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Abstract: The case of SPSA algorithms with two trial simultaneous perturbations is discussed. The better
asymptotic convergence rate of the algorithm estimates is proved under more wide assumption about the
optimizing function. The Lyapunov function with the power from 1 to 2 is considered.
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1 Introduction
Problem of function minimization is being solved
in many applications. Sometimes the extremal val-
ues of a function can be found theoretically. In
general, engineering systems have to deal with un-
known functions, and it is only possible to measure
its’ values in some points.

Measurement always means a noise is present.
Sometimes the algorithms which solve optimiza-
tion problem precisely on the sheet of paper are
not able to converge to the function minimum in
the practice. Robustness of an algorithm is very
useful.

The simultaneous perturbation stochastic ap-
proximation (SPSA) with one or two measure-
ments on each iteration were begun to investigate
since beginning of 90th years [1, 2, 3]. These algo-
rithms are known for their good convergence prop-
erties in the case of measurements with “an almost
arbitrary noise”. The noise still needs only to be
somehow bounded and does not depend on simul-
taneous perturbations, for example, brought into
the system under experiment.

1.1 Previous Experience
This paper continues the investigations [4, 5, 6, 8].
There were discussed the common task and sev-
eral proposed algorithms. We continue to deter-
mine the bounds of ability to apply the SPSA al-
gorithm with two measurements. It is known this
algorithm has the better convergence in practice,
than the case with one trial simultaneous pertur-
bation described in [8]. This paper proves the bet-

ter asymptotic convergence of an algorithm under
more wide assumption about the optimizing func-
tion, depending on the properties of bounding of
additional noise in observations.

In the next two sections the main problem
statement and the algorithm are discussed. Then
the convergence theorem and it’s proof are ex-
plained. In the conclusion we provide the discus-
sion about achieved results.

2 The Problem Statement and Main
Assumptions

Let F (x,w) : Rq ×Rp → R1 be the differentiable
on the first argument function, x1, x2, . . . be a se-
quence of arguments of F chosen during optimiza-
tion procedure at each iteration n = 1, 2, . . . (the
design of an experiment), {wn} is uncontrollable
sequence of random values from Rp with identi-
cal but unknown distribution Pw(·) which has the
finite support. The function F (·, wn) can be ob-
served with the added noise vn:

yn = F (xn, wn) + vn (1)

The problem is to minimize the function

f(x) = Ew{F (x,w)} =
∫

Rp

F (x,w)Pw(dw)

based on observations y1, y2, . . .. This means to
build the sequence of estimates {θ̂n} of unknown
vector θ?, which minimizes f(x).



There are two important simpler forms of ob-
servation models:

yn = f(xn) + vn,

yn = wnf(xn) + vn,

which are included in (1).
We follow such notation: E{·} is the expecta-

tion value, ‖ · ‖ρ is the norm in lρ and 〈·, ·〉 ia the
scalar product in Rq.

Consider the Lyapunov function V :

V (x) = ‖x− θ?‖ρ
ρ =

q∑

i=1

|x(i) − θ
(i)
? |ρ,

where θ? is the minimum point of f(x).
We make two assumptions about properties

of functions f(x) and F (x,w) needed for proving
consistency of the further algorithm:

A.1 Function f(x) has a unique minimum and

(∇V (x),∇f(x)) ≥ µV (x), ∀x ∈ Rq

with some constant µ > 0.

A.2 For any w gradient of function F (·, w) satis-
fy:

‖∇xF (x,w)−∇xF (y, w)‖ ρ
ρ−1

≤ M‖x−y‖ ρ
ρ−1

∀x, y ∈ Rq with some constant M > 0.

3 Algorithm
Let the trial simultaneous perturbation ∆n, n =
1, 2, . . . , be a random sequence of zero-mean in-
dependent vectors from Rq with distributions
Pn(·), n = 1, 2, . . . , , which have a uniformly
bounded finite support and independent compo-
nents. Consider sequences of real positive num-
bers {αn} and {βn}. To choose some initial vec-
tor θ̂0 ∈ Rq. In [5, 6, 7] the algorithm with two
simultaneous perturbations was proposed for con-
struction of sequences of measurement points and
estimates:





x±n = θ̂n−1 ± βn∆n,

y±n = F (x±n , w±n ) + v±n ,

θ̂n = θ̂n−1 − αn∆n
y+

n−y−n
2βn

.

(2)

4 Convergence
Denote W = supp(Pw(·)) ⊂ Rp is the finite sup-
port of the distribution Pw(·); Fn is a σ-algebra
generated by θ̂0, θ̂1, . . . , θ̂n, formed by an algo-
rithm (2); c1 = maxw∈W ‖∇xF (θ∗, w‖ρ; c2 =
maxw±∈W |F (θ∗, w+)−F (θ∗, w−)|ρ; dn = αρ

nβ−ρ
n ρ;

γn = αn(µ− βn
ρ− 1

ρ
q

ρ+1
ρ M) + 23ρ−2c1

φn =
1
ρ
αnβnq

ρ+1
ρ M + 23ρ−2c1βnqρ + 22ρ−2c2.

Theorem 1 . Let be ρ ∈ (1, 2] and the next condi-
tions are satisfied:
(A.1) for functions f(x) = E{F (x,w)};
(A.2) for functions F (·, w) ∀w ∈W;
functions F (x, ·) and ∇xF (x, ·) uniformly bound-
ed on W;
∀n ≥ 1 random values v±1 , . . . , v±n and vectors
w±1 , . . . , w±n−1 do not depend on w±n , ∆n, and ran-
dom vectors w±n do not depend on ∆n;
E{|v+

n − v−n |ρ} ≤ σρ
n, n = 1, 2, . . . ; ∀n, 0 ≤ γn ≤

1,
∑

n γn = ∞, µn → 0 with n →∞, where

µn =
φn + qρdnσρ

n

γn
, zn =

(
1− µn+1

µn

)
1

γn+1
.

Then:
1) Sequence of estimations {θ̂n} generated by the
algorithm (2) converges to θ? in meaning that:

E{V (θ̂n)} → 0 as n →∞;

2) if limn→∞ zn ≥ z > 1, then

E{V (θ̂n)} = O
(

n−1∏

i=0

(1− γi)

)
;

3) if zn ≥ z > 1 ∀n, then

E{V (θ̂n)} ≤ (E{V (θ̂0)}+
µ0

z − 1
)

n−1∏

i=0

(1− γi);

4) if, moreover,
∑

n

φn + 2ρqρdnE{|v+
n − v−n |ρ|Fn−1} < ∞,

then θ̂n → θ? with n →∞ with probability 1 and

P{V (θ̂n) ≤ ε, ∀n ≥ n0} ≥ 1− ψn0/ε, (3)

where ψn0 = E{V (θ̂n0)}+
∑∞

n=n0
φn + 2ρqρdnσρ

n.

Remark. Constant c2 in basic case of F (x,w) =
f(x) can be 0.



5 Proof

We will bound the value of V (θ̂n) by the value of
V (θ̂n−1), what allows us to use Lemma from [9] to
prove convergence as in the theorem statement.

Using the definition of algorithm (2) and prop-
erties of function V (x), using mean-value theorem
with some t ∈ (0, 1) we get

V (θ̂n) ≤ V (θ̂n−1 − αn∆n
y+

n − y−n
2βn

) =

= V (θ̂n−1)− αn〈∇V (θ̂mid),∆n
y+

n − y−n
2βn

〉 =

= V (θ̂n−1)− αn

2βn
〈∇V (θ̂n−1 − tαn∆n

y+
n − y−n
2βn

),

∆n(y+
n − y−n )〉 =

= V (θ̂n−1)− ρ
αn

2βn
(y+

n − y−n )
q∑

i=1

sign(i)
n (t)∆(i)

n ×

×
∣∣∣∣θ̂

(i)
n−1 − θ

(i)
∗ − tαn∆(i)

n

y+
n − y−n
2βn

∣∣∣∣
ρ−1

,

where sign(i)
n (t) = 0 or ±1 depending on the sign

of

θ̂
(i)
n−1 − θ

(i)
∗ − tαn∆(i)

n

y+
n − y−n
2βn

.

Let s̃ign
(i)

n−1 = 0 or ±1 depending on the
sign of θ̂

(i)
n−1 − θ

(i)
∗ . Using inequality −sign(c −

d)|c− d|ρ−1b ≤ −sign(c)|c|ρ−1b + 22−ρ|d|ρ−1|b| for
b, c, d ∈ R, we get:

V (θ̂n) ≤ V (θ̂n−1)− ραn
y+

n − y−n
2βn

×

×
q∑

i=1

s̃ign
(i)

n−1

∣∣∣∣θ̂
(i)
n−1 − θ

(i)
∗

∣∣∣∣
ρ−1

∆(i)
n +

+22−ρρ
αn

2βn

q∑

i=1

∣∣∣∣tαn∆(i)
n

y+
n − y−n
2βn

∣∣∣∣
ρ−1

×

×|∆(i)
n (y+

n − y−n )| ≤

≤ V (θ̂n−1)− αn

2βn
〈∇V (θ̂n−1),∆n(y+

n − y−n )〉+
(4)

+22−2ρcn‖∆n‖ρ|y+
n − y−n |ρ.

Using the model of observations (1) and the
mean-value theorem for F (·, wn), we derive with
some t′ ∈ (0, 1):

∆nyn = ∆n(F (θ̂n−1 + βn∆n, wn) + vn) =

= ∆nF (θ̂n−1, wn) + ∆nvn+

+∆n〈∇xF (θ̂n−1 + t′βn∆n, wn), βn∆n〉.
We apply the operation of conditional expectation
by σ-algebra Fn−1. Because of the independence
of trial perturbations ∆n from vn and wn we get

E{∆nvn|Fn−1} = E{∆n|Fn−1}E{vn|Fn−1} = 0,

E{∆nF (θ̂n−1, wn)|Fn−1} =

= E{∆n|Fn−1}E{F (θ̂n−1, wn)|Fn−1} = 0.

Consequently, for the second term of (4) we get:

−αnE{〈∇V (θ̂n−1), ∆n
y+

n − y−n
2βn

〉|Fn−1} =

= −αn〈∇V (θ̂n−1), E{∆n
y+

n − y−n
2βn

|Fn−1}〉 =

= − αn

2βn
〈∇V (θ̂n−1), E{∆n〈(∇xF (θ̂n−1+

+t′βn∆n, w+
n ) +∇xF (θ̂n−1 − t′′βn∆n, w−n )),

βn∆n〉|Fn−1}〉 ≤ −αn

2
〈∇V (θ̂n−1),

E{∆n〈∇xF (θ̂n−1, w
+
n )+F (θ̂n−1, w

−
n ), ∆n〉|Fn−1}〉+

+
αn

2
|〈∇V (θ̂n−1),E{∆n〈∇xF (θ̂n−1+t′βn∆n, wn)+

+∇xF (θ̂n−1 − t′′βn∆n, wn)−
−∇xF (θ̂n−1, w

+
n )−∇xF (θ̂n−1, w

−
n ), ∆n〉|Fn−1}〉|

From uniform boundness of function ∇xF (·, wn),
Hoelder inequality [10] and conditions (A.1) and
(A.2), using Yung inequality [10]: a1/rb1/s ≤ 1

ra+
1
sb, r > 1, a, b > 0, 1

r + 1
s = 1, we derive

− αn

2βn
E{〈∇V (θ̂n−1), ∆n(y+

n − y−n )〉|Fn−1} ≤

≤ −αn〈∇V (θ̂n−1),∇f(θ̂n−1)〉+
+

αn

2
V (θ̂n−1)

ρ−1
ρ q1/ρ×

×|E{〈∇xF (θ̂n−1+t′βn∆n, w+
n )−∇xF (θ̂n−1, w

+
n )+

∇xF (θ̂n−1 − t′′βn∆n, w−n )−
−∇xF (θ̂n−1, w

−
n ), ∆n〉|Fn−1}| ≤



≤ −αnµV (θ̂n−1) + αnV (θ̂n−1)
ρ−1

ρ q
2
ρ×

×M‖βn∆n‖ ρ
ρ−1

≤ −αnµV (θ̂n−1)+

+αn

(
ρ− 1

ρ
V (θ̂n−1) +

1
ρ

)
q

ρ+1
ρ Mβn ≤

≤ −αn(µ−βn
ρ− 1

ρ
q

ρ+1
ρ M)V (θ̂n−1)+

1
ρ
αnβnq

ρ+1
ρ M.

Let’s bound the third term in the right side of in-
equality (4). First, for some point xm, from the
segment between θ̂n−1 +βn∆n and θ∗ from mean-
value theorem, using Hoelder inequality, condi-
tions (A.2) and inequality (a+b+c+d

4 )ρ ≤ 1
4(aρ +

bρ + cρ + dρ), we get:

|y+
n −y−n |ρ = |F (x+

n , w+
n )−F (θ∗, w+

n )+F (θ∗, w+
n )−

−F (θ∗, w−n )+F (θ∗, w−n )−F (x−n , w−n )+v+
n −v−n |ρ ≤

≤ 22ρ−2‖∇xF (x+
m, w+

n )(θ̂n−1 + βn∆n − θ∗)‖ρ+

+22ρ−2‖∇xF (x−m, w−n )(θ̂n−1 − βn∆n − θ∗)‖ρ+

+22ρ−2|F (θ∗, w+
n )−F (θ∗, w−n )|ρ+22ρ−2|v+

n−v−n |ρ ≤
≤ 23ρ−2c1(V (θn−1) + βnqρ)+

+22ρ−2c2 + 22ρ−2|v+
n − v−n |ρ.

For the conditional expectation of the third
term in (4) without coefficient 22−ρcn, using inde-
pendence of ∆n and vn we get:

E{‖∆n‖ρ|y+
n − y−n |ρ|Fn−1} ≤

≤ E{‖∆n‖ρ|Fn−1}(23ρ−2c1(V (θn−1) + βnqρ)+

+22ρ−2c2 + 22ρ−2E{|v+
n − v−n |ρ|Fn−1})

Using the notation defined and the estimations
found, inequality (4) can be rewritten as:

V (θ̂n) ≤ V (θ̂n−1)(1− γn) + φn+

+2ρqρdnE{|v+
n − v−n |ρ|Fn−1}).

Applying expectation, the following is achieved:

E{V (θ̂n)} ≤ E{V (θ̂n−1)}(1− γn) + φn+

+2ρdnσρ
n

Next, we use the Lemma from [9], page 90. The
statements of this theorem imply from the corre-
sponding statements of [9].

6 Conclusions

Convergence, as we have seen in the theorem for-
mulation, depends on values of some coefficients,
and inequalities, which need to be satisfied. Af-
ter this inequalities are written once, they need to
be simplified and then the importance of each of
them should be analyzed.
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