
Computer Networks 50 (2006) 1938–1951

www.elsevier.com/locate/comnet
Measurement-based optimal routing on overlay architectures
for unicast sessions q

Tuna Güven a, Richard J. La a,*, Mark A. Shayman a, Bobby Bhattacharjee b

a Department of Electrical and Computer Engineering, University of Maryland, A.V. Williams Building,

College Park, MD 20742, United States
b Department of Computer Science, University of Maryland, College Park, MD, United States

Available online 8 November 2005
Abstract

We propose a measurement-based routing algorithm to load-balance intradomain traffic along multiple paths for multi-
ple unicast sources. Multiple paths are established using overlay nodes. The distributed algorithm is derived from simul-
taneous perturbation stochastic approximation (SPSA) and does not assume that the gradient of an analytical cost
function is known. Instead, we rely on (potentially) noisy estimates from local measurements. Using the analytical model
presented in the paper, we first show the almost sure convergence of the algorithm to the optimal solution under a decreas-
ing step size policy (as with a standard SPSA model). Motivated by practical concerns, we next consider the constant step
size case, for which we establish weak convergence. We provide simulation results to demonstrate the advantages of our
proposed algorithm under various network scenarios, and also present a comparative study with MATE (an existing opti-
mal routing algorithm).
� 2005 Elsevier B.V. All rights reserved.

Keywords: Mathematical programming/optimization; Load balancing; Simulations
1. Introduction

Rapid growth of the Internet and the emergence
of new demanding services have sparked interest in
Internet traffic engineering. As defined in [1], traffic
engineering deals with the issue of performance
evaluation and performance optimization of opera-
1389-1286/$ - see front matter � 2005 Elsevier B.V. All rights reserved

doi:10.1016/j.comnet.2005.09.030

q A shorter version of this work appeared in the Proceedings of
the IEEE Conference on Computer Communications (Infocom)
2004.

* Corresponding author. Tel.: +1 301 405 4914; fax: +1 301 314
9281.

E-mail address: hyongla@isr.umd.edu (R.J. La).
tional IP networks and encompasses the measure-

ment, characterization, modeling and control of the
Internet traffic.

Due to the evolution of the Internet from
ARPANET, traditional routing algorithms for IP
networks are mostly based on shortest-path routing.
However, methods relying on a single path between
a source–destination pair often do not utilize net-
work resources efficiently and offer limited flexibility
for traffic engineering [1]. Various solutions derived
from shortest-path routing algorithms have been
suggested, mainly by modifying link metrics in
accordance with the network dynamics (e.g.,
[2,3]). However, these approaches have several
.

mailto:hyongla@isr.umd.edu

T. Güven et al. / Computer Networks 50 (2006) 1938–1951 1939
shortcomings that have not been addressed satisfac-
torily. First, they lead to network-wide effects and
can result in undesirable and unanticipated traffic
shifts [1]. Second, these schemes cannot distribute
the load among the paths with different costs.

This paper focuses on the issue of traffic mapping

(load balancing). More specifically, given some
source–destination traffic matrix, we are interested
in finding a traffic assignment onto pre-established
paths so that the overall system performance is
optimized with respect to a selected perfor-
mance measure (e.g., sum of link costs). In this
paper we adopt an overlay architecture proposed
in [5] in order to establish multiple paths between
a source–destination pair. However, our basic
approach can be directly applied to other types of
networks, such as MPLS-based networks.

We propose a distributed optimal routing algo-
rithm based on stochastic approximation, using
local network state information. Our model is simi-
lar to that of [4], with the following differences. In
[4] the authors mention that the cost derivatives can-
not be computed and hence, should be estimated by
measurements. However, the mathematical analysis
given in [4] implicitly assumes that the analytical
gradient function is available. In addition, the
details on how a cost gradient is estimated are not
provided, and the method described in [6] appears
to be a variant of a well-known finite differences

method [7,8]. However, the issue of gradient esti-
mate is not clearly or explicitly stated in the afore-
mentioned references. We believe that the gradient
estimation method plays a crucial role in the sense
that the convergence of the optimal routing algo-
rithm strongly depends on the conditions defining
this estimation process as described in the stochastic
approximation literature (see [8–10]).

In this study we consider the same problem (of
mapping traffic onto multiple end-to-end paths)
while relaxing the assumption that the analytical
gradient function is available. We derive our pro-
posed measurement-based algorithm from the idea
of simultaneous perturbation stochastic approxima-
tion (SPSA). SPSA allows us to greatly reduce the
number of measurements required for estimating
the gradient, while at the same time it achieves
approximately the same level of accuracy as the
classical finite differences method at each iteration.
By reducing the number of measurements, our algo-
rithm achieves faster convergence. This is because
each measurement requires a non-negligible amount
of time in a networked environment. We will detail
these issues of estimation, measurement, and con-
vergence in the rest of the paper, and we show in
Section 5, using simulations, that our SPSA based
algorithm outperforms the algorithm proposed in
[4].

From a broader perspective, a special case of the
proposed algorithm (i.e., single source–destination
(SD) case) provides an optimal solution to more
general problems that have a simplex constraint

set. Although applications of SPSA to the con-
strained optimization problems have generated a
certain level of interest in the literature, the simplex
constraint set problems have not been handled
properly as we will discuss in the following section.

Note that the SPSA algorithm can achieve
almost sure convergence, provided that the step size
parameter diminishes with the number of iterations.
However, such a policy may not be practical under
dynamic network conditions as the algorithm may
not be able to react to network changes in a timely
manner after the step size parameter becomes small.
As a result, in practice, we have to reset the step size
value after some time interval to ensure that the
algorithm is able to react to network dynamics
appropriately. An obvious alternative is the use of
a constant step size. Even though it is difficult to
obtain similar almost-sure convergence in a con-
stant step-size case, it has been shown in [11] that
weak convergence (i.e., convergence in distribution)
is possible under certain conditions. While the weak
convergence is not as strong as almost-sure conver-
gence, we demonstrate in Section 5 that it does not
have a significant effect on the performance of the
algorithm in a practical sense.

The rest of the paper is organized as follows: In
Section 2 we define the optimization problem, and
present a brief overview of stochastic approxima-
tion. In Section 3, we present an optimal routing
algorithm, and prove its stability and optimality.
We discuss implementation issues in Section 4.
Section 5 describes the experimental setup and
presents a set of simulation results. We conclude
the paper and discuss possible topics of future work
in Section 6.

2. The optimization problem

2.1. The routing model

In this section, we define the optimization prob-
lem of interest, describe the network model used
for the analysis, and list basic assumptions we make.

1940 T. Güven et al. / Computer Networks 50 (2006) 1938–1951
We will closely follow the formulation in [4] due to
the similarity of the problem.

The network is modeled by a set L of unidirec-
tional links. Let S = {1, 2, . . . ,S} denote the set of
SD pairs. An SD pair s has a set Ps � 2L of paths
available to it, and Ns = jPsj, i.e., Ns is the number
of paths available for SD pair s. Denote the set of
links that belong to at least one path p 2 Ps by
Ls � L. With a little abuse of notation we let Ps =
{1,2, . . . ,Ns}, and define the set of all paths P =
[s2SPs = {1,2, . . . ,N}, where N ¼

P
s2SN s. While

by definition, none of the paths can be used by more
than one SD pair, any two paths can share a link.

The total input traffic rate of an SD pair s is
denoted by rs, and the SD pair routes xsp amount
of traffic on path p 2 Ps such that
X

p2P s

xsp ¼ rs; for all s. ð1Þ

Let xs = (xsp,p 2 Ps) be the rate vector of SD pair s,
and let x = (xs, s 2 S) be the vector of all rates. The
flow rate on a link l 2 L is given by

xl ¼
X

s2S

X

p2P s: l2p

xsp. ð2Þ

For each link l, Cl(x
l) represents the link cost as a

function of the link flow rate xl. We assume that,
for all l, Cl(Æ) is convex and continuously differentia-
ble. The objective is to minimize the total cost
CðxÞ ¼

P
lClðxlÞ by mapping the traffic on paths

in P:

min
x

CðxÞ ¼ min
x

X

l

ClðxlÞ ð3Þ

s.t.
X

p2P s

xsp ¼ rs; 8 s 2 S; ð4Þ

xsp P �; 8p 2 P s; s 2 S; ð5Þ

where � is an arbitrarily small positive constant. For
instance, some of the control packets may be routed
along different paths available to an SD pair.

Theoretically if the exact gradient values are
known, one can use the well known gradient projec-
tion algorithm to solve this constrained optimiza-
tion problem, where the constraint set H is defined
by (4) and (5). Each iteration of the algorithm takes
the form:

xðk þ 1Þ ¼ PH½xðkÞ � aðkÞ$CðkÞ�; ð6Þ
where $CðkÞ is the gradient vector whose (s,p)th
element is the first derivative length of path p 2 Ps

at the kth iteration ð½$CðkÞ�sp ¼ oCðxðkÞÞ=oxspÞ,
a(k) > 0 is the step size, and PH[#] denotes the pro-
jection of a vector # onto the feasible set H with
respect to the Euclidean norm.

The above iteration can be carried out in a dis-
tributed manner by each pair s without the need
to coordinate with other pairs [12,13]. In other
words, the source of each SD pair s updates its rates
xs independently of other SD pairs:

xsðk þ 1Þ ¼ PHs ½xsðkÞ � asðkÞ$CsðkÞ�; ð7Þ

where $CsðkÞ ¼ ðoCðxðkÞÞ=oxsp; p 2 P sÞ is the vector
of first derivative lengths of paths in Ps, i.e., a sub-
vector of $CðkÞ with elements correponding to the
paths in Ps, and PHs denotes a projection onto the
feasible set Hs of SD pair s.

One problem with directly implementing (7) is
that the first derivative length of a path, oC/oxsp,
may not be available in practice and can only be
estimated empirically through noisy measurements
of the cost function. This is due to the fact that
the packet arrival processes are both stochastic
and time varying. Therefore, one must resort to a
gradient approximation method to obtain an esti-
mate to be used in (7). Stochastic approximation
methods are natural candidates for such problems.

2.2. Stochastic approximation

Stochastic approximation (SA) is a recursive pro-
cedure for finding the root(s) of equations using
noisy measurements, and is particularly useful for
finding extrema of functions [9] (e.g., [14,15]).

General constrained SA has the same form as (6)
with the gradient vector $CðkÞ replaced by its
approximation ĝðkÞ. The approximation is obtained
through measurements of C(x) around x(k). Under
appropriate conditions, one can show that x(k) con-
verges to the solution set of (3), which we denote by
x*.

A critical issue in SA is the approximation of gra-
dient vector. The standard approach motivated
from the definition of gradient is the finite differ-

ences (FD) method, in which each component of
x(k) is perturbed one at a time and corresponding
measurements y(Æ) are obtained. Typically, the ith
component of ĝðkÞ (i = 1,2, . . . ,m) under the FD
method is given by

ĝiðkÞ ¼
yðxðkÞ þ cðkÞeiÞ � yðxðkÞ � cðkÞeiÞ

2cðkÞ ;

where c(k) is some positive number, ei denotes a unit
vector with one in the ith position and zeros

1 Here asynchrony refers to the fact there might be a time lag
between SD pairs in continuous time operation in practice.

T. Güven et al. / Computer Networks 50 (2006) 1938–1951 1941
elsewhere, and y(Æ) denotes the measured cost func-
tion with measurement noise.

An alternative method for estimating the gradi-
ent is called the simultaneous perturbation (SP). In
this method, all elements of x(k) are randomly per-
turbed together to obtain two measurements. The
ith component of ĝðkÞ is computed by

ĝiðkÞ ¼
yðxðkÞ þ cðkÞDðkÞÞ � yðxðkÞ � cðkÞDðkÞÞ

2cðkÞDiðkÞ
;

where the vector of the random perturbations for
SP, D(k) = (D1(k),D2(k), . . . ,Dm(k)), needs to satisfy
certain conditions that will be discussed in the
following section. Here m denotes the dimension
of the vector x.

Both of the above approximations have a ‘‘two-
sided’’ form in the sense that they use the measure-
ments y(x(k) ± perturbation). On the other hand,
one-sided gradient approximations require measure-
ments of y(x(k)) and y(x(k) + perturbation).
Although it is known that the standard two-sided
form gives more accurate estimates compared to
one-sided forms, for real-time applications one-
sided gradient approximation may be preferred
when the underlying system dynamics change too
rapidly to get an accurate gradient estimate with
two successive measurements [7]. In this paper we
assume that the one-sided form is utilized for the
gradient approximation under both methods unless
stated otherwise.

An SA algorithm using the FD (resp. SP) gradi-
ent approximation method is referred to as a FDSA
(resp. SPSA) algorithm. One should note that, in an
SPSA algorithm the gradient approximation
requires only two cost function measurements,
regardless of the value of m. Standard (two-sided)
FD approximation requires 2m measurements to
estimate the gradient. In [9] it is shown that under
reasonably general conditions, SPSA and FDSA
achieve the same level of statistical accuracy for a
given number of iterations even though SPSA uses
m times fewer function evaluations than FDSA.
This theoretical result has been confirmed in many
numerical studies, even in cases where m is on the
order of several hundreds or thousands [7]. This is
certainly an important property especially if the
measurements are costly and/or time consuming.
Clearly, this is the case for the routing problem at
hand as measurements require resources and must
be collected and reported in a timely manner. In
other words, SPSA promises a potential for better
statistical accuracy over the same period of ‘‘time’’
due to a much shorter measurement period required
at each iteration, even though the two methods have
the same statistical accuracy with the same number
of ‘‘iterations’’. This suggests that the algorithm
based on SPSA will be able to track and respond
to changes in a network much faster than another
algorithm based on FDSA and thus improve the
overall network performance.

In [9], Spall provides a formal proof of conver-
gence of SPSA algorithm for the ‘‘unconstrained’’
case. The convergence of an SPSA algorithm under
inequality constraints are presented in [10,16]. How-
ever, these results do not consider the case where
x(k) ± c(k)D(k) 62 H, which may occur in our routing
problem. In [16] Sadegh suggests projecting x(k) to a
point x 0(k) 2 H such that x 0(k) ± c(k)D(k) 2 H. If
x 0(k) � x(k)! 0 as k!1, convergence can still
be established. However, when H is a simplex, if
cðkÞ

P
jDjðkÞ 6¼ 0 then x 0(k) ± c(k)D(k) 62 H for all

x 0(k) (as the demand constraint in (5) is violated).
Under these conditions, there is no established con-
vergence result of an SPSA algorithm that we can
directly apply to our problem. (In [10], although
authors claim that they have shown the convergence
for the case of a network of queues with similar con-
straints, they do not consider the aforementioned
issue in the proofs.)

In the next section, we will resolve this technical
issue by a simple method and present a formal proof
of the SPSA algorithm under these constraints.

3. Optimal routing using SPSA

3.1. An optimal routing algorithm—decreasing

step size

In this section we propose an optimal routing
algorithm and prove its stability and optimality.
We know from [12] that if each SD pair runs (7)
independently and asynchronously,1 the overall
algorithm converges. Let us now consider the use
of SPSA in place of (7).

At time k, SD pair s updates its rate according to

xsðk þ 1Þ ¼ PHs ½xsðkÞ � asðkÞĝsðkÞ�; ð8Þ
where ĝsðkÞ is the approximation to $CsðkÞ obtained
by the SPSA algorithm and is given by

1942 T. Güven et al. / Computer Networks 50 (2006) 1938–1951
ĝs;iðkÞ :¼ Ns

Ns � 1

ysðxðkÞ þ CðkÞDðkÞÞ � ysðxðkÞÞ
csðkÞDs;iðkÞ

¼ Ns

N s � 1

ðCþs ðkÞ þ lþs ðkÞÞ � ðC�s ðkÞ þ l�s ðkÞÞ
csðkÞDs;iðkÞ

;

for i ¼ 1; . . . ;N s. ð9Þ

Here D(k) = (Ds(k), s 2 S), Ds(k) is the random per-
turbation vector for source s at iteration k, C(k) is
an N · N diagonal matrix whose jth diagonal entry
is equal to csj (sj being the SD pair associated with
the jth component of D(k)), and ys(Æ) are the noisy
measurements of the partial cost information, which
is the summation of the link costs over the set Ls.
Specifically, C�s ðkÞ ¼ KsðxðkÞÞ :¼

P
l2Ls ClðxlðkÞÞ and

Cþs ðkÞ ¼ KsðxðkÞ þ CðkÞDðkÞÞ with lþs ðkÞ and l�s ðkÞ
being the measurement noise terms.

Note that (9) differs from the standard SA in the
following ways. First, each SD pair uses only partial

cost information (i.e., summation of the costs of the
links in Ls) as opposed to the total network cost,
which is the summation of the costs of all the
links in the network. In addition, the noise terms
observed by each SD pair are allowed to be differ-
ent. Second, while c(k) is a positive scalar in stan-
dard SA, in our case C(k) is an N · N diagonal
matrix. This allows the possibility of having differ-
ent cs(k) values for different SD pairs. Also, note
that we have an extra multiplicative factor Ns

Ns�1
in

(9) compared to the standard SA. This is due to
the projection of xs(k) + cs(k)Ds(k) to Hs for all
s 2 S using L2 projection while calculating ĝsðkÞ.
This is explained in Appendix II in detail. Finally,
if PHs ½xsðkÞ þ csðkÞDsðkÞ� ¼ xsðkÞ, the SD pair
draws a new perturbation vector Ds(k) until
xsðkÞ 6¼ PHs ½xsðkÞ þ csðkÞDsðkÞ�.

Note from (8) that SD pairs may have different
step sizes as(k). This allows a certain level of asyn-
chrony between SD pairs in the sense that SD pairs
can respond to the network changes independently
of each other to some extent.2 However, we assume
that SD pairs update their rates once every iteration
after they start the algorithm. This assumption is
reasonable in our case, for at each iteration SD pairs
should make use of the collected information that is
already available. This is, however, not to say that
the updates take place simultaneously. The errors
due to this asynchrony are assumed to be absorbed
into the error terms l�s ðkÞ in (9).
2 For instance, this formulation covers the case where SD pairs
start the algorithm at different times.
For the optimality of the new algorithm, we need
to show that (8) converges to the same point x�s as
(7) for all SD pairs. For the convergence of the algo-
rithm we assume that the following conditions are
true:

A1. C(x(k)) is differentiable for each x(k) 2 H, and
convex.

A2. Ds,i(k) are (i) mutually independent with zero
mean for all s 2 S and i 2 Ps, (ii) uniformly
bounded by some finite constant a, and (iii) inde-
pendent of (x(n), n = 0,1, . . . ,k). E[(Ds,i(k))�1]
and E [(Ds,i(k))�2] are bounded for all k.

A3. E½lð�Þ2s ðkÞ� are bounded and E½lþs ðkÞ � l�s ðkÞj
DðkÞ;Fk� ¼ 0 a.s. for all k, where Fk is the
r-field generated by {x(0), . . . ,x(k)}.

A4. (i)
P1

k¼0asðkÞ ¼ 1, (ii) as(k)! 0 as k!1,

(iii)
P1

k¼0
a2

s ðkÞ
c2

s ðkÞ
<1, (iv) cs(k)! 0 as k!1,

and (v) csðkÞ
cs0 ðkÞ
¼ Oð1Þ for all s; s0 2 S.

A5. There exists a finite positive constant M such
that
1

M
6

asðkÞ
as0 ðkÞ

6 M ð10Þ

for all s, s 0 2 S and for all k.
A6. Let âðkÞ ¼ maxs2SasðkÞ. Then, for all s 2 S

X1

k¼0

ðâðkÞ � asðkÞÞ <1; and

lim
k!1

asðkÞ
âðkÞ ¼ 1 for all s 2 S.
Proposition 1. Under Assumptions A1–A6, the

sequence x(k) = (xs(k), s 2 S) generated by the algo-

rithm defined by (8) converges to x* with probability

1, where x* is the solution set of the optimization

problem in (3), regardless of the initial vector

(xs(0), s 2 S) 2 H.
Proof. The proof of the Proposition 1 is given in
Appendix I. h
3.2. The optimal routing algorithm—constant

step size

In the previous subsection we have employed
decreasing step sizes as(k), k = 0,1, . . ., as defined
in Assumption A4. Although it is possible to use
decreasing step sizes, it is of practical importance
to consider the case with constant step size a > 0
given in the following form:

T. Güven et al. / Computer Networks 50 (2006) 1938–1951 1943
xsðk þ 1Þ ¼ PHs ½xsðkÞ � a � ĝsðkÞ�. ð11Þ
This is because in the case of decreasing step sizes,
one has to make sure that each source node resets
the step size after a certain period of time when
the step size becomes too small to effectively react
to the dynamics of the network. Consequently, such
a requirement introduces additional complexity
which can be avoided by using a constant step size.
The main difficulty with constant step size algo-
rithms is that it is difficult to establish almost sure
convergence. However, as shown in [11], under cer-
tain conditions constant step size SA algorithms can
achieve weak convergence (i.e., convergence in dis-
tribution), which can be interpreted as convergence
to a neighborhood of the optimal operating
point(s). Since the performance of the system near
the optimal operating point(s) may be comparable
to that of the optimal solution(s) in a network prob-
lem, the performance degradation, if there is any,
due to a constant step size may not be significant.
This is supported by simulation results in Section 5.

The following proposition establishes the (weak)
convergence of the algorithm with a constant step
size.

Proposition 2. Under Assumptions A1–A3, for any
d > 0, the fraction of time the sequence x(k) = (xs(k), s

2 S) generated by the algorithm defined by (11) spends

in d-neighborhood of x* on [0,k], goes to one (in

probability) as a! 0 and k!1 regardless of the

initial vector (xs(0), s 2 S) 2 H.

Proof. The proof of Proposition 2 is given in
Appendix III. h
3.3. Measurement process

In this section, we discuss some of the issues
regarding the measurement process and their
effect on the overall performance of the proposed
algorithm. We will also point out the benefits of
SPSA-based algorithms over the FDSA alter-
natives.

By definition, an FDSA-based algorithm requires
SD pair s to perturb its paths one at a time, requir-
ing Ns + 1 measurements for the one-sided form
and 2Ns measurements for the two-sided form in
each iteration for the estimation of an Ns · 1 gradi-
ent vector. For this reason, FDSA-based algorithms
need each SD pair to collect measurements (i.e., per-
turb its paths) at different times. As mentioned in
[4], this requires a coordination protocol that deter-
mines the order in which paths are perturbed. More-
over, it increases network traffic load from the
overhead.

SPSA, on the other hand, allows us to estimate
the gradient vector using only two measurements.
In the context of our routing problem, this implies
that an SD pair can perturb all of its paths simulta-
neously if an SPSA-based algorithm is employed. In
addition, it also suggests that all SD pairs can exe-
cute the perturbation in parallel without the need
for strict coordination needed in FDSA (Proposi-
tions 1 and 2). This enables SD pairs to operate
independently of each other to some extent. As a
consequence, a potential overhead that would be
incurred by a coordination protocol under an
FDSA algorithm is avoided. Furthermore, we can
significantly reduce the duration of measurement
periods by concurrently executing the measurement
process at the SD pairs. Since the statistical accu-
racy of SPSA does not degrade from that of FDSA,
we can achieve much faster convergence due to the
fact that we significantly reduce the time required
for each iteration.

Another issue regarding the measurement pro-
cess is the effect of asynchronous operation of SD
pairs in practice due to the lack of perfect synchro-
nization. It is proved in [4] that, with increasing level
of asynchrony, the convergence becomes slower.
For each s 2 S, let ts

0 be the time lag between the
time traffic measurements are collected and the time
SD pair s carries out a rate update. In other words,
ts
0 is the delay between the collection of measure-

ments and execution of an SPSA algorithm by SD
pair s. Define t0 ¼ maxs2Sts

0. Then, the larger the t0

is, the slower the convergence will be due to the
use of delayed information. On the other hand, in
the SPSA case as the level of asynchrony between
the SD pairs increases, on the average, the magni-
tude of the error term in measurements tends to
become smaller since the duration of the interval
over which the measurements overlap with each
other gets shorter, and this may cause a marginal
increase in the overall system performance. As we
will see in Section 5, these two effects mainly cancel
each other and the performance of the algorithm
does not degrade significantly if the time lag is not
large.

4. Implementation issues

In this section, we give a brief overview of an over-
lay architecture used to enable traffic engineering

3 In the simulation we have used the observed number of packet
drops, while in the model this term in the cost function can be
interpreted as the expected number of packet losses as a function
of the link load.

1944 T. Güven et al. / Computer Networks 50 (2006) 1938–1951
capabilities. The details of the overlay architecture
can be found in [5].

4.1. Path establishment

Alternative paths between SD pairs are created
using overlay nodes. The overlay nodes are located
at all source–destination nodes as well as at some
core nodes. The basic idea is similar to the ones pre-
sented in [17,18], with the difference being that the
overlay is implemented within a domain (i.e.,
intra-domain) as opposed to inter-domain. When
a packet is sent along the default path (e.g., the
shortest path), it is forwarded in the same way as
in traditional IP networks. However, when a packet
is to be routed through an alternative path, it is pro-
cessed at the source overlay node and an additional
IP header is attached to the packet. This way the
packet is first tunneled to a specific overlay node
that lies in the selected alternative path, using the
underlying routing protocol in use. When the over-
lay node receives the packet, it removes the outer IP
header and forwards the packet to the final destina-
tion (or possibly to another overlay node). It is plain
to see that one can utilize as many alternative paths
as needed by placing overlay nodes at appropriate
locations. Note that using this architecture, we can
still employ the simple shortest path routing inside
the network, without having to modify the existing
traditional routers. The overlay capabilities can be
realized by attaching a simple device (e.g., a host
with network processor) to the existing routers. This
device simply processes the packets, and adds or
removes IP headers before the basic forwarding
operation is performed at the routers.

As a final remark, we would like to emphasize the
point that the basic mechanism of the proposed
routing algorithm can be employed in different types
of networks. For instance, it can also be deployed in
an MPLS based network, where the overlay paths
are replaced with LSPs (label switched paths). The
proposed use of overlay architecture described in
this paper enables us to adopt the algorithm in the
traditional IP-based networks.

4.2. Traffic monitoring

Traffic monitoring is also handled by the overlay
architecture. Each link in the network is mapped to
the closest overlay node with a tie-breaking rule that
gives a unique mapping [5]. Overlay nodes periodi-
cally poll the links that they are responsible for, pro-
cess the data and forward necessary local state
information to the SD pairs utilizing the corre-
sponding links. This eliminates the need for each

SD pair to probe the links used by it. Note that,
before forwarding the link-cost information to
source nodes of SD pairs, the overlay nodes can
aggregate the information gathered from different
links. For example, due to the additive cost struc-
ture (according to the definition given in (3)), if
the overlay nodes are aware of Ls, an overlay node
can first compute the sum of the link costs over the
links in Ls it is responsible for and then report only
the total cost to the source node of SD pair s.

As a consequence, the overhead caused by
the distribution of the link-state information is
minimized.

5. Experimental setup and simulation results

In this section we evaluate the performance of the
proposed algorithms through simulations under
various network conditions, and study their conver-
gence rates. To this end, we developed a packet-level
discrete-event simulator to carry out the simula-
tions. Each plot presented in this section is the aver-
age of 10 independent simulation runs with different
random seeds.

For the simulations we select the cost function of
the form

ClðxÞ ¼ dlðxÞ þ ulðxÞ2; ð12Þ
where dl(x) is the number of packets dropped on
link l,3 and ul(x) is the link utilization. In all simula-
tions, the measurement period is selected to be 1 s.
As a consequence, SD pairs can update their rates
at best approximately every 2 s since they require
two measurements for estimating the gradient
vector using the SPSA algorithm.

The requirements on the cost function are stated
in Assumption A1, and one can argue that the
selected cost function satisfies these requirements
as follows. Since we deal with backbone networks,
the packet arrival process at a source node is an
aggregate of many individual flows. We assume that
each individual flow generates packets according to
an equilibrium renewal process, i.e., interarrival
times of packets from a flow have a fixed distribu-

Table 1
The cross-traffic dynamics

Link Load distribution in time (s)

[0–1000) [1000–2500) [2500–3600)

L1 0.77 0.44 0.44
L2 0.33 0.33 0.67
L3 0.33 0.33 0.33

T. Güven et al. / Computer Networks 50 (2006) 1938–1951 1945
tion, and these equilibrium renewal processes are
mutually independent. Then, by the Palm–Khint-
chine theorem [19], the superposition of these inde-
pendent renewal processes can be approximated
by a Poisson process, where interarrival times of
packets are exponentially distributed.

In addition, according to the work presented in
[20], the packet size distribution of Internet traffic
has two peaks at 500 and 1500 bytes. Using this
observation, we can approximate the packet size
as a Bernoulli random variable with values at 500
and 1500 bytes.

Under the above conditions, we can approximate
the links in the network as M/G/1/K queues, where
K is the buffer size. Following this assumption we
can justify the assumption on convexity of the cost
function as follows. One can check that in the
regime of interest (e.g., with utilization level being
less than 150%), the link cost function is convex in
the case of M/M/1/K queue. In the case of M/G/
1/K queue one can show that the approximation
functions for blocking probability of an M/G/1/K
queue (e.g., Gelenbe�s formula [21] and two-moment
approximation in [22]), are indeed convex in the
regime of interest under various parameter settings.

Simulations are carried out under two different
network topologies. The first topology, which is
used in [4], is given in Fig. 1. Due to its simplicity
this topology allows us to obtain insights into the
fundamental behavior of the proposed algorithm.
In addition, it serves us as a base setup so that we
can make a comparison with the MATE algorithm
presented in [4]. We have three SD pairs (S1–D1,
S2–D2 and S3–D3) and each pair has two distinct
paths. Note that this creates a considerable amount
of interaction between these SD pairs.

The setup we use is similar to the one adopted in
[4] for comparison purposes. (See [23] for the details
of this setup.) The network consists of identical
L1

 L2

L3

 D1

 D2

 D3

 S2

 S1

 S3

Fig. 1. Network topology 1.
links with a bandwidth of 45 Mbps. The average
packet size is 257 bytes. Each SD pair initially uses
only the default shortest (minimum hop distance)
path. Since all paths have equal length, the default
min-hop paths are selected such that L2 is along
the default shortest path of S1–D1, while the default
shortest paths of S2–D2 and S3–D3 both traverse
L3. Each SD pair generates traffic according to a
Poisson process with an average rate of 19.8 Mbps
(corresponding to 0.44 link utilization). In addition,
links L1, L2 and L3 carry uncontrolled cross-traffic
generated by Poisson processes. The average rate of
cross-traffic normalized by the link capacity is given
in Table 1. A random delay is introduced before
each SD pair starts running the optimal routing
algorithm to ensure that the SD pairs are not syn-
chronized. (The maximum value of this random
delay is defined as offset.) In this simulation a
decreasing step size policy is adopted that satisfies
the conditions in Assumptions A3–A6. Specifically,
the step sizes are given by as(k) = 15/(k + 100)0.602

and cs(k) = 75/(k0.101).4

As shown in Figs. 2 and 3, the algorithm quickly
eliminates the congestion and successfully balances
the traffic. Moreover, these results show that the
proposed algorithm clearly outperforms the MATE
algorithm [4]; while the MATE algorithm requires
around 400–500 s to converge,5 our algorithm takes
around 200 s. Furthermore, our algorithm quickly
(around 50 s) eliminates packet drops unlike
MATE. (See Figs. 10 and 11 presented in [4].)

Figs. 4 and 5 illustrate the effect of increased
asynchrony between SD pairs. We increase the
asynchrony between SD pairs by simply increasing
the offset values. From these plots we can conclude
that the algorithm is still able to converge in a short
4 as(k) and cs(k) are reset to their initial values at simulation
times 1001 and 2501 s for faster convergence.

5 Since simulation code and packet size distributions for the
MATE algorithm are proprietary, it was not possible to simulate
MATE. Therefore, we base our comparison on the results
presented in [4].

0 1000 2000 3000 4000 5000 6000 7000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Lo
ss

 R
at

e

Time (sec)

Loss Rate on Link 1
Loss Rate on Link 2
Loss Rate on Link 3

Fig. 3. Network topology 1 with an offset of 50 ms.

0 1000 2000 3000 4000 5000 6000 7000
0

20

40

60

80

100

120

140

O
ffe

re
d

Lo
ad

Time (sec)

Aggregate Traffic on Link 1
Aggregate Traffic on Link 2
Aggregate Traffic on Link 3

Fig. 2. Network topology 1 with an offset of 50 ms.

1946 T. Güven et al. / Computer Networks 50 (2006) 1938–1951
time. As we see from Figs. 2 and 4, the performance
is almost the same for offset values of 50 ms and
200 ms. However, when we increase the offset to
500 ms, we see that the convergence of our algo-
rithm becomes slightly slower. Thus, these results
validate the earlier discussion made in Section 3.3.

0 1000 2000 3000 4000 5000 6000 7000
0

20

40

60

80

100

120

140

O
ffe

re
d

Lo
ad

Time (sec)

Aggregate Traffic on Link 1
Aggregate Traffic on Link 2
Aggregate Traffic on Link 3

Fig. 5. Network topology 1 with an offset of 500 ms.

0 1000 2000 3000 4000 5000 6000 7000
0

20

40

60

80

100

120

140

O
ffe

re
d

Lo
ad

Time (sec)

Aggregate Traffic on Link 1
Aggregate Traffic on Link 2
Aggregate Traffic on Link 3

Fig. 4. Network topology 1 with an offset of 200 ms.

T. Güven et al. / Computer Networks 50 (2006) 1938–1951 1947
Fig. 6 represents the second topology we consider
in this paper. This topology is also used in [24,25]
and closely resembles the MCI Internet topology
presented in [26]. Using this topology, we analyze
the performance of the proposed algorithm under
more realistic network conditions.

2

1 3

4

5

7

6

8

9

10

11

12

14

16

18

17

15
13

Fig. 6. Network topology 2.

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

140

160

180
Aggregate Offered Load Levels on Selected Links

O
ffe

re
d

Lo
ad

Time (sec)

3-12
3-8
2-4
2-9
5-7
12-163-12

3-8

2-4

2-9

5-7 12-16

Fig. 7. Offered load on network topology 2.

6 as(k) is reset to its initial value (0.15) at simulation time 1601 s
for faster convergence.

1948 T. Güven et al. / Computer Networks 50 (2006) 1938–1951
Nodes 1, 5, 6, 14 and 18 serve as both source and
destination nodes. This gives us a total of 20 SD
pairs. Each pair has at least two paths to reach
the destination. A total of 78 paths are created
between these 20 SD pairs, using overlay architec-
ture. Overlay capability is available at all source/
destination nodes as well as nodes 2, 10 and 13. In
this experiment, the offset is set to 0.1 s. The links
shown as dashed lines have a capacity of 50 Mbps,
while the links represented by solid lines have a
capacity of 20 Mbps. The packet size for this sce-
nario is selected to be 500 bytes. All SD pairs ini-
tially use only the shortest paths. Each SD pair
generates traffic with a rate of 11.5 Mbps. In addi-
tion, the cross-traffic traverses link (3–12), starting
at simulation time 1600 s. The cross-traffic rate is
18 Mbps and cannot be shifted to any alternative
paths as before.

In Fig. 7, we illustrate how the load is distributed
by our algorithm.6 The links for which we plotted
the load are selected in such a way that each of them

T. Güven et al. / Computer Networks 50 (2006) 1938–1951 1949
is located on a distinct alternative path that can be
used to divert the traffic sent on link (3–12). The
0 500 1000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
P

ac
ke

t d
ro

ps
 p

er
 s

ec
on

d

Tim

Fig. 8. Total packet drops o

0 500 1000
30

40

50

60

70

80

90

100
Aggregate Offered

O
ffe

re
d

Lo
ad

Time

 Constant Step Size (0.1

 Decreasing Step Size (

 Constant Step Size (0.225)

Fig. 9. Offered load
only exception is link (12–16), which is a down-
stream link of link (3–12) for some of the paths
1500 2000 2500
e (sec)

n network topology 2.

1500 2000 2500

 Load on Link 3–8

 (sec)

Decreasing Step Size (0.150)
Constant Step Size (0.150)
Constant Step Size (0.225)

5)

0.15)

on link 3–8.

1950 T. Güven et al. / Computer Networks 50 (2006) 1938–1951
utilized by SD pairs. The plot of traffic on link (12–16)
shows how the traffic load is migrated away from the
paths that traverse link (3–12). In addition, Fig. 8
shows the total number of packets dropped in the
entire network. We observe from both figures that
the algorithm quickly removes congestion as the
packet drops are eliminated quickly and distributes
the load among the multiple paths between the SD
pairs in a reasonable amount of time. This result indi-
cates that the proposed algorithm successfully con-
verges under the scenarios where many SD pairs
operate in an independent and asynchronous fashion.

Fig. 9 demonstrates the effect of using a constant
step size. We plot the variation of traffic load on link
(3–8) using two different values of fixed step size
as(k) = a = 0.15 and as(k) = a = 0.225, and com-
pare their performance with the decreasing step size
case where the step size for each SD pair is given by
as(k) = 15/(k + 100)0.602. Even though we do not
have almost-sure convergence with a constant step
size, our results suggest that the convergence in dis-
tribution is sufficient for practical purposes. More-
over, the initial convergence rate improves slightly
as the algorithm is able to reach a small neighbor-
hood of the optimal operating point faster com-
pared to the decreasing step size case. Since this
neighborhood appears to be small and a constant
step size policy gives us the robustness to track
dynamical changes in the network, this result
supports the use of a constant step size algorithm
in a practical implementation.

6. Conclusion

In this paper, we have considered optimal multi-
path routing in environments where the link cost
derivatives can be estimated (but for which an ana-
lytic expression may not exist). We have mathemat-
ically proven the optimality and stability of our
proposed scheme, which is based on simultaneous
perturbations. We have demonstrated that an SPSA
algorithm provides significant improvements over
an algorithm based on traditional finite-difference
methods. Specifically, we have shown that our
scheme results in much shorter measurement peri-
ods during the gradient estimation phase, and as a
result, converges faster. Our simulation results
show that our scheme can quickly alleviate net-
work congestion and distribute load efficiently
under dynamic network conditions.

Our work provides a basis for an architecture for
effective traffic engineering in IP Networks. A prom-
ising extension to this work would be the adaption
of our scheme to a Differentiated Services (DiffServ)
capable network.

Appendix A. Supplementary data

Proofs of Propositions 1 and 2 [27,28] can be
found, in the online version, at doi:10.1016/
j.comnet.2005.09.030.

References

[1] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, X. Xiao,
Overview and principles of internet traffic engineering, RFC
3272, 2002.

[2] B. Fortz, M. Thorup, Internet traffic engineering by
optimizing OSPF weights, in: Proceedings of the Conference
on Computer Communications (IEEE Infocom), Tel-Aviv,
Israel, 2000.

[3] M.A. Rodrigues, K.G. Ramakrishnan, Optimal routing in
shortest-path networks, in: International Telecommunica-
tions Symposium (IEEE ITS), Rio de Janerio, Brazil, 1994.

[4] A. Elwalid, C. Jin, S. Low, I. Widjaja, MATE: MPLS
adaptive traffic engineering, in: Proceedings of the Confer-
ence on Computer Communications (IEEE Infocom),
Anchorage, Alaska, 2001.

[5] C. Kommareddy, T. Güven, B. Bhattacharjee, R.J. La, M.A.
Shayman, Overlay routing for path multiplicity, Tech. Rep.
UMIACS-TR# 2003-70, Available from: <http://www.cs.
umd.edu/Library/TRs/CS-TR-4500/CS-TR-4501.pdf>.

[6] A. Elwalid, C. Jin, S. Low, I. Widjaja, MATE: Multipath
adaptive traffic engineering, Comput. Networks—Int. J.
Comput. Telecommun. Network. 40 (2002) 695–709.

[7] J.C. Spall, Stochastic optimization, stochastic approximation
and simulated annealing, in: J.G. Webster (Ed.), Encyclope-
dia of Electrical and Electronics Engineering, vol. 20, Wiley,
New York, 1999, pp. 529–542.

[8] J.C. Spall, Stochastic optimization and the simultaneous
perturbation method, in: Proceedings of the Winter Simula-
tion Conference, Phoenix, AZ, 1999.

[9] J.C. Spall, Multivariate stochastic approximation using a
simultaneous perturbation gradient approximation, IEEE
Trans. Automat. Contr. 37 (1992) 332–347.

[10] M. Fu, S.D. Hill, Optimization of discrete event systems via
simultaneous perturbation stochastic approximation, Trans.
Inst. Indust. Eng. 29 (1997) 223–243.

[11] H.J. Kushner, G.G. Yin, Stochastic Approximation Algo-
rithms and Applications, Springer-Verlag, 1997.

[12] J.N. Tsitsiklis, D.P. Bertsekas, Distributed asynchronous
optimal routing in data networks, IEEE Trans. Automat.
Contr. 31 (1986) 325–332.

[13] D. Bertsekas, R. Gallager, Data Networks, second ed.,
Prentice-Hall Inc., 1992.

[14] J. Kiefer, J. Wolfowitz, Stochastic estimation of a regression
function, Ann. Math. Stat. 23 (1952) 462–466.

[15] J.R. Blum, Multidimensional stochastic approximation
methods, Ann. Math. Stat. 25 (1954) 737–744.

[16] P. Sadegh, Constraint optimization via stochastic approxi-
mation with a simultaneous perturbation gradient approx-
imation, Automatica 33 (1997) 889–892.

http://dx.doi.org/10.1016/j.comnet.2005.09.030
http://dx.doi.org/10.1016/j.comnet.2005.09.030
http://www.cs.umd.edu/Library/TRs/CS-TR-4500/CS-TR-4501.pdf
http://www.cs.umd.edu/Library/TRs/CS-TR-4500/CS-TR-4501.pdf

T. Güven et al. / Computer Networks 50 (2006) 1938–1951 1951
[17] A. Collins, The detour framework for packet rerouting,
Ph.D. thesis, University of Washington, 1998.

[18] D. Andersen, H. Balakrishnan, F. Kaashoek, R. Morris,
Resilient overlay networks, in: Proceedings of 18th ACM
Symposium on Operating Systems Principles (SOSP), Banff,
Canada, 2001.

[19] D.P. Heyman, M.J. Sobel, Stochastic Models in Operations
Research, McGraw-Hill, 1982.

[20] K. Claffy, G. Miller, K. Thompson, The nature of the beast:
recent traffic measurements from an internet backbone, in:
Internet Society�s Networking Conference (INET), Geneva,
Switzerland, 1998.

[21] E. Gelenbe, On approximate computer system models,
J. ACM 22 (1975) 261–269.

[22] J.M. Smith, F.R.B. Cruz, The buffer allocation problem for
general finite buffer queuing networks, unpublished, Avail-
able from: <http://www.ecs.umass.edu/mie/faculty/smith/>.

[23] K. Sinha, S. Patek, OpIATE: optimization integrated
adaptive traffic engineering, Tech. Rep., 2001, Available
from: <http://www.sys.virginia.edu/techreps/2002/sie-020001.
pdf>.

[24] S. Nelakuditi, Z.L. Zhang, A localized adaptive proportion-
ing approach to QoS routing, IEEE Commun. Mag. 40
(2002) 66–71.

[25] G. Apostolopoulos, R. Guerin, S. Kamat, S. Tripathi,
Quality of service based routing: a performance perspective,
ACM SIGCOMM, Vancouver, 1998.

[26] Q. Ma, P. Steenkiste, On path selection for traffic with
bandwidth guarantees, in: IEEE International Conference on
Network Protocols, 1997.

[27] H.J. Kushner, D.S. Clark, Stochastic Approximation Meth-
ods for Constrained and Unconstrained Systems, Springer-
Verlag, 1978.

[28] G.R. Grimmett, D.R. Stirzaker, Probability and Random
Processes, second ed., Oxford Science Publications, 1998.

Tuna G€uven received the B.S. degree in
Electrical and Electronics Engineering
from Middle East Technical University,
Ankara, Turkey in 2000, and M.S. in
Electrical and Computer Engineering
from University of Maryland at College
Park, M.D. in 2002. He is currently
pursuing a Ph.D. degree in Electrical and
Computer Engineering at University of
Maryland at College Park, MD. His
research interests includes traffic engi-

neering, unicast and multicast routing, as well as wireless
networks.
Richard J. La received his B.S.E.E. from
the University of Maryland, College
Park in 1994 and M.S. and Ph.D. degrees
in Electrical Engineering from the
University of California, Berkeley in
1997 and 2000, respectively.

From 1999 to 2000 he was also with
Alcatel USA. From 2000 to 2001 he was
with the Mathematics of Communica-
tion Networks group at Motorola Inc.
Since 2001 he has been on the faculty of

the Department of Electrical and Computer Engineering at the
University of Maryland. He was a recipient of an NSF CAREER

Award in 2003.

Mark A. Shayman (M�81-SM�03) received
the Ph.D. degree in Applied Mathematics
from Harvard University, Cambridge,
MA, in 1981. He served as the Faculty of
Washington University, St. Louis, MO,
and the University of Maryland, College
Park, where he is currently Professor of
Electrical and Computer Engineering.
His research interests are in communica-
tion networks, including MPLS, optical
and wireless networks.

He received the Donald P. Eckman Award from the American
Automatic Control Council and the Presidential Young Investi-

gator Award from the National Science Foundation. He has
served as Associate Editor of the IEEE Transactions on Auto-
matic Control.

Bobby Bhattacharjee is an assistant professor in the Computer
Science Department at the University of Maryland, College Park.
His research interests are in the design and implementation of
scalable systems, protocol security, and peer-to-peer systems. He
is a member of the ACM.

http://www.ecs.umass.edu/mie/faculty/smith/
http://www.sys.virginia.edu/techreps/2002/sie-020001.pdf
http://www.sys.virginia.edu/techreps/2002/sie-020001.pdf

	Measurement-based optimal routing on overlay architectures for unicast sessions
	Introduction
	The optimization problem
	The routing model
	Stochastic approximation

	Optimal routing using SPSA
	An optimal routing algorithm-decreasing�step size
	The optimal routing algorithm-constant�step size
	Measurement process

	Implementation issues
	Path establishment
	Traffic monitoring

	Experimental setup and simulation results
	Conclusion
	Supplementary data
	References

