RSPSA: Enhanced Parameter Optimisation in
Games

Levente Kocsis, Csaba Szepesvari, Mark H.M. Winands

MTA SZTAKI, Kende u. 13-17, Budapest, Hungary-1111, {kocsis,szcsaba}@sztaki.hu
Valkenburg, The Netherlands, mark.winands@gmail.com

Abstract. Most game programs have a large number of parameters that
are crucial for their performance. While tuning these parameters by hand
is rather difficult, successful applications of automatic optimisation al-
gorithms in game programs are known only for parameters that belong
to certain components (e.g. evaluation-function parameters). The SPSA
(Simultaneous Perturbation Stochastic Approximation) algorithm is an
attractive choice for optimising any kind of parameters of a game pro-
gram, both for its generality and its simplicity. It’s disadvantage is that
it can be very slow. In this article we propose several methods to speed
up SPSA, in particular, the combination with RPROP, using common
random numbers, antithetic variables and averaging. We test the result-
ing algorithm for tuning various types of parameters in two domains,
poker and LOA. From the experimental study, we conclude that using
SPSA is a viable approach for optimisation in game programs, especially
if no good alternative exists for the types of parameters considered.

1 Introduction

Any reasonable game program has several hundreds if not thousands of para-
meters. These parameters belong to various components of the program, such
as the evaluation function or the search algorithm. While it is possible to make
educated guesses about “good” values of certain parameters, hand-tuning the
parameters is a difficult and time-consuming task. An alternative approach is to
find the “right” values by means of an automated procedure.

The use of parameter optimisation methods for the performance tuning of
game programs is made difficult by the fact that the objective function is rarely
available analytically and hence methods that rely on the availability of an an-
alytic expression for the gradient cannot be used. However, there exist several
ways to tune parameters despite the lack of an analytic gradient. An important
class of such algorithms is represented by temporal-difference (TD) methods that
have been used successfully in tuning evaluation-function parameters [14]. Obvi-
ously, any general-purpose (gradient-free) global search method can be used for
parameter optimisation in games. Just to mention a few examples, in [3] genetic
algorithms were used to evolve a neural network to play checkers, whilst in [2]
an algorithm similar to the Finite-Difference Stochastic Approximations (FDSA)
algorithm was used successfully for tuning the search-extension parameters of
CrAFTY. Nevertheless, we think that automatic tuning of parameters remains a
largely unexplored area of game programming.

In this article we investigate the use of SPSA (Simultaneous Perturbation
Stochastic Approximation), a stochastic hill-climbing search algorithm for tun-
ing the parameters of game programs. Since optimisation algorithms typically
exhibit difficulties when the objective function (performance measure) is ob-
served in heavy noise, for one test domain we choose a non-deterministic game,
namely Omaha Hi-Lo Poker, one of the most complex poker variants. For Texas
Hold’em Poker several years of research has led to a series of strong programs:
Poki, PsOpti and Vexbot [1]. Our program, McRAISE, borrows several ideas from
the above mentioned programs. The name of the program originates from the
use of Monte-Carlo simulations and the program’s aggressive style. In the second
test domain, LOA, we use MIA, winner of the 8th and 9th Computer Olympiad.

The article is organised as follows. Section 2 describes the RSPSA algorithm
that combines SPSA and RPROP. In Section 3, three ways to enhance the perfor-
mance of RSPSA are proposed together with a discussion of the various trade-offs
involved, supported by analytic arguments. Next, in Section 4 the test domains
and the respective programs are described. Experiments with RSPSA in these
domains are given in Section 5. Finally, we draw our conclusions in Section 6.

2 The RSPSA Algorithm
2.1 Basic Setup

Consider the task of finding a maximiser §* € R? of some real valued function
f = f(6). In our case f may measure the performance of a player in some envi-
ronment (e.g. against a fixed set of opponents), or it may represent an auxiliary
performance index of interest that is used internally in the algorithm such that
a higher value of it might ultimately yield a better play. In any case, 6 represents
some parameters of the game playing program.

We assume that the algorithm whose task is to tune the parameters 6 can
query the value of f at any point 6, but the value received by the algorithm
will be corrupted by noise. The noise in the evaluation of f can originate from
randomised decisions of the players or the randomness of the environment. In a
card game for instance the cards represent a substantial source of randomness
in the outcomes of rounds. We shall assume that the value observed in the tth
step of the algorithm, when the simulation is run with parameter, 6; is given
by f(0:;Y:) where Y; is some random variable such that the expected value of
f(6:;Y:) conditioned on ; and given all past information equals to f(6;):

f(0) =E[f(0:Y1) [0, Fi],
where F; is the sigma-field generated by Yy, Y7,...,Y;—1 and 6y,601,...,60;_1.
Stochastic gradient ascent algorithms work by changing the parameter 6 in a
gradual manner so as to increase the value of f on average:

Ory1 = Or + e (0:). (1)
Here 6, is the estimate of #* in the tth iteration (time step), a; > 0 is a learning
rate parameter that governs the size of the changes to the parameters and §;(6;)
is some approximation to the gradient of f such that the expected value of §;(6;)
given past data is equal to the gradient g(0) = 9f(0)/96 of f and (§:(0:) — g(0))
has finite second moments.

2.2 SPSA

When f is not available analytically then in order to use gradient ascent one
must resort to some approximation of the gradient. One such approximation
was introduced with the SPSA algorithm in [12]:

fOr + e A YT) — f(0 — A Yy))
2c Ay ’

Here §;;(6;) is the estimate of the ith component of the gradient, Ay, Y,™,Y,”
are random variables: Y;", Y, are meant to represent the sources of randomness
of the evaluation of f, whilst A;. is a perturbation vector to be chosen by the
user. Note that the numerator of this expression does not depend on the index
i and hence evaluating (2) requires only two (randomised) measurements of the
function f. Still, SPSA provides a good approximation to the gradient: Under the
conditions that (i) the random perturbations A, are independent of the past of
the process, (i) for any fixed ¢, {Ay; }; is an i.i.d. sequence!, (iii) the distribution
of Ay; is symmetric around zero, (i) |A] is bounded with probability one and
(v) E [At_il] is finite and assuming that f is sufficiently smooth, it can be shown
that the bias of estimating that gradient g(6;) by g.(;) is of the order O(c?).
Further, the associated gradient ascent procedure can be shown to converge to
a local optima of f with probability one [12].

A simple way to satisfy the conditions on A; is to choose its components
to be independent +1-valued Bernoulli distributed random variables with each
outcome occurring with probability 1/2. One particularly appealing property of
SPSA is that it might need d times less measurements than the classical FDSA
procedure and still achieve the same asymptotic statistical accuracy (see e.g.
[12]). FDSA works by evaluating f at 6; + cie; and forming the appropriate
differences — hence it requires 2d evaluations. For a more thorough discussion of
SPSA, its variants and its relation to other methods consult ([12]; [13]).

91 (6) =

2.3 RPROP

SPSA, like other stochastic approximation algorithms has quite a few tunable
parameters. These are the gain sequences oy, ¢; and the distribution of the per-
turbations A;. When function evaluation is expensive, as is often the case in
games, small sample behaviour of the algorithm becomes important. In that
case the proper tuning of the parameters becomes critical.

In practice, the learning rate a; and the gain sequence ¢; are often kept at
a fixed value. Further, in all previous works on SPSA known to us it was as-
sumed that the perturbations Ay, i = 1,...,d, have the same distribution. When
different dimensions have different scales (which we believe is a very common
phenomenon in practice) then it does not make too much sense to use the same
scales for all the dimensions. The issue is intimately related to the issue of scaling
the gradient addressed also by second and higher-order methods. These meth-
ods work by utilising information about higher order derivatives of the objective
function (see e.g. [13,4]). In general, these methods achieve a higher asymptotic

1 4i.d.” is the shorthand of “independent, identically distributed”

rate of convergence, but, as discussed e.g. in [15], their practical value might be
limited in the small sample size case.

The RPROP (“resiliant backpropagation”) [11] algorithm and its variants are
amongst the best performing first-order batch neural network gradient training
methods and as such represent a viable alternative to higher-order methods.? In
practice RPROP methods were found to be very fast and accurate, robust to
the choices of their parameters, scale well with the number of weights. Further,
RPROP is easy to implement, it is not sensitive to numerical errors and since the
algorithm is dependent only on the sign of the partial derivatives of the objective
function,? it is thought to be suitable for applications where the gradient is
numerically estimated and/or is noisy.

A particularly successful variant is the iRPROPalgorithm [5]. The update
equations of iRPROP™ for maximising a function f = f(6) are as follows:

9t+1,i = Gt’i—i—sign(gti)éti, t= 172,...;i = 172,...7d. (3)

Here 64 > 0 is the step size for the ith component and g;. is a gradient-like
quantity:

gti = H(gtfl,ifi/(et) > O)fi/(et)7 (4)

i.e., g4 equals the ith partial derivative of f at 6 except when a sign reversal is
observed between the current and the previous partial derivative, in which case
gyi 1s set to zero.

The individual step-sizes §;; are updated in an iterative manner based on the
sign of the product p;; = gi—1,:f](61):

N = L(pei > 0)n™ + I(pe; < 0)n~ + L(ps; = 0), (5)
0 = P[&—,5+] (Ntidt—1,) (6)

where 0 <~ <1<nt, 0<d” <&, Pjq) clamps its argument to the interval
[a,b], and I(-) is a {0, 1}-valued function working on Boolean values and I(£) = 1
if and only if £ is true, and I(£) = 0, otherwise.

2.4 RSPSA

Given the success of RPROP, we propose a combination of SPSA and RPROP
(in particular, a combination with iRPROP™). We call the resulting combined
algorithm RSPSA (“resiliant SPSA”). The algorithm works by replacing f/(6;)
in (4) with its noisy estimates g ;(6;). Further, the scales of the perturbation
vector A, . are coupled to the scale of the step-sizes of dy;.

Before motivating the coupling let us make a few observations on the expected
behaviour of RSPSA. Since iRPROP™ depends on the gradient only through the
sign of it, it is expected that if the sign of §;;(6;) coincides with that of f/(6;)
then the performance of RSPSA will be close to that of iRPROP™. This can be
backed up by the following simple argument: Assuming that |f/(0)| > ¢, applying
Markov’s inequality, we get that

2 For a recent empirical comparison of RPROP and its variants with alternative,
gradient optimisation methods such as BFGS, CG and others see e.g. [5].

3 RPROP, though it was worked out for the training of neural networks, is applicable
in any optimisation problem where the gradient can be computed or approximated.

P(sign(gr.q(60)) # sign(f;(0))) < P(1g:.i(0)) — fi(0)] = ¢) <

where M, ; = E [(,:(0) — f/(0))?|F;] denotes the mean square error of the ap-
proximation of f/(6) by §.,:(6), conditioned on past observations. In fact, this
error can be shown to be composed of a bias term dependent only on f, # and
¢, and a variance term dependent on the random quantities in g ;(¢). Hence, it
is important to make the variance of the estimates small.

Now, let us turn to the idea of coupling the scales of the perturbation vectors
to the step-sizes of iRPROP™. This idea can be motivated as follows: On “flat
areas” of the objective function, where the sign of the partial derivatives of the
objective function is constant and where the absolute value of these partial deriv-
atives is small, a perturbation’s magnitude along the corresponding axis should
be large or the observation noise will dominate the computed finite differences.
On the other hand, in “bumpy areas” where the sign of a partial derivative
changes at smaller scales, smaller perturbations that fit the “scale” of desired
changes can be expected to perform better. Since the step-size parameters of
RPROP are larger in flat areas and are smaller in bumpy areas, it is natural
to couple the perturbation parameters of SPSA to the step-size parameters of
RPROP. A simple way to accomplish this is to let Ay; = pdy;, where p is some
positive constant, to be chosen by the user.

3 Increasing Efficiency

In this section we describe several methods that can be used to increase the
efficiency of RSPSA. The first method, known as the “Method of Common Ran-
dom Numbers”, was proposed earlier to speed up SPSA [9, 6]. The next method,
averaging, was proposed as early as in [12]. However, when averaging is used
together with the method of common random numbers a new trade-off arises.
By means of a formal analysis this trade-off is identified and resolved here for the
first time. To the best of our knowledge, the last method, the use of antithetic
variables has not been suggested earlier to use with SPSA. All these methods
aim at reducing the variance of the estimates of the gradient, which as noted
previously should yield better performance. In this section we will drop the time
index t in order to simplify the notation.

3.1 Common Random Numbers

In SPSA (and hence also in RSPSA) the estimate of the gradient relies on differ-
ences of the form f(0+cA;Y+)— f(0—cA; Y ™). Denoting by F;" (resp. F;”) the
first (resp. second) term, elementary probability calculus gives Var (FZ+ — F;) =
Var (Fj') + Var (Fz_) — 2Cov (F{",Fi_). Thus the variance of the estimate of
the gradient can be decreased by introducing some correlation between Ff
and F; , provided that this does not increase the variance of FZ-+ and F; .
This is because by our assumptions Y and Y~ are independent and hence
Cov (F;L,Fi_) = 0. Now, if FijE is redefined to depend on the same random
value Y (i.e., X = f(0 + cA;Y)) then the variance of F;” — F;~ will decrease
when Cov (f(0 4 cA;Y), f(0 —cA;Y)) > 0. The larger this covariance is the
larger the decrease of the variance of the estimate of the gradient will be.

When f is the performance of a game program obtained by means of a
simulation that uses pseudo-random numbers then using the same random series
Y can be accomplished by using identical initial seeds when computing the values
of fat 0+ cA and 0 — cA.

3.2 Using Averaging to Improve Efficiency

Another way to reduce the variance of the estimate of the gradient is to average
many independent estimates of it. However, the resulting variance reduction is
not for free, as evaluating f(0;Y") can be extremely CPU-intensive, as mentioned
earlier. To study this trade-off let us define

_ LN~ O+ eAYS) - J(O0 - eAYy)
= 52 2% A, : (7)

gq,i
j=1
where according to the suggestion of the previous section we use the same set of
random number to evaluate f both at § 4+ cA and 6 — cA. Further, let g, 4.,(6)
be the average of r independent samples {gfljj (0)}j=1,....r of §g,i(0). By the law
of large numbers gy ,,i() converges to f/(6) + O(c?) as q,r — +oo (i.e. its
ultimate bias is of the order O(c?)). It follows then that increasing min(r, q)
above the value where the bias term becomes dominating does not improve the
finite sample performance. This is because increasing p decreases the frequency
of updates to the parameters.*

In order to gain further insight into how to choose ¢ and r, let us consider
the mean squared error (MSE) of approximating the ¢th component of the gradi-
ent by gr.q.it Mrqi = E [(Gr.q,:(0) — f(6))?]. By some lengthy calculations, the
following expression can be derived for M, 41:

d
Mrgr = B[E[UAY { (1- 2) B O + TR [fe))

+%E [(f1(6:Y3) — F1(8))%] + O(c?). (8)

Here f/(0;Y) is the partial derivative of f(0;Y) w.r.t. 6;: f/(6;Y) = %.
It follows from Eq. (3.2) that for a fixed budget of p = gr function evaluations
the smallest MSE is achieved by taking ¢ = 1 and r = p (disregarding the O(c?)
bias term which we assume to be “small” as compared to the other terms).

Now the issue of choosing p can be answered as follows: Under mild conditions
on f and Y (ensuring that the expectation and the partial derivative operators
can be exchanged), 2722 E [fj’ (6; Yl)]2 = 2?22 f3(0)?. Hence, in this case with
the choices ¢ =1, r = p, M 1,1 becomes equal to

4 In [12] it is shown that using decreasing gains o; = a/t® and ¢; = ¢/t with 8 =
a—27>0,0< a<1,0< -, the optimal choice of p is governed by an equation
of the form p?~'A 4+ p° B, where A, B > 0 are some (unknown) system parameters.
This equation has a unique minimum at p = (1 — 3)A/(8B), however, since A, B
are unknown parameters this result has limited practical value besides giving a hint
about the nature of the trade-off in the selection of p.

® Without the loss of generality we consider the case i = 1.

—

d
S E [AFE [1/A3] > £1(0) + E [(f1(6: Y1) — f1(0)*] p +O(), (9)
j=2

which is composed of two terms in addition to the bias term O(c?): the term
2?22 fi (6)? represents the contribution of the “cross-talk” of the derivatives of f
to the estimation of the gradient, whilst the second term, E [(f{(6; Y1) — f1(6))?]
gives the MSE of approximating fi(f) with f{(0;Y1) (which is equal to the
variance of f{(#;Y7) in this case). The first term can be large when 6 is far from
a stationary point of f, whilst the size of the second term depends on the amount
of noise in the evaluations of f. When the magnitude of these two terms is larger
than that of the bias term O(c?) then increasing p will increase the efficiency of
the procedure, at least initially.

3.3 Antithetic Variables
In Section 3.1 we have advocated the introduction of correlation between the
two terms of a difference to reduce its variance. The same idea can be used to
reduce the variance of averages: Let Uy, Us, ..., U, bei.i.d. random variables with
common expected value I. Then the variance of I,, = 1/n Y}, U; is 1/nVar (Uy).
Now, assume that n is even, say n = 2k and consider estimating I by
L 2’“: Ul +U;

k pt 2 ’

n

where now it is assumed that {U;",..., U,:} are ii.d., just like {U;,...,U; },
E[U;] =E[U;] =1.ThenE [I;}] = I and Var (I;}) = (1/k) Var (U} + Uy)/2).
Using the elementary identity Var ((U;" + Uy)/2) = 1/4 (Var (U;")+Var (U])+
2Cov (U,U;)) we get that if Var (Uy") + Var (U;) < 2Var(U;) and
Cov (U;F,U;) < 0 then Var (IZ) < Var([,). One way to achieve this is to
let U;",U; be antithetic random variables: U;" and U, are called antithetic if
their distributions are the same but Cov (U;",U;”) < 0.

How can we introduce antithetic variables in parameter optimisation of game-
programs? Consider the problem of optimising the performance of a player in a
non-deterministic game. Let us collect all random choices external to the players
into a random variable Y and let f(Y; W) be the performance of the player in
the game. Here W represents the random choices made by the players (f is a
deterministic function of its arguments). For instance in poker Y can be chosen
to be the cards in the deck at the beginning of the play after shuffling. The idea
is to manipulate the random variables Y in the simulations by introducing a
“mirrored” version, Y, of it such that f(Y; W) and f(Y’; W') become antithetic.
Here W' represents the player’s choices in response to Y’ (it is assumed that
different random numbers are used when computing W and W').

The influence of the random choices Y on the outcome of the game is of-
ten strong. By this we mean that the value of f(Y;W) is largely determined
by the value of Y. For instance it may happen in poker that one player gets a
strong hand, whilst the other gets a weak one. Assuming two-players, a natural
way to mitigate the influence of Y is to reverse the hands of the players: the
hand of the first player becomes that of the second and vice versa. Denoting the

cards in this new scenario by Y, it is expected that Cov (f(Y; W), f(Y'; W) <
0. Since the distribution of ¥ and Y’ are identical (the mapping between Y
and Y’ is a bijection), the same holds for the distributions of f(Y;W) and
f(Y";W'). When the random choices Y influence the outcome of the game
strongly then we often find that f(Y; W) ~ —f(Y’;W’). When this is the
case then Cov (f(Y; W), f(Y';W')) = —Var (f(Y;W)) and thus f(Y;W) and
f(Y'; W') are “perfectly” antithetic and thus Var (I2) ~ 0. Of course, f(Y; W) =
—f(Y"; W) will never hold and hence the variance of I will not be eliminated
entirely — but the above argument shows that it can be reduced to a large extent.

This method can be used in the estimation of the gradient (and also when the
performance of the players is evaluated). Combined with the previous methods
we get

/

i il0) = 1 > 5 (6 + AP ¥) 4 f(0 4 AP YY)

4ep’ 4 (J . :
AT (10— DY) £ (0 - cAD; YY),
where AW A®) are i.i.d. random variables. In our experiments (see Sec-

tion 5.1) we have observed that to achieve the same accuracy in evaluating the
performance of a player we could use up to 4 times less samples when antithetic
variables were used. We expect similar speed-ups in other games where external
randomness influences the outcome of the game strongly.

4 Test Domains

In this section we describe the two test domains, Omaha Hi-Lo Poker and Lines
of Action, together with the game playing programs used in the experiments.

4.1 Omaha Hi-Lo Poker

The rules Omaha Hi-Lo Poker is a card game played by two to ten players.
At the start each player is dealt four private cards, and at later stages five com-
munity cards are dealt face up (three after the first, and one after the second
and third betting round). In a betting round, the player on turn has three op-
tions: fold, check/call, or bet/raise. After the last betting round, the pot is split
amongst the players depending on the strength of their cards. The pot is halved
into a high side and a low side. For each side, players must form a hand consisting
of two private cards and three community cards. The high side is won according
to the usual poker hand ranking rules. For the low side, a hand with five cards
with different numerical values from Ace to eight has to be constructed. The
winning low hand is the one with the lowest high card.

Estimating the Expected Proportional Payoff It is essential for a poker
player is to estimate his winning chances, or more precisely to predict how much
share one will get from the pot. Our program, McRAISE, uses the following
calculations to derive an estimate of the expected proportional payoff:

N random card configurations, cc, are generated, each consisting of the oppo-
nent hands hepy,(cc) and the community cards that still have to be dealt. Then,
given the betting history history of the current game, the expected payoff as ex-
pressed as a proportion of the actual pot size (we call this quantity the expected
proportional payoff or EPP) is approximated by

P(hopp(cc)|history)
H P(hopp(c)) .

where win(cc) is the percentage of the pot won for a given card configuration
cc and p(hopp(cc)|history) is the probability of cc given the observed history of
betting actions. Now, using Bayes’ rule, we get

P(hopp(cc)|history)
P(hopp(cc))

where the omission of p(history) is compensated by changing the calculation of
Pwin by normalising the individual weights of w(cc) = p(history|hopp(cc)) so as
they sum to 1, i.e., pyin is estimated by means of weighted importance sampling.

The probability of a betting sequence given the hole cards, p(history|hopp(cc)),
is computed using the probability of a certain betting action given the game
state, p(alhopp(cc)), which is the core of the opponent model. If we would as-
sume independence among the actions of an opponent, then p(history|hop,(cc))
would come down to a product over the individual actions. This is obviously
not the case. A simple way to include the correlation among the betting actions
inside a round is given by the following equation:

1
Pwin = N ; win(cc)

opp

x p(history|hopp(cc)),

p(alhopp(cc))

H Zaehistory(,pp,rnd p(a)

p(history|hopp(cc)) =

)

na
rnd opp,rnd

where naopp,rna is the number of actions of an opponent opp in a round rnd.

Estimating p(a|hepp(cc)) can be done in various ways. Currently, we use a
generic opponent model, fitted to a game database that includes human games
played on IRC, and games generated by self-play.

Action Selection McRAISE’s action selection is based on a straightforward
estimate of the expected value of each actions followed by selecting the action
with the highest value. Given the current situation s and the estimate of EPP,
DPwin = Pwin($), the expected value of an action a is estimated by

Q(S> a) = pwinn(a7 S) - B(aa S)a
where I1(a, s) is the estimated pot size provided that action a is executed and

B(a, s) is the contribution to the pot. For estimating II(a,s) and B(a,s), we
assume that every player checks from this point on.

4.2 Lines of Action

The rules LOA is a chess-like game with a connection-based goal. The game is
played on an 8 x 8 board by two sides, Black and White. Each side has twelve
pieces at its disposal. The players alternately move a piece, starting with Black.
A move takes place in a straight line, exactly as many squares as there are pieces
of either colour anywhere along the line of movement. A player may jump over its
own pieces. A player may not jump over the opponent’s pieces, but can capture
them by landing on them. The goal of a player is to be the first to create a
configuration on the board in which all own pieces are connected in one unit.
The connections within the unit may be either orthogonal or diagonal.

MIA MIA 44+ is a world-class LOA program, which has won the LOA tourna-
ment at the eighth (2003) and ninth (2004) Computer Olympiad. It is considered
as the best LOA playing entity of the world [17]. Here we will focus on the pro-
gram component optimised in the experiments, the realisation-probability search
(RPS) [16]. The RPS algorithm is a new approach to fractional plies. It performs
a selective search similar to forward pruning and selective extensions. In RPS the
search depth of the move under consideration is determined by the realisation
probability of its move category. These realisation probabilities are based on the
relative frequencies which are noticed in master games. In MIA, the move cat-
egories depend on centre-of-mass, board position, and capturing. In total there
are 277 weights eligible to be tuned. Levy [10] argues that it may be necessary
for a computerised search process to have different numbers for the categories
than the ones extracted from master games. Therefore, we also think there is
still room to improve the algorithm’s performance by tuning its weights.

5 Experiments

In poker, we tested the RSPSA algorithm by optimising two components of
McRaAIsE, the opponent model and the action selection. For both components,
we compare the performance resulting by using RSPSA with the performance
given by an alternative (state-of-the-art) optimisation algorithm. The experi-
ments for the opponent-model optimisation are described in section 5.1 and for
the move-selection optimisation in Section 5.2. In LOA, the RSPSA algorithm
is employed to tune the realisation-probability weights in MIA. According to
[7] these weights belong to a class of parameters (termed class-S search deci-
sions) that can be evaluated using search trees. In Section 5.3 we show how this
property is exploited for improving the efficiency of the learning.

5.1 Tuning the Opponent Model

The opponent model of MCRAISE is embodied in the estimation of p(a|hopp(cc))
(see Section 4.1). The model uses in total six parameters.

For problems where the number of parameters is small, FDSA can be a
natural competitor to SPSA. We combined both SPSA and FDSA with RPROP.
The combined FDSA algorithm will be denoted in the following by RFDSA.
Some preliminary experiments were performed with the standard SPSA, but
they did not produce reasonable results (perhaps due to the anisotropy of the
underlying optimisation problem).

A natural performance measure of a player’s strength is the average amount
of money won per hand divided by the value of the small bet (sb/h). Typical
differences between players are in the range of 0.05 to 0.2sb/h. For showing that
a 0.05sb/h difference is statistically significant in a two player game one has to
play up to 20,000 games. It is possible to speed up the evaluation if antithetic
dealing is used as proposed in Section 3.3. In this case, in every second game
each player is dealt the cards which his/her opponent had the game before, while
the community cards are kept the same. According to our experience, antithetic
dealing reduces the necessary number of games by at least four. This technique
is used throughout the poker experiments.

n+ n— 4o 6~ 5T AN batchsize
RSPSA (OM) 1.1 0.85 0.01 1le-3 1.0 4 40 x 2 x 250
RFDSA (OM) 1.1 0.85 0.01 1e-3 1.0 5 6 X 2 x 1500
RSPSA (EF) 1.2 0.8 0.05 1le-3 1.0 /0.7 100 x 2 x 100
RSPSA (POL) 1.1 0.9 0.01 le-3 1.0 4/0.3 100 x 2 x 100
TD (EF) 1.2 0.5 0.1 le-6 1.0 0.9 10000

Table 1. Learning parameters of RSPSA and RFDSA for opponent model (OM),
RSPSA and TD for evaluation function (EF) and RSPSA for policy (POL) learning.
N+, n—, do (the initial value of d;;), 6~ and §+ are the RPROP parameters; A is the
SPSA (or FDSA) perturbation size, A is the parameter of TD; batchsize is the number
of performance evaluations (games) in an iteration which, for RSPSA and RFDSA, is
equal to the product of the number of perturbations (g), the number of directions (2)
and the number of evaluations per perturbation ().

016 T

RSPSA —4— 04 SpvTD (EF) ——1 |
RFDSA +—— RSPSA (EF) —a—
RSPSA (POL) —e—

O (EF) ——1

014 4 02 B
012 4 o B

02 03 T T T T T T T 7]
o1 4

04

06

006 |- K//\/

performance (sh/h)
performance (sb/h)

01 L L L L L L
20 40 60 80 100 120 140 160

60 80 100 120 140 0 20 40 60 80 100 120 140 160 180
iteration iteration

Fig. 1. Learning curves in poker: RSPSA and RFDSA for opponent model learning
(left) and RSPSA and TD for policy and evaluation function learning (right). The
graphs are obtained by smoothing the observed performance in windows of size 15.
The error bars were obtained by dropping the smallest and largest values within the
same windows centred around their respective coordinates.

0 20 40

In the process of estimating the derivatives we employed the “Common Ran-
dom Numbers” method: the same decks were used for the two opposite perturba-
tions. Since many of the decks produced zero SPSA differences, thus producing
zero contribution to the estimation of the sign of the derivatives, those decks that
resulted in no-zero differences were saved for reuse. In subsequent steps, half of
the decks used for a new perturbation were taken from those previously stored,
whilst the other half was generated randomly. The idea of storing and reusing
decks that ‘make difference’ can be motivated using ideas from importance sam-
pling, a method known to decrease the variance of Monte-Carlo estimates.

The parameters of the algorithms are given in Table 1. Note that the perfor-
mance corresponding to a single perturbation was evaluated by playing games
in parallel on a cluster of sixteen computers. The number of evaluations (games)
for a given perturbation was kept in all cases above 100 to reduce the communi-
cation overhead. The parameters of the opponent model were initialised to the
original parameter settings of McRAISE.

The evolution of performance for the two algorithms is plotted in Figure 1(left)
as a function of the number of iterations. The best performance obtained for
RSPSA was +0.170sb, whilst that of for REDSA was +0.095sb. Since the per-
formance resulting from the use of RSPSA is almost twice as good as that of
resulting from the use of REDSA, we conclude that despite the small number of
parameters, RSPSA is the better choice here.

5.2 Learning Policies and Evaluation Functions

The action selection mechanism of McRAISE is based on a simple estimation of
the expected payoffs of actions and selecting the best action (see Section 4.1).
This can be cast as a 1-ply search w.r.t. the evaluation function V if s’ is the
situation after action a is executed from situation s and if we define V(s') =
Q(s,a). In the experiments we represent either V or) with a neural network. In
the first case the output of the neural network for a given situation s represents
V'(s) that is used in the 1-ply search, whilst in the second case the neural network
has three outputs that are used (after normalisation) as the probabilities of
selecting the respective next actions. The input to the neural networks include
EPP, the strength of the player’s hand (as the a-priori chance of winning), the
position of the player, the pot size, the current bet level and some statistics
about the recent betting actions of the opponent.

Learning evaluation functions is by far the most studied learning task in
games. One of the most successful algorithm for this task is TD-learning and the
best known example of successfully training an evaluation function is TDGam-
mon [14]. By some researchers, the success can mostly be attributed to the highly
stochastic nature of this game. Poker is similarly stochastic hence TD-algorithms
might enjoy the same benefit. Temporal-difference learning had some success in
deterministic games as well, e.g. [18]. In our experiment we use a similar de-
sign as the one used in MIA, combining TD(A) with RRPOP (one source for the
motivation of RSPSA comes from the success of combining TD(A) and RPROP).

The parameters of the algorithms are given in Table 1. For RSPSA the
same enhancements were used as in Section 5.1. We tested experimentally four
algorithms: (1) RSPSA for tuning the parameters of an evaluation function
(RSPSA(EF)), (2) RSPSA for tuning a policy (RSPSA(POL)), (3) TD for tun-
ing an evaluation function (TD(EF)), and (4) TD for evaluation function tuning
with a supervised start-up (spvID(EF)). For the latter a simple supervised al-
gorithm tuned the neural network used as the evaluation function to match
the evaluation function that was described in Section 4.1. The learning curves
are given in Figure 1(right). The best performance obtained for RSPSA(EF) was
+0.194sb /h, for RSPSA(POL) it was +0.152sb/h, for TD(EF) it was +0.015sb/h
and for spyTD(EF) it was +0.220sb/h. It is fair to say that TD performed better
than RSPSA, which is a result one would expect given that TD uses more in-
formation about the gradient. However, we observe that for TD it was essential
to start from a good policy and this option might not be always available. We
note that although the two RSPSA algorithms did not reach the performance
obtained by the combination of supervised and TD-learning, they did reach a
considerable performance gain even though they were started from scratch.

5.3 Tuning the Realisation-Probability weights

Generally the parameters of a game program are evaluated by playing a number
of games against a (fixed) set of opponents. In [7], it was noted that for pa-
rameters such as search extensions alternative performance measures exists as
well. One such alternative is to measure the ‘quality’ of the move selected by the

n+ n— o 6~ 5T AN batchsize
RSPSA (GR) 1.2 0.8 0.005 1e-3 1.0 6/0.7 500 x 2 x 1
RSPSA (MS) 1.2 0.8 0.005 1e-3 1.0 6/0.7 5000 x 2 x 1

Table 2. Learning parameters of RSPSA for realisation-probability weights using game
result (GR) and move score (MS) for evaluation.

056 T T T T

performance (game result)
performance (move score)

0 10 w0 50 60 "o 10 e 0 50 60
iteration

Fig. 2. Learning curves for RSPSA on game result (left) and moves score (right) as
a function of the number of iteration. The graphs are obtained by smoothing the
observed performance in windows of size 10. The error bars were obtained by dropping
the smallest and largest values within the same windows centred around their respective
coordinates.

Lo %0
iteration

search algorithm (constrained by time, search depth or number of nodes). The
quality of a move was defined in [8] as the negative negamax score returned by
a sufficiently deep search for the position followed by the move. In the following,
we describe two experiments. In the first, the performance is evaluated by game
result. The result is averaged over 500 games played against five different oppo-
nents starting from 50 fixed positions with both colours. Each opponent is using
a different evaluation function. Each player is searching a maximum of 250,000
nodes per move. In RSPSA the gradient is estimated with 500 perturbations,
using one game per perturbation. The common random number technique is im-
plemented in this case by using the same starting position, same opponent and
same colour for both the positive and the negative sides. In the second experi-
ment the performance is evaluated by move score. The move score is averaged
over a fixed set of 10,000 positions. For selecting the move the search is lim-
ited to 250,000 nodes. For evaluating the move a deeper search is used with a
maximum of 10,000,000 nodes. Since the score of a move does not depend on
the realisation-probability weights, they are cached and reused when the same
move is selected again (for the same position). This way, the deeper search is
performed far less frequently then the shallower search. The RSPSA gradient
is estimated with 5000 perturbations. Each side of a perturbation is evaluated
using one position selected randomly from the set of 10,000 positions (the same
position for both sides). Considering that the average game length in LOA is at
least 40 ply, in the second experiment the gradient is estimated approximately
four times faster then in the first. Moreover, according to our observation, the
estimates with move scores are less noisy as well. The parameters of the RSPSA
algorithm for the two experiments are given in Table 2.

The learning curves for the two experiments are plotted in Figure 2. Since
the two experiments are using different performance measures, the performance

for the two curves cannot be compared directly. Intuitively, the performance
gain for the experiment using move scores (right) seems to be more significant
than the one using game result. A more direct comparison can be performed
by comparing the performance, measured as game result, of the best weight
vector of each curve. The best performance obtained in the first experiment was
0.55, and the average game result corresponding to the best vector of the second
experiment was 0.59. Therefore, we may conclude that using the move scores for
estimating the performance improves the efficiency of the RSPSA algorithm.

6 Conclusions

This article investigated the value of a general purpose optimisation algorithm,
SPSA, for the automatic tuning of game parameters. Several theoretical and
practical issues were analysed, and we have introduced a new SPSA variant,
called RSPSA. RSPSA combines the strengths of RPROP and SPSA: SPSA is
a gradient-free stochastic hill-climbing method that requires only function eval-
uations. RPROP is a first-order method that is known to improve the rate of
convergence of gradient ascent. The proposed combination couples the perturba-
tion parameter of SPSA and the step-size parameters of RPROP. It was argued
that this coupling is natural.

Several other methods were considered to improve the performance of SPSA
(and thus that of RSPSA). The effect of performing a larger number of pertur-
bations was analysed. An expression for the mean-square error of the estimate
of the gradient was derived as the function of the number of (noisy) evaluations
of the objective function per perturbation (¢) and the number of perturbations
(r). It was found that to optimise the mean-square error with a fixed budget
p = qr, the number of perturbations should be kept at maximum. We suggested
that besides using the method of “common random numbers”, the method of
antithetic variables should be used for the further reduction of the variance of
the estimates of the gradient. These methods together are estimated to achieve
a speed-up of factor larger than ten (since a smaller number of function evalua-
tions is enough to achieve the same level of accuracy in estimating the gradient).
The overall effect of these enhancements facilitated the application of SPSA for
tuning parameters in our game programs McRAISE and MIA, whilst without the
proposed modifications SPSA was not able to yield noticable improvements.

The performance of RSPSA was tested experimentally in the games of Om-
aha Hi-Lo Poker and LOA. In poker, the optimisation of two components of
McRaAISE were attempted: that of the opponent model and the action selection
policy. The latter optimisation task was tried both directly when the policy
was represented explicitly and indirectly via the tuning of the parameters of
an evaluation function. In addition to testing RSPSA, for both components an
alternative optimiser was tested (resp. RFDSA, and TD())). On the task of tun-
ing the parameters of the opponent model, RSPSA led to a significantly better
performance as compared with the performance obtained when using RFDSA.
In the case of policy optimisation, RSPSA was competitive with TD-learning,
although the combination of supervised learning followed by TD-learning out-
performed RSPSA. Nevertheless, the performance of RSPSA was encouraging on

this second task as well. In LOA, the realisation-probability weights of MIA were
tuned by RSPSA. In the experiments, we have shown that using move scores for
performance evaluation instead of game results can speed-up and improve the
performance of RSPSA at the same time. In summary, from the experimental
study we conclude that the RSPSA algorithm using the suggested enhancements
is a viable approach for optimising parameters in game programs.

Acknowledgements We would like to acknowledge support for this project from

the Hungarian Academy of Sciences (Cs. Szepesvari, Bolyai Fellowship).

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

D. Billings, A. Davidson, T. Shauenberg, N. Burch, M. Bowling, R. Holte, J. Scha-
effer, and D. Szafron. Game tree search with adaptation in stochastic imperfect
information games. In Proceedings of Computers and Games (CG’04), 2004.

Y. Bjornsson and T. A. Marsland. Learning extension parameters in game-tree
search. Journal of Information Sciences, 154:95-118, 2003.

K. Chellapilla and D. B. Fogel. Evolving neural networks to play checkers without
expert knowledge. IEEE Transactions on Neural Networks, 10(6):1382-1391, 1999.
J. Dippon. Accelerated randomized stochastic optimization. Annals of Statistics,
31(4):1260-1281, 2003.

C. Igel and M. Hiisken. Empirical evaluation of the improved Rprop learning
algorithm. Neurocomputing, 50(C):105-123, 2003.

N. L. Kleinman, J. C. Spall, and D. Q. Neiman. Simulation-based optimization with
stochastic approximation using common random numbers. Management Science,
45(11):1570-1578, Nov 1999.

L. Kocsis. Learning Search Decisions. PhD thesis, Universiteit Maastricht, Maas-
tricht, The Netherlands, 2003.

L. Kocsis, H. J. van den Herik, and J. W. H. M. Uiterwijk. Two learning algorithms
for forward pruning. ICGA Journal, 26(3):165-181, 2003.

P. I’Ecuyer and G. Yin. Budget-dependent convergence rate of stochastic approx-
imation. SIAM J. on Optimization, 8(1):217-247, 1998.

D. Levy. Some comments on realization probabilities and the sex algorithm. ICGA
Journal, 25(3):167, 2002.

M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation
learning: The RPROP algorithm. In E.H. Ruspini, editor, Proceedings of the IEEE
International Conference on Neural Networks, pages 586—-591, 1993.

J. C. Spall. Multivariate stochastic approximation using a simultaneous perturba-
tion gradient approximation. IEEE Trans. on Author Control, 37:332-341, 1992.
J. C. Spall. Adaptive stochastic approximation by the simultaneous perturbation
method. IEEE Transactions on Automatic Control, 45:1839-1853, 2000.

G. Tesauro. Practical issues in temporal difference learning. Machine Learning,
8:257-277, 1992.

J. Theiler and J. Alper. On the choice of random directions for stochastic approx-
imation algorithms. IEEFE Transactions on Automatic Control, 2004. submitted.
Y. Tsuruoka, D. Yokoyama, and T. Chikayama. Game-tree search algorithm based
on realization probability. ICGA Journal, 25(3):132-144, 2002.

M. H. M. Winands. Informed Search in Compler Games. PhD thesis, Universiteit
Maastricht, Maastricht, The Netherlands, 2004.

M. H. M. Winands, L. Kocsis, J. W. H. M. Uiterwijk, and H. J. van den Herik.
Learning in lines of action. In Proceedings of BNAIC 2002, pages 99-103, 2002.

