07:30~10:00 0.038 0.063 0.389 0.453 

14:00~17:00 0.040 0.032 0.453 0.544 

17:00~20:00 0.019 0.025 0.340 0.453 
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Figure 5(a) 

 
 

 

 
Figure (5b) 

Figure 5 Comparison between simulated and observed distributions: (a) no intermediate ramp, and (b) intermediate 

ramp. 

Verification and Validation Tests 

The verification test was performed to ensure that the determined optimal input parameters (the free-flow speed and 

jam density) represent realistic and accurate values under real traffic conditions. This verification analysis tested 

whether the objective function could satisfy the predetermined stopping criteria (5%). The result of this verification 
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test and the performance of the simulation tool show that real-world conditions can be fairly captured by the 

calibrated simulation model.  

When the verification processes were satisfied, the validation of calibrated parameter values was performed for 

different days in the same time period and for the same network. It is difficult to compare the calibrated model 

performance with the similar performance results found in other calibration papers. However, the mean square 

variation (MSV)
2
 that Sanwal et al. (1996) [28] used is a good method to compare the degree of deviations with the 

observed values. MSV is calculated by subtracting the mean square error from one. If the model’s estimations are 

close to real-world measurements then the MSV should be close to one.  

The optimized parameter values were used to simulate randomly selected days as a part of the validation process. 

The results of the validation for the case of the two geometric configurations (with and without intermediate ramp) 

are discussed below. 

No Intermediate Ramp The optimized parameter values were used to simulate two randomly selected days. The 

distributions of flow and density based on the optimized parameter values are compared with the observed data 

distributions (Figure 6). Based on the K-S test, the values of the flow distributions for September 30, 1993, and 

October 13, 1993, were 0.019 and 0.018, both less than the critical K-S value from the table (0.194). The values of 

density distributions 0.037 and 0.012 are also less than the critical K-S value of 0.453 at the 95% confidence level. 

According to the K-S test, observed and simulated flow and density distributions are proven to have an acceptable 

level of similarity (fit) with respect to each other.  

 

 

 
 

Figure 6 Comparison between simulated and observed flow and density distributions (September 30, 1993, October 

13, 1993). 

Intermediate Ramp The validation test was performed for three scenarios. The first scenario used the E-SPSA 

approach for four randomly selected days. The second and third scenarios tested the SPSA algorithm without the 

sampling methodology for single and multiple days. These tests were performed to determine the effectiveness of 

the E-SPSA approach compared with the SPSA-only approach. Finally, the MSV measure used by Sanwal et al. 

(1996) [28] was applied as an evaluation criterion to compare the degree of deviations from the observed values.  
 

                                                           
2
 Fitness criteria for MSV are [ ] [ ]22 /)(1 mm

v

fit vEvvER −−=  (here, mv and v  denote measured speeds and model 

speeds, respectively) and [ ] [ ]22 /)(1 mm

T

fit TETTER −−=  (here, mT and T  denote measured travel times and 

computed travel times, respectively.) [28]. 
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First Scenario Optimized parameter values of four time periods match well with the distributions of observed values 

shown in Table 2. The optimized parameter values were used for four randomly selected days that were not used in 

the calibration process. The statistical test results of this process are shown in Table 3.  
Table 3 Kolmogorov-Smirnov Values for Each Time Period 

Time K-S Value of 

Flow 

K-S Value of 

Density 

Critical Value from K-S 

Table for Flow (95 %) 

Critical Value from K-S 

for Density (95 %) 

05:00~07:30 0.042 0.034 0.272 0.389 

07:30~10:00 0.116 0.026 0.453 0.453 

14:00~17:00 0.028 0.036 0.247 0.453 

17:00~20:00 0.087 0.080 0.194 0.389 

 

For all periods of the day, each K-S value was less than the critical K-S values given by the table. This result also 

shows that two distributions between the observed and the simulated flow and density fit closely. Figure 7 shows the 

fitness between the observed and the simulated distributions of flow and density for each time period. 
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Figure 7 Comparison between simulated and observed distributions. 

Second Scenario In the second scenario, the validation test was performed for the calibration process based on the 

SPSA-only algorithm. Calibration was performed with a single day’s data until the error was within the bounds. 

September 30, 1993, data were tested to determine optimal parameter values and the resulting relative errors were 

calculated as 2.13, 2.66, 3.51, and 4.56. For three randomly selected days, the error was calculated using these 

optimized parameter values. In the case of the third time period, 14:00 to 17:00, the relative errors range from a low 

of 3.53 on October 13, 1993, to a high of 13.53 on October 5, 1993. The resulting relative errors are summarized in 

Table 4. On the basis of the SPSA-only algorithm result, flow and density distributions for the time period 07:00 to 

10:00 on September 13, 1993, were compared with observed data distributions using the K-S test. The critical value 

of the K-S test for flow and density distributions is 0.272, which is more than the value calculated for simulated flow 

distribution (0.207) and less than the calculated value for the simulated density distribution (0.448). Thus, the null 

hypothesis is rejected for density distribution.  

 Table 4 Sum of Relative Errors for the Validation Test 

 Sum of relative Error of Flow and Density 

Days 05:00~07:30 07:30~10:00 14:00~17:00 17:00~20:00 

09/30/93 2.13 2.66 3.51 4.57 

10/05/93 8.25 11.17 13.53 5.79 

10/13/93 7.36 13.49 3.53 4.06 

10/18/93 5.73 5.51 6.55 6.41 

Average 5.87 8.21 6.78 5.21 

 

Third Scenario In the third scenario, the validation test was performed for the same time period on multiple days and 

relative errors of 4.58, 4.82, 4.19, and 4.88 were obtained. The optimized parameter values based on the SPSA 

algorithm were used for four randomly selected days and for four different time periods on those days. The relative 

error increased to 10.42, 16.21, 17.58, and 15.52. With this type of calibration approach (SPSA), the two 

independent data sets for the same facility can be different, even if the mean of the observed data distribution closely 

matches the simulated data. Hence, it is concluded that the optimal parameter values from the SPSA algorithm are 

not always transferable to data sets from the same time periods on different days. 

 

On the basis of the variation approach proposed by Sanwal et al. (1996) [28], the MSV of flow of four randomly 

selected days was compared with the simulation results obtained from the simulation model calibrated using the E-

SPSA algorithm. From the morning period between 05:00 and 07:30 to the evening period between 17:00 and 20:00, 

the MSVs of flow are 0.968, 0.979, 0.981, and 0.950. Sanwal et al. (1996) [28] obtained a value of 0.945 for the 

variation of speed and 0.968 for the variation of travel time when they applied the optimized parameters from one 

day to another. The results of degree of deviation are comparable to measured data when the method of Sanwal et al. 

(1996) [28] was applied.  

 

CONCLUSIONS AND FUTURE RESEARCH 

Careful calibration of traffic simulation models is necessary to accurately represent prevailing traffic conditions. In 

this paper, a new calibration methodology based on the Bayesian sampling approach is proposed. Instead of using a 

single demand matrix and corresponding observed traffic conditions that represent one point in time, the new 

methodology uses randomly generated demand matrices and corresponding traffic conditions from an observed 

distribution of these variables. The goal of using input values, generated from the observed distribution of demands, 
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is to enable an accurate wide-range representation of all likely demand conditions observed at a facility. Observed 

demand values were used to determine a distribution of observed demands for 17 days.   

 

At each iteration of the proposed Bayesian sampling framework, a new demand matrix, which is randomly sampled 

from this distribution, is loaded into the macroscopic simulation model.  Moreover, at each iteration, the proposed 

calibration methodology reestimates optimal parameters by using a stochastic optimization algorithm, SPSA, and 

distributions of flow and density from the macroscopic simulation are compared with the distribution of the 

observed flow and density [24].  

 

A cell transmission-based macroscopic simulation model of a portion of I-880 in California was calibrated with the 

proposed methodology. Two relatively simple road segments, shown in Figure 3, one with a single zonal demand 

(no intermediate ramp) and the other with two zonal demands (mainline and on-ramp), were used as case studies. 

The distribution of output from CTM was obtained by loading demand matrices randomly sampled from the 

distribution of observed demand and from the calibrated input parameters, which are the free-flow speed and jam 

density. The distribution of simulation output was compared with the observed data distribution by using the K-S 

test. The null hypothesis for the K-S test stated that simulated flow and density distributions are not different than 

their observed counterparts. For all scenarios, the null hypothesis could not be rejected at the 95% confidence level. 

Thus, it can be concluded that the differences between the distributions of observed and simulated flow and density 

values are not statistically significant. 

 

The validation test with a single zonal demand was also performed over two randomly selected cases using the same 

time period and network. On the basis of optimized input parameters, the flow and density distributions were 

compared. The differences between the observed and the simulated flow and density distributions were found to be 
statistically insignificant at the 95% confidence level. Thus, these parameters can be considered to have been 

validated. As an extended simulation model, a road segment with an intermediate ramp was modeled using the CTM. 

The sum of relative errors for four time periods (05:00 to 07:30, 07:30 to 10:00, 14:00 to 17:00, and 17:00 to 20:00) 

were found to be 4.71, 4.06, 3.97, and 4.43, respectively. For three different scenarios, the model parameters were 

tested for validation and for the effectiveness of the E-SPSA approach. From Table 3, the results of four different 

time periods were found to satisfy the statistical test for accepting the null hypothesis, and it is concluded that 

parameter values calibrated by using E-SPSA are applicable to data from a different day. On the other hand, in the 

second and third scenarios, where SPSA was used without the sampling approach as the main calibration algorithm, 

predetermined validation constraints were not always satisfied. According to Table 4, none of the average values of 

the sum of relative error of flow and density values satisfied the constraint of an acceptable relative error of 5%. In 

addition, in the scenario in which parameters were calibrated with the SPSA-only methodology, the difference 

between the distributions of simulated flow and density values and the distributions of observed values could not be 

shown to be statistically insignificant when the K-S test was performed. Therefore, the E-SPSA method was found 

to improve the results of simulation calibration by accurately capturing a wide range of real-world conditions. 

 

Bayesian analysis was applied as part of the calibration methodology to represent the distribution of the observed 

traffic characteristics. The main purposes of using Bayesian analysis were to overcome the over- and 

underestimation of calibration parameters and to acquire a realistic distribution of all possible traffic conditions. 

Previously, the Bayesian analysis method was not extensively used because of its complex computational 

requirements. However, improved performance of modern computers, coupled with efficient computational 

techniques, allow the Bayesian method to be widely used in a number of areas. 

 

Testing of E-SPSA for larger networks, as well as for microscopic traffic simulations such as PARAMICS, are 

future research tasks. In the future, other simulation parameters and more extensive data sets will be used to test the 

strengths and weaknesses of the proposed E-SPSA calibration methodology. Also, a full Bayesian methodology (B-

SPSA) can be developed along the lines of Molina et al. [15]. An enhancement to the approach they followed could 

be that, instead of assuming a general prior distribution for the parameters 
j

1Θ , the prior can be estimated by using 

the E-SPSA algorithm described in this study and performing a Markov chain Monte Carlo simulation to obtain the 

posterior distribution of parameters given the observed data 
Ob

iQ . 
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