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Abstract  
The determination of optimal well locations is a challenging problem in oil production since it 
depends on geological and fluid properties as well as on economic parameters. This work ad-
dresses the efficient solution of this problem by using advanced techniques for coupling three 
important components of autonomic optimization: the Integrated Parallel Accurate Reservoir 
Simulator (IPARS) for production prediction, new optimization algorithms, in particular the Si-
multaneous Perturbation Stochastic Approximation (SPSA) approach, and the Grid infrastructure 
to access computational resources on the network in a seamless way. We illustrate the methodol-
ogy using numerical results based on real data. 

1. Introduction 
Optimizing how and where wells are drilled in an oil reservoir is a problem with both high eco-
nomic impact and high complexity. Traditionally, this task is carried out by analyzing a few sce-
narios with a numerical reservoir simulator. However, this may potentially result into misleading 
decisions with large consequences. Optimization algorithms promise to perform a systematic 
exploration of a broader set of scenarios and aim at finding the optimum under some given con-
ditions.  Together with the experience of specialists, they also allow for a better assessment of 
uncertainty and reduction of risk in decision-making. The main constraint for their use is the cost 
of repeatedly evaluating different exploitation scenarios via numerical solution of a complex set 
of coupled nonlinear partial differential equations on up to millions of gridblocks.   
In this study, we present a computational framework for this problem, including Grid enabled 
technologies [4] to automatically discover and use available computational resources in a dis-
tributed environment, efficient optimization algorithms, and an efficient reservoir simulator. Us-
ing this framework, we have generated a complete dataset for a small but realistic test case in 
which only the two horizontal co-ordinates of a vertical well are subject to optimization. This 
large dataset is at the outer reaches of what is presently feasible with today's computational fa-
cilities. The test case shows a number of pathologies that also need to be expected in more realis-
tic problems, including a large number of local optima. In this paper, we use it to test and explore 
how two different optimization algorithms perform. 
The optimization algorithms we present in this paper are a version of the Simultaneous Perturba-
tion Stochastic Approximation (SPSA) algorithm [8] that was modified to handle the fact that the 
optimization domain is a bounded integer lattice, and a version of a Finite Difference Gradient 
algorithm adapted to the same constraints. As will be shown, both algorithms need about as 
many function evaluations, but SPSA is significantly less prone to get caught in local maxima, 
and is thus a more reliable tool for optimization of problems with many local extrema.  
The software used for these computations builds on the DISCOVER toolkit which allows agents 
running on geographically distributed machines to communicate with each other, to detect avail-
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able resources, and to run reservoir simulations on them [2]. It is thus an ideal tool for applica-
tions that potentially run for very long times and that need to make use of computational re-
sources with availability and capabilities that may change over time. 
The paper is organized as follows. In the following section, we present the well placement prob-
lem in terms of the reservoir model and the economic model we use as an objective function. We 
also introduce the two optimization algorithms we will use on this problem. In Section 3, we 
give an overview of the Grid technology on which our software is built. Numerical results are 
then presented in Section 4, before concluding with Section 5. 

2. Description of the problem 

In this section, we provide a brief overview of the oil-water reservoir model within the IPARS 
framework. We then proceed to describe the objective function for the optimization problem. 
The last part of the section is devoted to integer versions of the SPSA and FDG optimization 
algorithms. 

2.1 The reservoir flow model  

For the purpose of this work, we describe the reservoir model by a set of partial differential 
equations for the conservation of mass of each component m=o,w  (oil and water): 
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Here, φ  is the porosity of the porous medium, Nm  the concentration of a phase m, and qm the 
sources (production and injection rates).  The fluxes Um are defined using Darcy's law which, 
with gravity ignored, reads as mmmm PKU ∇= λρ ,  where mρ  denotes the density of the phase m, 

K the permeability tensor, mλ  the mobility of a component, and Pm the pressure of a phase.  Ad-
ditional equations specifying volume, capillary, and state constraints are added, and boundary 
and initial conditions complement the system.  Finally, mmm SN ρ=  with Sm  denoting saturation 
of the phase m (for more information, see e.g., [3]). 

The continuous problem is discretized using mixed finite elements. The resulting discrete model 
is solved by the IPARS (Integrated Parallel Accurate Reservoir Simulator) software developed at 
the Center for Subsurface Modeling at The University of Texas [6]. IPARS is a parallel reservoir 
simulation framework for modeling multiphase, multiphysics flow in porous media [7,9]. 

2.2 The economic revenue model 

In general, the economic value of production is a function of the time of production and of injec-
tion and production rates in the reservoir. Neglecting fixed costs, we define our objective func-
tion by summing, over the time horizon [0,T],  the revenues from produced oil over all produc-
tion wells, and subtracting the costs of disposing produced water and the cost of injecting water: 
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The coefficients co, cw,disp and cw,inj are the prices of oil and the costs of disposing and injecting 
water, in dollars per barrel each. The exponential factor models that up-front costs have to be 
paid off with interest. Finally, we define fT (p) to be the negative total revenue. With the simula-
tion model and objective function described above, the optimization problem reads: Find the 
optimal well location p* such that  

( )pfp T
Pp∈

= minarg* .     (3) 
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If no confusion is possible, we drop the subscript from fT  when we compare function evaluations 
for the same time horizon T but different well locations p. We note that in the discrete model, 
possible well locations are only cell-block mid-points. P  is thus a bounded integer lattice. 

2.3 Optimization algorithms 

The first optimization algorithm we consider is an integer version of the Simultaneous Perturba-
tion Stochastic Approximation (SPSA) method. First introduced by Spall [8], it uses the follow-
ing idea: in each iteration, choose a random direction in search space. By using two evaluation 
points in this and the opposite direction, determine if the function values increase or decrease in 
this direction, and get an estimate of the value of the derivative of the objective function in this 
direction.  Then take a step in the descent direction with a step length that is the product of the 
approximate value of the derivative and a factor that decreases with successive iterations.  

In its basic form, SPSA can only operate on unbounded continuous sets, and is thus unsuited for 
optimization on our bounded integer lattice P. A modified SPSA algorithm for such problems 
was first proposed and analyzed in [5]. While their method involved fixed gain step lengths and 
did not incorporate bounds, both points are easily integrated. In order to describe our algorithm, 
let us define  .  to be the operator that rounds a real number to the next integer of larger magni-
tude. Furthermore, let Π  be the operator that maps every point outside the bounds of our optimi-
zation domain onto the closest point in P and that does not modify points inside these bounds. 
Then the integer SPSA algorithm which we will use for the computations in this paper is stated 
as follows (for more details see [1,2]):  

Algorithm 2.1 (Integer SPSA)  
1. Set k=1, .602 ,101.0 == αγ  

2. While maxKk <  or convergence has not been reached do  

2.1. Choose a random search direction k∆  with ( ) { } nllk ≤≤+−∈∆ 1  ,1,1  

2.2. Compute    , αγ k

a
a

k

c
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2.3. Evaluate ( )( )kkk cpff ∆+Π=+  and ( )( )kkk cpff ∆−Π=− . 

2.4. Compute ( ) ( ) ( )./ kkkkkkk cpcpffg ∆−Π−∆+Π−= −+   

2.5. Set  ( )kkkkk gapp ∆−Π=+1 . 

2.6. Set k = k + 1 
end While 

The second algorithm is a finite difference gradient (FDG) algorithm that shares most of the 
properties of the SPSA algorithm discussed above. In particular, we use the same methods to 
determine the step lengths for function evaluation and iterate update, and the same convergence 
criterion. However, instead of a random direction, we compute the search direction by a two-
sided finite difference approximation of the gradient. This algorithm requires 2n function evalua-
tions per iteration, in contrast to the 2 evaluations in the SPSA method. However, we can expect 
better search directions from it.  

3. The Grid computing paradigm 

The Grid  is rapidly emerging as the dominant paradigm for wide area distributed computing [4]. 
Its goal is to provide a service-oriented infrastructure that leverages standardized protocols and 
services to enable pervasive access to, and coordinated sharing of geographically distributed 
hardware, software, and information resources.  
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The software implementing the various steps in the computations outlined in the previous section 
consists of a number of modules that are coupled together using this Grid technology. These 
modules are (see Fig. 1): (1) The optimization service; (2) the IPARS factory, that upon request 
starts IPARS for a given well location or retrieves previous solutions from a database system; (3) 
IPARS itself, performing the parallel simulation; (4) the economic revenue model that takes the 
IPARS output and computes the economic value of the oil produced in the scenario for which the 
simulation was run; and, (5) the clients requesting the optimization service. 

These modules can run on different machines at physically different locations,  and communicate 
with each other as Grid enabled services using the DISCOVER Computational Collaboratory 
that provides the mechanisms for distributed  applications [2]. In particular, DISCOVER pro-
vides the tools to find, interact with, and enquire the capabilities of services running on distrib-
uted machines coupled via the Internet. It builds on the Globus toolkit, CORBA Commodity 
Grid, and a number of other standardized services. 
 

 
 

Figure 1. Optimization process on the Grid. 
 

The advantages of this approach are apparent: while the optimization server  can run on a user’s 
desktop machine, it communicates with a central IPARS factory instance that can start IPARS 
runs on other machines, including on cluster computers and workstations, thus distributing the 
actual workload  to available resources in the most efficient way [2].  

4. Numerical results 

We consider a relatively simple reservoir [ ] [ ]5120,04880,0 ×=Ω  of roughly 25 million ft2, which 
is discretized by 6461×  spatial grid blocks of  80 ft  length along each horizontal direction, and 
a depth of 30 ft.  Hence, the model consists of 3904 grid blocks. The reservoir under study is 
located at a depth of 1 km and corresponds to a 2D section extracted from a real field in the Gulf 
of Mexico.  The porosity has been fixed at 2.0=φ  but the reservoir has a heterogeneous perme-
ability field. It is assumed to be surrounded by impermeable rock. The fluids are initially in equi-
librium with water pressures set to 2600 psi and oil saturation to 0.7. The reservoir model con-
sists of 5 fixed wells: 2 water injectors at the bottom left and 3 oil producers at the top right cor-
ner of the domain. Injection and production rates are computed by specifying a fixed bottom hole 
pressure. The location of a third injection well is subject to optimization. The set of possible well 
locations in the discrete model is the integer lattice of grid block midpoints, i.e. 

{ } { }5080,...,200,120,404840,...,200,120,40 ×=P . 

In all cases, we ran our simulations for T=2000 days. We undertook to generate a large realistic 
data set for the evaluation of optimization algorithms by computing economic revenues for all 
3904 possible well locations, and for 200 different time horizons T between 200 and 2000 days. 
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The data set therefore consists of ( )pfT  for 200 values of T and 3904 values for p. A plot of 

( )pf 2000  is shown in Fig. 3. Each simulation for a particular p took 20-30 minutes on a Linux PC 
with a 2GHz AMD Athlon processor, for a total of almost 2000 CPU hours. 

         
Figure 2. Pressure (left) and saturation (right) contours after 2000 days of simulation. 

Note that while we would in general like to compute the global optimum, we will usually be con-
tent if the algorithm finds a solution that is almost as good. This is important in the present con-
text where the revenue surface plotted in Fig. 3 has 72 local optima, with the global optimum 

being ( )( ) 81009804.1920,2920 ⋅−== tpf . However, there are 5 more local extrema within only 
half a percent of this optimal value, which makes finding the global optimum rather complicated. 
The white marks in Fig. 3 (right) indicate the best well positions found by the SPSA algorithm 
when started from 7 different points. As can be seen, SPSA is able to find good locations from 
arbitrary starting points, even tough it is unable to find the global optimum every time. A typical 
optimization run showing both the path SPSA takes and convergence of the objective function is 
depicted in Fig. 4. 

In order to evaluate the Integer SPSA algorithm, we start it from every possible location pi in the 
set P, and for each of these 3904 SPSA runs record the point ip̂  where it terminated, the func-

tion value ( )ipf ˆ  at this point, and the number Ki of function evaluations. Since multiple function 
evaluations at the same point can be cached and are therefore inexpensive, we also record the 
number Li  of unique function evaluations.  

         
Figure 3. Surface view of the search space (left) and contour view with solutions obtained by 

SPSA with different initial guesses (right, with solutions indicated by white diamonds).  
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We consider the following statistical properties of SPSA: (1) What is the average value 

( )∑ =
= 3904

1
,3904/ˆ

i ipff  and how close is it to ( )*pf ? (2) what is the value 50ϕ  such that 

( ) 50ˆ ϕ≥ipf  in 50% of runs (and similar for the 95th percentile, 95ϕ  )? And, (3) what are the 

average number 3940/
3904

1∑ =
=

i iKK  and ∑ =
= 3904

1
3904/

i iLL  of function evaluations and unique 

function evaluations to obtain convergence? 

 

 
Figure 4. Computed well positions and corresponding revenue value during optimization. 

The answer to the first two questions is closely related to the probability with which the algo-
rithm terminates at any given point Pp ∈ . For the two functions ( ) ( )pfpf 2000500  and , this prob-

ability of stopping at p is shown in Fig. 5. It is obvious that the locations where the algorithm 
stops are close to the (local) optima of the solution surface. 

 

 

Figure 5. Probability surface for the SPSA algorithm  at 500 days (top-left),2000 days (top-
right) and for the FDG algorithm at 500 days (bottom-left) and 2000 days (bottom-right) of 

simulation.    
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T ( )*pfT  Tf  50
Tϕ  95

Tϕ  TK  TL  

500 -2.960 710⋅ -2.853 710⋅ -2.920 710⋅ -2.507 710⋅  52.2 42.6

1000 -6.696 710⋅ -6.412 710⋅ -6.490 710⋅ -5.834 710⋅  41.0 33.1

1500 -9.225 710⋅ -9.011 710⋅ -9.139 710⋅ -8.286 710⋅  40.8 33.1

2000 -1.098 810⋅ -1.075 810⋅ -1.086 810⋅ -1.046 810⋅  37.8 30.2

Table 1. Statistical properties of termination points of the integer SPSA algorithm. 

 

T ( )*pfT  Tf  50
Tϕ  95

Tϕ  TK  TL  

500 -2.960 710⋅ 2.708 710⋅  -2.794 710⋅ -2.232 710⋅  52.6 24.4

1000 -6.696 710⋅ -6.222 710⋅ -6.480 710⋅ -5.572 710⋅  53.0 28.1

1500 -9.225 710⋅ -8.837 710⋅ -9.133 710⋅ -8.211 710⋅  55.5 32.4

2000 -1.098 810⋅ -1.062 810⋅ -1.083 810⋅ -1.044 810⋅  57.0 31.5

Table 2. Statistical properties of termination points of the integer FDG algorithm. 

The statistical qualities of termination points of the integer SPSA algorithm are summarized in 
Table 1 for the four data sets at T=500, 1000, 1500, 2000 days. The table shows that on average 
the stopping position is only a few percent worse than the global optimum. The 50ϕ and 95ϕ  val-
ues are important in the decision how often to restart the optimization algorithm from different 
starting positions. Such restarts may be deemed necessary since the algorithm does not always 
stop at the global optimum, and we may want to improve on the result of a single run by starting 
from an improved initial guess. While 95ϕ  reveals what value of  ( )ipf ˆ  we can expect from a 

single run in 95% of cases (“almost certainly”), the 50ϕ  value indicates what value we can ex-
pect from the better of two runs started independently. The conclusion from these values is that 
to be within a few percent of the optimal value one run is not enough, while two are. Finally, the 
last two columns indicate that the algorithm, on average, only needs 37-52 function evaluations 
to converge; whereas, if we cache previously computed values, only 30-42 function evaluations 
are required.  

Table 2 show the results obtained for the Finite Difference Gradient algorithm. From the table, it 
is obvious that for earlier times, the algorithm needs less function evaluations. However, it also 
produces worse results, being significantly farther away from the global optimum on average. 
The reason for this is seen in the bottom row of Fig. 5 where we show the termination points of 
the algorithm: it is apparent that the algorithm quite frequently gets stuck in local optima, at least 
much more frequently than the SPSA algorithm. This leads to an early termination of the algo-
rithm and suboptimal overall results. 

5. Conclusions 
We have presented the application of integer versions of the SPSA and the FDG optimization 
algorithms to find the optimal well location on a realistic dataset from the Gulf of Mexico. In 
order to validate their solutions, an exhaustive evaluation of the search space was performed. We 
have compared the quality of solutions as well as their efficiency. In particular, we have shown 
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that the SPSA algorithm yields very good solutions with relatively few function evaluations, and 
is capable of handling situations with many local extrema significantly better than a simple gra-
dient-based algorithm. This knowledge is useful for tackling larger problems for which the exact 
optimum is unknown and impossible to compute. Given the size of the problem and the expen-
siveness of functions evaluations (20-30 minutes of CPU time per function evaluation), the com-
putations were  performed using a Grid enabled software framework, in which optimizers,  simu-
lators, and function evaluators are separate agents on different,  geographically distributed ma-
chines. These agents are able to automatically detect the availability of computational resources, 
and start instances of the IPARS reservoir simulation software on appropriate machines while 
still providing the researcher with the ability to control the various distributed processes from the 
desktop. We presently prepare a more in depth comparative analysis of SPSA with other optimi-
zation algorithms for the well placement problem [1].  
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