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Convergence Rate of Moments in Stochastic
Approximation with Simultaneous Perturbation
Gradient Approximation and Resetting

Laszb Gerencér

Abstract—The sequence of recursive estimators for function order SPSA methods are developed and their convergence
minimization generated by Spall's simultaneous perturbation properties are established.
stochastic approximation (SPSA) method, presented in [25], com- The boundedness of the estimator sequence jsriori

bined with a suitable restarting mechanism is considered. It is . .

proved that this sequence converges under certain conditions with assumed glso in [17], _and a similar bu.t Weaker boundedness
rate O(n=?/2) for some /3 >0, the best value beings = 2/3, condition is assumed in [19]. Namely, it is assumed that the
where the rate is measured by theL,-norm of the estimation estimator sequence visits a certain fixed domain infinitely often
error for any 1 < q < oo The authors also present higher order (cf., Theorem 2.3.5).

SPSA methods. It is shown that the error exponent3/2 can be The rate that we get is—not surprisingly—identical to what

arbitrarily close to 1/2 if the Hessian matrix of the cost function at . o .
the minimizing point has all its eigenvalues to the right of 1/2, the appears in the CLT (cf., [25, Proposition 2]). It is expected

cost function is sufficiently smooth, and a sufficiently high-order that.the presgnt rate of convergence result Wi”. play a role in
approximation of the derivative is used. solving practical problems, such as the analysis of the effect
Index Terms—L-mixing processes, limit theorem for moments, of parametric uncertainty on performance. The present paper

linear stochastic systems, maximal inequalities, recursive estima- /S0 extends results given in [11] in which a complete analysis
tion. for the convergence of Ljung’s scheme (cf., [5], [4], [21], [1])

with resetting is given.
Higher order Kiefer—Wolfowitz methods were first con-
sidered in [7], where the rate of mean-squared error for
HE aim of this paper is to prove a rate of convergenafiobally defined procedures had been established. The results
theorem for a class of stochastic approximation processsfsSection IV complement these results: we consider SPSA
for function minimization developed by Spall in [25]. Themethods rather than Kiefer—~Wolfowitz methods, the proce-
main feature of Spall's method is a new way of estimating thfures are localized using a resetting mechanism, and the rate
gradient using only two measurements at properly selecigthigher order moments of the error process is established.
random parameter values. One of the main application areaghe analysis given in [25] is based on the early work of
of simultaneous perturbation stochastic approximation (SPSPgbian in connection with the Kiefer—Wolfowitz method (cf.,
is direct stochastic adaptive control (cf., [25]). [6]). It is hoped that the ideas that had emerged since then in
A Kiefer-Wolfowitz method using randomized differenceshe theory of recursive identification yield a more transparent
was first proposed in [17, Sec. IlI-B]. However, the numbejroof that can be adapted to future needs.
of measurements required for this method is the same as forhe present paper also complements recent results of
the standard Kiefer—Wolfowitz method, i.e., twice the numbgp], where an almost sure convergence rate has been given
of dimension. The argument behind the use of randomizggl Th. 3] for a modified version of the SPSA algorithm.
differences was that by their use, sensitivity with respect to
bias is reduced. A random direction Kiefer-Wolfowitz method Il. THE PROBLEM FORMULATION

with just two measurements has been proposed in [19, Sec.Th di ional Euclid il be d
11-C.5], using random unit vectors as perturbing vectors; se €p-gimensional Euclidean space will be enotedIdy.
also [20]. The Euclidean norm of a vectarwill be denoted byz|. The

The main advances of this paper are that a crucial bou erator norm of a matrid will be denoted be4]], ie.,

edness hypothesis, given as [25, Assumptions A3 and A5, .“ ~ TQ’uP“f#k;J lemx" Eir:fllfly a con}/er;]tion: in the various_ h
335] is removed by forcing the estimator to stay in a bound&gtimations below we shall frequently have constants whic

domain, and we get the rate of convergence of higher or qpend only on the constants that appear in the conditions

moments of the estimation error. Finally, in Section IV, high elow. The;e constants V.V'” be called SV.St.er.“ constants..
We consider the following problem: minimize the function

L%&) defined forf € D, where D C IR? is an open domain,
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wheree,, = ¢,(w) is a random variable over some probability To minimize L(#) we need an estimator of its gradient,
space(Q2, F,P). It is assumed that the measured values denoted by
L(0) + ¢, can be obtained for each,w via a physical
experiment, and if necessary the experiment can be repeated. G(8) = Le(0). (4)
Note that the measurement-noisg¢ does not depend o4, . - . . . .
. . . he conventional finite difference approximation of partial
thus we have what is called a state-independent noise. The. .. . . .
: : erivatives that requires a large number of function evaluations
extension of the results of this paper to state-dependent noise laced b L= . imul d
is possible, but a number of additional technical details haye cp.aced by an approximation using simultaneous random
o o . . p%rturbatlons of the componentstbfLet & denote the iteration
to be clarified. This is the subject of a forthcoming paper.

Condition 2.1: The function L(8) is three times continu- E:mg Il;o\rNteh?aité)(;h?;lgogr;a\?;rt\;ralg\f)erlrtf;rgr;g bfoiz\ﬁli?pidéﬁ‘;
ously differentiable with respect tb for 8 € D. Let K < P ysp

d L \;él’,]—"’,?’)
enote an upper bound of the operator norms of the derivatives
up to order three. It is assumed that the minimizing value of Ap(W') = (A1, -5 App) .
L(6) is unique inD and will be denoted by*.

Condition 2.2: The measurement noise proce§s,) = Condition 2.3: A;; = Ay;(w') is a double sequence of
(en(w)) is assumed to be a zero-meammixing process with i.i.d., symmetrically distributed, bounded random variables
respect to a pair of families of-fields (F,,, F.1). such that for anyn > 1 Ep A" < oo (cf., [25, Sec. llI]).

For the definition of L-mixing, cf., Definition 5.2 of the = Remark: Note that the processe&,) = (¢.(w)) and
Appendix and [9]. Actually we need less thairmixing, (4A,) = (A,(w’)) are defined on different probability spaces.
namely it is sufficient that an “improved ditler inequality” From now on we consider the product spgéex €', F x
given below in (1), (cf., [9, Lemma 2.3] for continuous¥’,P x P') and writee,(w,w’) = €,(w) and A, (w,w’) =
time), is satisfied. Analogous inequalities for uniformly mixingd,.(w). Thus the processe&,) and (A,) are independent
stationary sequences are given in [16] and for strong miximyer (2 x €', F x F', P x P'). Mathematical expectation will
stationary sequences in [3]. The quoted result is the followinge always meant to be taken over the mentioned probability
let (x;),t > 0 be a zero-meat-mixing process with respect space unless otherwise stated.
to (5, F;7) and lety be anF,-measurable random variable A standard perturbation that will be used in the rest of the
for some0 < s < t, such that its moments, which appear ipaper is the double sequencs,;
the inequality below, are finite. Then PlA() = 4+1) = 1/2 P(Aile’) = —1) = 1/2.

|Bayy| < 27q(t — 5,2) BV |y|" @ et
for everyl < ¢, < oo such thatl/q + 1/r = 1. Fl=o{Ap,k=1,---,n}
The class ofL-mixing processes has been first systemy, |
atically studied in [9] and later in [13]. The usefulness of
L-mixing processes in stochastic systems theory has been
demonstrated in a number of papers, a survey of which is givgn]ce A
in [10] and [12]. A basic example of-mixing processes is !
obtained as follows: lete,,),n > 0 be anM-bounded (cf.,
Definition 5.1 of the Appendix) independent sequence of reeH—
or vector-valued random variables and define a vector-valur?.'%
process(y,) by

is an i.i.d. sequence of bounded random variables
it follows that (A,,) is L-mixing with respect to(F},, F/t).

Now let 0<¢, < 1 be a fixed sequence of positive
mbers and lefDy be a compact convex domain specified
Condition 2.4 below. For eacld € D, we take two
measurements that are denoted & (6) = M;H(6,w,w’)

—mN L p— , .
i = Avy + Ber and M, (8) = M, (f,w,u), defined as
with A stable and:y = 0. Then it is easy to see that the process
(yn),n > 0 is L-mixing with respect to( F,,, F7) defined as Then the estimator of the gradient at timefor 6 € Dy is
defined as

Fn =ofe;: it <n}, Ftr =ale; i>n}. (3) Hk.6) = H(k,6,0.)

An important property off.-mixing processes is that {fz,) [ ME(0) — M, (6) M;H(6) — M, (6) g
is a vector-valued’.-mixing process and”(z) is a function o 21 Ap1 o 2c1 Ak
such that the function itself and the functidi(z,y) = (6)

(F(z) — F(y))/|x — y|,= # y are polynomially increasing,

then the proces#'(z,,) is also L-mixing. Thus the sum or A convenient representation is obtained if we define the
product of L-mixing processes id.-mixing. Furthermore, if random vector

(en) is L-mixing and (y,,) is generated by (2), thefy,,) is 1 . . i

also L-mixing. A=A (W) = (A, Akp) .
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Then the gradient estimator &tc D, can be written as This is obtained by a simple change of time-scale ¢¥s =
Aty A 1 A1 e*. Itis easy to see that in Condition 2c4can be taken to be
H(k, 0) = (M (0) = My (6))(2er) "2 (7) the smallest eigenvalue of the Hessian-matrix.odt § = 6*.
The common numerator of these differences can be writtenThe SPSA MethodLet «;, be a fixed sequence of positive
as (L(0 + cxAg)) — L(6 — crAx)) + €1, Whereey, is the numbers witha; denoting the stepsize at time Then, in

compound measurement error defined by the original form of Spall's method, we start with an initial
_ _ (8) estimatef, and then a sequence of estimated parameters,
k= €2k—1 T 2k denoted byby1 = O 1(w,w'),k = 0,1,---, is generated
DefineZy = Fo, F = Fi. Then itis easy to see that,) recursively by
. .. . - =T ~ ~ ~
is L-mixing with respect ta(Fy, 7, ). brsr = Op — apgr H(k +1,6). (14)

Thus we can writeH (k, 6) as ]
o A standard choice is; = a/k° with 0<é < 1, anda > 0.
(L(O + cxldg) = L(8 — cxldn))(2e) T AL The central limit /theorem (CLT) given as
+ e (2er)TTALL (9) [25, Proposition 2] indicates that for any fixed choice
of ~ the best rate of convergence is obtained if we choose
6§ = 1. Thus, in the sequel we shall assume that= a/k.
c = c/k” with some ~>0. (10) There seems to be no technical difficulty to extend the
Note that in [25] the condition imposed on the measureme?l?alys's presented in this paper to the O@&?5< 1.
noise is expressed in terms of the compound measurem nThe almost sure convergence 9f the e§t|mator process for
noise e15, which is assumed to be a martingale differenc e case Whgn the'n0|se is a martingale difference process has
process (cf., the condition preceding [25, (2.2), p. 333]). T en estabhshe_d n [25]_usmg results of [22]. In th? same
condition of the present paper given as Condition 2.2 is PRper asymptpnc ”O”T‘a"ty of a propgr!y scale_d e_zst|mat|on
possible alternative to Spall's condition. error process is established by a nontrivial apph_catlon 01_‘ [(_5].
The ordinary differential equation (ODE) The scaling is nonstandard compared to classical s.tapstlcal
a theory: assumingy, = a/k and ¢, = ¢/k™ a normal limit
U =——Gly) ys =&, a>0 (11) distribution of k(1=2%/2(f, — 6*) exists forl/6 < v < 1/2.
¢ A main advanceof the present paper is that the “bound-
t > s will be called the associated differential equati6#(y) edness conditions” [25, Conditions A3 and A5] repeatedly
is defined inD and it has continuous partial derivatives URyiticized in the literature on recursive identification (cf., [,
to second order. Under the condition above (11) has a unignarks, pp. 46 and 47]) are removed by the application of
solution in [s,00) which we denote byy(¢,s,&). It is well g resetting or truncation mechanism as described below. A
known thaty(t, s,¢) is a continuously differentiable functionfyrther advance is that by the application of the methods of
of (¢,5,8). [11] we get an upper bound for the rate of convergence of the
Condition 2.4: Let Do C int D denote a compact convexmoments of the error process, which is likely to be tight (cf.,
domain such that* € int Do, and the closure of the the remarks following the theorem).
neighborhood oD of radiusc > 0, denoted ad)(c), isinside  Resetting: Assume that the initial estimaég is in Do. De-

D. For every{ € Do,t>s > 1y(t,s.£) € D is defined and fine, following (14) a tentative valuél, | = 6 — arq 1 H(k+
we have with someZy, o >0 1,6;), and then set

A standard choice for; is

a R N R
gt 5:9)|| < Cols/D)™. (12) Ori1 =6, when 6}, € Do
and
Here||- || denotes the operator norm of a matrix. Furthermore,
we assume that the initial conditiofint Dyg C int Dy,
where Do is a compact domain which is invariant for (11) Remark: The above resetting mechanism seems to lose
and that for anyt>s > 1 information obtained up to time:. However, if the noise
y(t, s, Doo) = {y(t,s,x): x € Doo} C int Dog sequence is “untypical” so that it drives the estimator out
_ ) of the domainD,, then we can not expect to extract much
and for¢ € Doo the solution trajectory(t, s, §) CONVerges information. An alternative resetting mechanism would be to

ék+1 Iéo when élj—-l—l ¢ Dy. (15)

to 6. chosefi.1 = 6. However, §, may be at a position from
Inequality (12) is equivalent to the condition that the difgyhich the solution of the ODE does not convergeftaat all,
ferential equation or hits the boundary of the truncation domain, and this would
d force the estimator to be reset infinitely many times.
P —aG(z,), Zu=§ (13) " The choice of the initial estimaté, and of the setD,

is exponentially asymptotically stable with exponenti.e., if €guires some priori knowledge of the problem. However,

the solution of (13) is denoted by(v, v, ¢), then we have if the associated ODE is globally asymptotically stablelin
the domain of definition ofL, then for any initial condition

‘ < Cpemalv—u), ¢ = 0y € D a “sufficiently large” D is a suitable truncation
domain. This approach is practical if the parameterization of

a
‘a_é-z(vvuv 5)
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the domainD is simple and it is easy to describe what is The validity of the conclusion of Theorem 2.1 under such
a large domainDy. As an example consider the problem ofveak condition imposed on the noise is a surprising result. This
system identification. Let the parametedenote the system’s remarkable feature of SPSA has been first observed in [2] in
parameters of a stable, linear single-input/single-output (SISBE context of almost sure convergence. Note that no similar
system. If we use the balanced parameterization of Ohbesult is known for the standard Kiefer—Wolfowitz method.
(cf., [24]), then the parameter-space is very simple, and thlowever randomized Kiefer—-Wolfowitz methods (cf., [17] and
proposed procedure is feasible. [19, Sec. 1I-C.5]) do exhibit similar robustness with respect to
In the theorem below the notatiafi;(-) means that the noise.
L, x O, F x F',P x P')-norm of the left-hand side An interesting special case is when there is no measurement
decreases with the rate given on the right hand side for angise. Then we have a standard optimization problem which is

q > 1. solved by a randomization method. The use of SPSA is justi-
Theorem 2.1:Let 3 = min (4,1 — 2v) > 0. Assume that fied for large scale problems with low precision requirements.

the smallest eigenvalue of the Hessian matrix.cdt & = 6*, Theorem 2.3:Let ¢, = 0 for all n. Choosey > 1/2 and
denoted byw, satisfiesac > 3/2. Then under the conditions assume that the smallest eigenvalue of the Hessian matrix of
above, i.e., Conditions 2.1-2.4 we have L at 8 = 6*, denoted by, satisfiesac >1/2. Then under

. Conditions 2.1, 2.3, and 2.4 we have

b — 6" = Op(K=P/2). (16) X

b — 0" = Op (K™Y, (17)

For ac < 3/2 we havef — 6* = Op(k=°*). Finally for
ac = 3/2 we have for any > 0 0y, — 6* = Oy (k=5/219), lIl. THE ANALYSIS

The value of 5 = min (4y,1 — 2v) is maximized for  gtep 1 Continuous-Time Embeddin§ome of the calcu-
4y = 1 — 2v, from which we gety = 1/6 and = 2/3.  |ations to follow are easier to carry out in continuous time,

The best rate is thef=!/. . ~ hence we embed our discrete-time data and procedure into a
Remark: The proof of the theorem yields the followingcgntinuous-time data and procedure. Consider the piecewise
stronger result: let < ¢ <oo and define linear curve < defined fork < ¢t < k + 1 as 65T =
Gro=  sup B0 (t— k)é,jﬂ +(k+1—1)6;, Whereé,jHAis the tentative value
g" <k<gntl of the estimator computed by (14). &Eﬁrl € Dy, then the
. straight Iineé;”r will lie completely in Dy, sinceDy is convex,
then, foraa > /2,65, = Oa(q "%/?). and then we sef; = §;. On the other hand if;\, , ¢ Do,

Remark: The role of the relation betweeny and /3 can be then letr = 7 (k)
roughly explained as follows: it will be proved in Lemma 3.
that the estimator sequence locally tracks the solution of t?E
ODE given by (11) with an errof,;(k~7/2), irrespective of
the value ofa. But the solution of the ODE converges &6 = . . .
urthermore, let the piecewise constant continuous-

with a rateO(¢~**). If this rate is better than the rate of the. . i _
local error, then the latter will dominate. Otherwise, it is t:(%lgf( teg)t()erls;oon (t))]:e(}g(e];ir:(re dL:S)f)f“ ((ieg)otid ;(Slgﬁ(tl’ 99))) fo_r

other Way. around. . : k<t < k+ 1. We define the continuous-time extensions of
Remark: The theorem does not claim that the given CoNr e <o uencesu), (cx), (Ax), 1z similarl
vergence rate is sharp. But the CLT given as [25, Propositiong _; ?:c - ]_l‘ ’ ;__;Jr ko ]1_1‘4 for )7/1.<t a1
t n4l,v ¢ - > .

2] indicates that in the casex > /3/2, the convergence rate . LTl . .
given in the theorem is sharp, indeed. Then it is easy to see, using, e.g., inequality (74) of the

Remark: Note that we do not need to have the lower boun?gpendlx’ that the processy,) is L-mixing with respect to

. » S ¢ Fet). Similarly, defining ¢ = F/_ |, F°T = F4
1/6 < ~ as in [25, Proposition 2], this is only needed fo Ol’t7’L<tt )< n4t 1 the procesiAt,) is L-mﬁ>1<ingt with reserelct
the asymptotic normality result of [25]. The reason for thiFO (Fe J,T__,CJ,) ’ ‘
is that for1/6 >~ the contribution of the third-order term of Ler;rr’]atfs 1'.In the periodk < ¢ < (k) the straight linede
the Taylor-series expansion (callet*(r, 6) in (27) below) will be the s.ol'ution of a differential equation of the formt
dominates the error procesk. [cf., (30) below], hence the
stochastic effect is suppressed and the existence of a limiting d ge @t @ ¢
—0; = —— t, 6 OH (¢ 18

distribution is not ensured. dtt t( (8,00) + 6 H* (1)) (18)

For the next theorem we consider an alternative noi§fere SHE(t) = Oy (k—+7). If the measurement noise is
condition, in whichno dependencstructure is imposed on ,o.0 then we haveH*(t) = Oy (k=) for any .
(¢). This theorem is based on an observation in [2]. Proof: The correction terné H¢(t) is defined by the re-

Condition 2.5: The measurement noise process.) = quirement that the right-hand side yields the constant velocity
(en(w)) is assumed to be a bounded sequence of randgm _ br, i.e., we require—(a/t)(He(t,65) + 6HO(t)) =

<k + 1 denote the moment whefif* first
its the boundary ofy. Let us then reseft to 6y, i.e., we
&fine dc = 65t for k < t<7 and6° = y. In the period
7 <t<k+1we keepbs constantfs = fj.

variables. —k(tzl/(k + 1)H(k + 1,6;). From here we get
Theorem 2.2:Let the conditions of Theorem 2.1 be satisfied 1k g
so that Condition 2.2 is replaced by Condition 2.5. Then the SHE(t) = t H(k+ Lék) _ Hc(t,éf).

conclusions of Theorem 2.1 remain valid. kE+1
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The time-dependent random field (%, ) is easily seen to  Step 2—Analysis on Finite Intervald:et o > 1, andg > 1.
be Lipschitz-continuous with respect é First note that for We consider the trajector@tc on the intervalo, go A 7(7)).
6 # 8 we have Let 7(c) denote the first moment after, at which¢ hits the
1 boundary ofDy. If §¢ does not hit the boundary db, at all,
L(0 + cpAy) — L(O + cpAy) :/ Le(@8T(\)(6—6')d\  then we set-(o) = co. Further, lety, denote the solution of
0 (11) with initial conditiony, = 6, = 6, i.e., 7, = y(t,0,6).
whered +()\) = MO+ crAp) + (1= \)(@ +cprp). A similar A main tech_nical tool used in the proof _is the development of
expression can be obtained B0 — ¢y Ay) — L(§ — cxAg). @ locally unn‘orm.u_pper bound for the.lncremer1|9$ -7l
Since the measurement noise is independen? afe get, Note that the validity of the lemma is independentcofthe

subtracting the latter expression from the former one smallest eigenvalue of the Hessian-matrix[oat ¢ = 6*. Let
Lo __ I,(g)= sup |67 -7
H(k,0) — H(k,0) = / (Le(BFN) = Le(@ (V) o<1 <40nT(0)
0 I* = sup I,(q).
2e) AT NG — ¢). )= swp L)

- - - — + Lemma3.2:Let § = 1, 0<y<1/2 and let 3 =
Using a second-order Taylor-series expansionfg® () — ’
ng. Y P €o - () min (47,1 — 2y). Then we havel*(q) = Oy (s 7/?). If

Lg(6 (X)) aroundAd + (1 — \)¢' it is easy to see that the S .
Euclidean norm of the integrand is bounded ¥, and thus Erl?ql;\e_asgreg??/t%]mse 's zero, then taking: 1/2 we get
— M .

Lf;isl}g)ﬁ;)r}gz continuity ofH is established with a Lipschitz Proof: First fix 0. Since @ = 7, = ¢ we have for
To get an upper bound fofH*(t) we subtract and add ” <t < goAT(o)

—(t/(E+1)H(k+1,65) = —(t/(k+ 1))He(t,69) to get s ta o e . _
(Ol DI+ 1,6 =~/ )08 b= [ ) - 070) + G )
[BH(1)] < 5= pK 10— ] g i i
= [ H ) - 5H ) + 6U)

¢ R
I — 1) Hew, b)) 19 )
‘<k+1 ) ) 19 — (G(62) - G(5,)) dr
For the first term we have ‘a A _
= —(Jr — ) — . g 21
e . [t -G -cama @
L —0°| < |6, — B 1.6,

100 = 021 < 100 = b ‘k+1 (k+1,60) where J, is the cumulative error defined as

< sup LH(kﬂ,e)‘. T, = —H(r, 6°) — SHC(r) + G(6°). 22)
8CDg k+1

This error process will be decomposed according to the source
of the error. First write
JAC = —H(r,6°) + G(6°). 23
L(6 + 1A — L(6 — e A1) (2e1) ALY < pK (r. 6:) () (23)
k ~
To analyzeJ=¢ substitute the free variabkfor 6¢. Define

Now consider the expression for the random fieki(k, #))
given in (9). We have

with some deterministic constai, uniformly in 6 for 6 €
Dy. On the other hand J2(r,0) = —H(r,0) + G(6).

en(2e1) ALY = Ol ) Then J2< = J2<(r 6°). Now we continue to decom-

, ., bose JA(r, é;ﬁ) taking into account the representation of
thus we get altogether that for the standard chejce- ¢/k He(r,8) = H(k +1,6) given in (7): we write

HY(k+1) = sup [H(b+1.0) = Ou(eia) = Om(k)- yae(r, ) = J3(r,0) + J
’ I . . IR 0) =—(L(6 + ¢, A) — L(6 — ¢ A))(2¢,) 7
We conclude that the contribution of the first term in (19) is (r,6) ( (1 +enln) (6 = erlar))(2er)
On(k=147). AT+ G(0)
For the second term in (19) we gBt*(¢, 65) = H(k+1, 65) JE = —e1n(2¢,) T AL (24)

and the norm of the latter is majorated B (k + 1). Since
((t/k +1) — 1) = O(k~*) we conclude that the second ter
in (19) is also of the order of magnitud@,;(k='*7), and

The first term,J2(r,#), will be further decomposed using a
n1hird-order Taylor-series expansion. Write

thus finally we get that (L(6 + ¢, A,) — L(6)) - (2¢,) 1At
SH () = Opg (K-1+7) ) =L@ (eA)2e) AT + Hea,)
1
which completes the proof. Lo (0)(cr ) - (2¢,)7PATE 4+ é/ Loes(8 (V)
0

If the measurement noise is zero, thEf(k+1) = O (1), e
and thus we get an error ter,, (k=) for any ~. cdAx (e Ay) * (6 A) * (6 D) - (20) A
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whered T()\) = A(6+¢,A,) + (1 — \)6 and+ denotes appro- We further decomposg(r, 62) in order to simplify the
priate tensor products. A similar expansion can be obtained fandomness present ﬂi Let us write

L(6—¢,.A,.)— L(6). Subtracting the latter expansion from the R R

one given above the first- and third-order term will be doubled 7' (r,65) = J2'(r,7,) + (J21 (. 65) — T2 (r,7,.)).

and the second-order terms will be cancelled, thus we get ) ) o ) )
Since# is restricted to a compact domain in which the first

—(L(O + ) = L(0 = e A)) - (26,) TA + G(B) and second derivatives df are bounded, and the components
= (—(Lo(6)T (26, 0,)(2¢,) 7T AT — G(6)) of A, have absolute value equal to one, it follows from the
e . definition of J21(r, ) [cf., (3.9)] thatJ>1(r, #) is Lipschitz-
- E/ +Loso(8 () dAx (crAr) * (crAr) % (¢2Ar) continuous, say AL (r, 62)—JAL(r,7,)| < K'|65—7,., where
0 K’ <o is a deterministic constant, depending only§nand

. —1A-1
(2er) A (25) p. Now write
Note that we have AL AL N .
Lo(0)T (2¢,A,) - (2¢,) 1A St =2 () = I (0, 65)).
= (Le(B)TA,) - At = AN (AT Lo (6)) The advantage of this approximation is that the randomness
=ATTATG(h) of 5, is purely due to the randomness of the initial condition
and thus the first term on the right-hand side of (25) can gé Define the modified error process
written as A PR SR A i3 (30)
T2 r,0) = —(ATTAT — DG(B). (26)

Substituting into (21) and taking into account the inequality

In J2L(r, 6) = J2(r,6,w') randomness is purely due tob%(e V_G(7.)| < K|6,—7, |, we get thatds —7,| is majorated

the random perturbation of the parameters. The conditio
imposed onA,. imply that

t
Ep/(-A7TAT +1) =0. / R Sy (R (R (Y
a s

Since Ay; is L-mixing with respect tq F/,, F), we get that ¢
A LAT is also L-mixing with respect to(F/,, F/*), and we +/ g(K’ + K)|65 — 75, | dr. (31)
conclude that/*!(r, §) is a zero-mearL-mixing process with o
respect tq F;,, ). The same holds trivially for its first three yow we are in a position to apply the Bellman—Gronwall
derivatives with respect t6. _ lemma with o fixed. But first we need to get a tight upper
For the third-order term we introduce the notations bound for the first term on the right-hand side.
1 . . .
7830, g :_;/ Lo (@0 Loss(8 (A dA(G, A, Step 3—E_st|mat|on of the Constant Teriret us consider
(r,0) =—% ; (Looo (9" (N) + Logs (6 (N) dA(erAy) 2 expressions

* (e A) * (cr ) - (20,,)71A;1. 27) "
* Aly a Aly,, . .
It is easy to see that whehis restricted taDy(c) we have 5(J70) = U<t<s’;f’M(U) /o - (r,y(r,0,6)) dr
sup |J2%(r,0)| = O(c}) = O(k™) A
8€Do(c) - t
/ a A
and hence 8X (%) = sup / —J23(r,0) dr
" o<t<gont(o)] [Jo T
23 = J23(r,6°) = O(c2) = O(k™). (28) s<o<gs
1
Thus we have arrived at the following decomposition of the §5(J) = sup / EJ; dr dr
error process/, = J,: csgulr e Ve r
Jp = TR (r,09) + T3 4 S+ JE. 29 t
(r.6r) (29) §(J) =  sup / 2T dr.
For the sake of further reference the relevant terms are o<t<gonT(o) |Jo T
summarized as follows: sSsas
T2 (r,0) = — (ATTAT — DG(B) Note that sinced € D, Condition 2.4 above implies that
JA3 = g3, gey y(r.o,0) is defined for allr > o and hence the definition

L of §7(JAY) is correct. Defining the compound error term
.]A?’(T7 9) = — % / (L999(9+()\) + Lege(ei()\)
0

cdA* (e Ay) * (6 A) * (6 A)
(2¢,)7tA T

JE= — e (2¢,) AT

Ji = —8H(r).

8 =S (I )+ § () + 5 (I)+ 8 () (32)

we get from (31) for any < ¢ < go A7(0) with s < o < gs

t
. 1 )
10; — 7wl < 6 +/ ~(K'+ K)|; =5, dr. (33)
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Estimation ofé*(JA1): It is easy to see that for fixed we can write the above inequality as
and 6 the process 6, () = Opg(o— /247, (37)

Aly,. . _ —1/, 7 Ty 1 .
Tl e 8)) = ~(A, (WA ~ )G (n e, 6)) The additional difficulty in estimating?(.J¢) is in the handling
r > o and its first two partial derivatives with respectét@re of the supremum with respect toover a set of dilating inter-
zero-meanL-mixing processes ovei?’, 7/, P’). Using this vals. This will be done with the application of an appropriate
fact, [11, Lemma 3.1] implies that change of time scale. Let us set= ¢ and define

8§52 = On(s™7) (34) po(J€) = /26, (9. (38)

in the sense that thd, (', 7*,7')-norm of the left-hand ;i this notation we have the following proposition.
side decreases with the rate given on the right-hand side fof o;yma 3.3: The processesp,(J<) and |pyir(J) —

any ¢ > 1. Obviously, if we consides?(J2!) as a random po(J|/|K|M2, k # 0 are M-bounded.

variable over the product spat@ x ', 7 x 7/, P x P’), the Proof: We have already shown that, :=8,(J¢) =
same pro_posmog hglgds. _ ~ Op(o~ /247 thereforep,, := p,(J€) = Opr(1). Let us now

Estimation ofé; (./=°): Using (28) and the assumptionigue a small: > 0 and estimate the moments O — po-
¢ = c/(k+1)7 < ¢/r7 we get Write ¢* = 1 + h, then we can write

5:(J2%) < < Ptk — pu = (o(1+ M) 78, 140 — o/2776,.

7’s s 2
/ e, ccdr / CLC%Q’Y dr
S r S r . . .
y The differenceé, 14,y — 6, can obviously be majorated by
<Cps™ (35)  the sum of the following two terms:

with someC; > 0. "a a1
Estimation ofé*(.J¢): We have [cf., (24)] Ay = o / Cew(2e)T A dr (39)
. <t<o v T
* € a -1 -1 - '
§5(J) = sup / Cer(2e)T A dr. Ay=  sup / L@ AT dr|. (40)
"%EZ‘L@Z(") s qo<t<qa(1+h) [Jgo 7

By Condition 2.2 the proces&;,.) considered as a process/Ve estimateA, similarly to 6, (/¢): for any m > 1

2m

over (2, F,P) is a zero-mear-mixing process with respect t

to (F,, F). It is easy conclude thafe;,) considered as a EY?™ sup / gel,,(2c,,)—1A;1 dr
process over the product spagex ', F x F/, P x P'), is a o<t<o(i+h) [o 7
zero-meanL-mixing process with respect (oF,. x F’, F x o(1+h) 42 1/2
F'+). Similarly (A1), considered as a process over the < C(/ —(2¢,)7? d7>
product spacé2 x ¥, F x F', P x P'), is a zero-mearl- v !

mixing process with respect 07, x )., 7, x F/*). Since whereC depends onn and the processds:.), (A,), but is
e1 and At are independent we conclude tifag. A ') is a  independent of andq when the latter is confined to a bounded
zero-meanL-mixing process ovefS2 x €', 7 x F',P x P') interval. Substituting;. = ¢/ we get for the right-hand side
with respect to(F,. x F., Ff x FIT). "

Thus for fixeds we can estimate the moments of the integral a(1+1) ;2 .2y
on the right-hand side using the maximal inequality given as </ 72 2 7’)
[9, Th. 5.1] and restated as Theorem 5.1 in the Appendix. We 7

get for anym > 1 and fixedo _ <a_2 1 .7,2'y—1|cr(1+h)>1/2
N 2m 02 2’)/ -1 7
EY?™ sup / 2 (2 AT dr =C' (oML - (1 + )2 )2
o<t<qo |Ja T
0 2 L 1/2 whereC’ depends only o and~. Thus we get
< C</cr 2 (261,) d7> A = ij(o_—l/Q-i—'yhl/Q)' (41)

whereC depends onn and the process€s.,.), (A.), butis  simjlar estimates can be obtained s, thus we finally get
independent of andg when the latter is confined to a bounded

interval. Substituting;,. = ¢/ we get for the right-hand side So(14n) = 65 = Opr(0™H/2TVRI/2), (42)
q@ 2 2y 1/2 Now write
( / @ dr) < Com1/2, L e
o 7)2 C2 Putk — Pv = (0(1 + h)) ’yé(r(l—l—h) — 0 "/60_
To proceed we need to develop an extension of [11, Lemma =(a(1+R)Y27 Y (Sp1qm) — 85)
3.1]. Defining +((o(1+ h))l/Q,,y _ Ul/g,ﬂ,)éa'
t
6,(J) = sup / gel,,(2c,,)—1A;1 dr (36) Then, by (42) the first term on the right-hand side is
o<t<qo |Ja T On(RY?), whenh is confined to a bounded interval. For the
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second term we get by (37) and by the elementary inequalityStep 4—Hitting Probabilities:Let C,; denote the event that
((o(1 4+ R)Y?2=7 — 51/277) = O(s}/277h) that its order of a resetting takes place in the interv@al gs). It has been
magnitude isO,(h). Since for smallk we haveh = O(k), shown in [11, Lemma 2.3] that Lemma 3.2 implies that

we finally get P(C,) = O(s~™) for all m > 0. It follows that in the whole
interval [s, gs) we have
otk — pv = Opr(KH?). (43) [5,22)
je = * . _ —8/2
Thus Lemma 3.3 has been proved. o |07 — 7] < K67 + xc, - K =0pn(s777)  (51)

Now let ¢ > 1 be fixed and lef: = ¢ — 1. Seted =1+ h
and s = e¥. Then applying the maximal inequality givenwhereX is the diameter ofD,. Note that the validity of this
as Theorem 5.2 of the Appendix to the congruent compagstimate is independent of.

intervals [w, w + k| with varying w, we get Step 5—Pasting Together the Interval Estimatest  us
. —Ou(l ag) oW take a subdivision ofl,oc] by the pointss, = ¢"

Pv = wéfg;% po=Om(). 44 with someg > 1. Then
Observing thab,. (J¢) = e(~1/2+Mvp (7€) [cf., (38)], we im- 85 = Onm(qg ™). (52)

mediately get thad*(J¢) = §%.(J¢) < (V2w px () = _
Op(e=H/240w) = 0,,(s~L/2+7) thus we conclude that Assume thataa>_/3/2. Follovx_n_ng the _a_rgur_nents on [11,
p. 1208] and using the stability condition imposed on the
63(J¢) = Op(s™H/2H7), (45) associated ODE, it follows that with, denoting the solution

If the measurement noise is zero, then obviously/¢) = 0 of the associated ODE starting frofy we have

for any ~. su ge _ -0 —ng@/2
. . . p Yyt = Um\g .
Estimation of6:(.J¢): Using (20) we get gr<t<gntt 6 fl ( )
t . ! ..
§5(J°) < sup / ﬁéHC(T) dr Sincesupn <y g1 |y — 0% = O(g™"*%), the proposition
) T e<t<qont(o) Jo IT of the theorem follows. The casev < 3/2 is handled anal-
sS0Sgs ogously (cf., [11]), using a corrected version of [11, Lemma

7.4], given as Lemma 5.1 in the Appendix of this paper. The

caseacx = /3/2 trivially follows from the previous results. The

o proof of Theorem 2.3 is completed analogously.

If the measurement noise is zero, thef(.J¢) = Om(s™) Proof of Theorem 2.2:\We have to reconsider only the

for any ~. o o arguments given under the headingstimation ofé*(.J¢).”
Summarizing (34), (35), (45), (46) it is easy to see thathe main idea is that the boundednes$ef (w)) implies that

for v < 1/2 the dominant terms ar€ (%), arising from the for any fixedw the procesgey,(w)A=1(w’)) is a zero-mean

approximation error in the numerical differentiation scheme,.mixing process ovefQ?’, 7/, P') with respect to 77, F/+),
andé*(J¢€), arising from the measurement error. Thus for thgniformly in w (cf., [9]). Writing
compound error ternd* defined under (32) we get

85 =0(s727) 4+ Opy(s7/2H7). (47)

q’s
g/‘ﬁm*ﬂmgm*ﬂ. (46)
S /r

ST = (T Y(w,w) (53)

we get by the arguments given above that forralt>1 we
have

It follows that we can write

& = On(s77/%) with = min (4v,1 — 2+). 48
s J\l( ) / ( Y ’7) ( ) E})/,in|6;:(JF(w7w/))|2nl S 08—1/2-1—"/ (54)

If the measurement noise is zero, then summarizing (34), (35),

(45), (46) we see that foy > 1/2 the dominant term is whereC is independent of. Integrating this inequality over
§3(JAL). It follows that we have Q with respect tow, dP) we get the desired inequality (45),
and the rest of the proof is the same.

81 = Op(s™/?). (49)
Now from (33) we get using the Bellman—-Gronwall lemma IV. HIGHER ORDER SCHEMES
with fixed . . .
¢ . The idea behind SPSA can be generalized to get
I,(qg) = sup |0 —7,| < k6% (50) higher order approximations of the gradient. Higher order
ostsqonT(o) Kiefer—Wolfowitz methods were first considered in [7], where
with a special ad hoc approximation scheme is used. In contrast
10 1 . to this we rely on approximation schemes the numerical
K = exp / “(K' 4+ K)dr = ¢+, properties of which are known to be very good. The rate of
a T

mean-squared error established in [7] is identical to the rate
Since the right-hand side of (50) is independentoofwe that we get for higher order moments of the error process.
can take supremum over on the left-hand side, and thusHowever, better numerical procedures may improve the
Lemma 3.2 is proved. asymptotic covariance of the estimation error.
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Following [8, Ch. 2], letf(x) be a real-valued function estimator will be based on measurements taken ifoe
of the real variabler, and leth > 0. Then define the shift 1,---,m at 8 + (i — 1/2)cxAg. A single measurement has
operator;, by the form L(6 + (i — 1/2)cxAg) + 2072 wheree(—1/2
is the measurement error. Note that far= 1 the positions

(Snf)@) = f(z +h) (55) at which measurements are taken are halfway betweand
and the central difference operaif)y by the positions taken by standard SPSA. We assume that for
t=1,---,mwehaved £ (i—1/2)c;, € Dy. Let M () denote
Orf)(@) = f(z+1/2) = f(z = /2). (56)  a generic measurement takendai.e., M(6) = L(6) + c.
Clearly we can write Then the gradient estimator ate D, is defined as
§, = SL/% — g1/, (57) H(k,0) = Pam(6a,,0) M (0)ci AL (64)
On the other hand, fof analytic, a Taylor-expansion aroundwhere the notatiot,,, (6, ., )M (8) is self-explanatory. We
z gives define the estimator sequence as in (14) repladih@, ¢)
B2 by the expression given above in (64) and using the same
fle+h)=f(z)+hf'(z)+ 5f”(a:) + - resetting rule.

The analysis of higher order SPSA methods is analogous to
which can be expressed in the forfifz + h) = e"P f(x), that of the second-order SPSA method given above. In view
where D is the differentiation operator. Buf(z + k) = of the assumed independenceedf and A, we have
(S1.f)(x), thus we can write formally

EP?m((SAA»,CA»)M(Q)CZIAIZI = EPQ"”((SAI\»;CA» )L(Q)CZIAZI
S, = P, (58)

. . Furthermore by (63) the latter expression is equal to
Combining this with (57), we conclude that

oL
8 = M P/2 _ oD/ 2sinh (5 hD) (59) E<ckA;‘C 20 6+ O(Czn’+1)>c;1A;1
: . I
from which we get forD the representation _ g_e (6) + O(E™ ),
hD =2 sinh™ 1§, (60)

The effect of using higher order approximation schemes is that

The first few terms of the Taylor-series expansion of thge residual termy23(r, 6) defined under (27) will be replaced
right-hand side gives the approximation by a higher order residual tero¥®2™+1(r, §), for which we

N AN AU YA O oD have [cf., (28)]
= 2 2\ 2 3 247\ 2 5 ) J;:A,an-l—l — O(Cznl) — O(If_QnVy). (65)

Let the2mth-order formal Taylor-series expansion of the right.—l.

h : H % TA2m~41 ill i :
hand side of (60) be denoted b,,,(6). It is stated (cf., e estimation 087 (./ ) will proceed as in (35): we get

[8, p. 22]) that for a functionf having 2m + 1 continuous s
derivatives, we have Sr(JAAImTL) < / " O™ dr
h2Zmtl_{ym 132 (2m+41) ?
hf/(.’l') — PQ’nz(&h)f(-T) + ( ) (m) f (5) qzs Cin L
(2m + 1)! < aC ——— dr| < Cys™™" (66)
(62) < 7,1—1—2771"/

where in the last terr§ is in the ranger —mh < £ < z+mh.
This approximation of the derivative is favored in numerica¥ith some Cy > 0. Summarizing (34), (66), (45), (46) it

analysis because of its good convergence properties, naniélyadain easy to see that for<1/2 the dominant terms

the coefficients of the expansion of the right-hand side of (68§€ 65(J*"*) and §5(J¢), the latter arising from the

decay faster to zero, than for other expansions. measurement error. Thus for the compound error @&tf.,
For a multivariable functiotL(#) we approximate the partial (32)] which is now defined as

derivatives analogously. For this we fix> 0 and define the N s v TAIm s re s re

central difference operatar, ;, in the directionv by applying 65 = 68(‘]A1) + 65(‘]A72 T +EU) () (67)

the operatot,, to the functionf(x) = L(6 +xv) of the scalar

. X / . . we get the estimation
variable z. Thus if the functionZ is 2m + 1 continuously g

differentiable, then we have 85 = O(s72™Y) 4 Oy (s~H2H7), (68)
aL -
hf'(0) = th@ (6) = Pom(80,1)L(6) + O(R*™*1) (63) |t follows that we can write
when @ is restricted to a compact domain. 8 = O0p(s™P/%) with g =min(4my,1—2v). (69)

Now takev = A; random as in Section Il and l6t< ¢;, <
1 be a fixed sequence of positive numbers. The gradieftius we get in general the following result.
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Theorem 4.1:Let 3 = min(4dm-~, 1 —2v) > 0. Assume that Proof: Let 0< A < p<1, and setz, = p~"z,. Then
the smallest eigenvalue of the Hessian matrixXadt ¢ = #*, we have after multiplying (71) by—(*+1)
denoted by, satisfiesac > 3/2. Assume that the conditions
of Theorem 2.1, i.e., Conditions 2.1-2.4, are satisfied with
the following additions: the functionl is 2m + 1 times \ynich can be solved explicitly fog,,
continuously differentiable inD, and in Condition 2.4 the
neighborhood ofD, of radius(m + 1)c/2 is inside D. Then

—1 —1
Zn+l = )‘p Zn P U

n—1

_ —1\n—1—¢ —1_ .
for the estimator sequende defined by (14), combined with Fn = Z (Ao Pt
a resetting mechanism, witH being defined under (64), we =0
have Using the triangle inequality for thé,, (22, F, P) norm and

b6 — OM(k_"’/Q). (70) the condition0 < A < p we get
) Mp(2) < (1= Ap™ )7 p™ My (u)
For aa < 3/2 we havedy — 6* = Oy (k=°*). Finally for
ac = /2 we have for any >0 ), — 6* = Oy (ko). from which the first proposition follows.
The value of3 = min(4m~,1 — 2v) is maximized for A useful reformulation of the above derivation is as follows:

4my = 1 — 2y, from which we gety = 1/(4m + 2) and Write

B = 4m/(4m + 2) = 2m/(2m + 1). The best rate that is n=l ‘
obtained is o Z Nt =y 4
=0

ék —0= OM(kim/@m“))' Then we have

This rate can be arbitrarily close /2 if m is sufficiently n—1
Iarge. E1/7n,|xn|rn S Z )\zpn—l—zEl/nl|un_l_i|nl
1=0
APPENDIX o 4
<Y X T M (w). (72)

In this section, we summarize some definitions and earlier
results that have been used in the paper. Let a probabilitx . . .
space(Q2, F, P) be given and leD ¢ IR? be an open domain. Thus it is sufficient to establish that for< A < p <1

=0

A parameter-dependent stochastic progaesg#)),n > 0, or n—1 ‘ e
equivalently a time-varying random field, is a sequence of Z Nph—1=t < —
measurable mappings far > 0 from (2 x D, F x B(D)) to i=0 p

(R, B(IR)). Here5(D) denotes the-field of Borel sets ofD. 5 this has been done above. The advantage of this refor-

Definition 5.1: We say that thelR™-valued parameter- mjation is that the left-hand side is the convolution of the
dependent stochastic process,(6)) is M-bounded if for all sequence$\") and(p"), and thus it is symmetric in and .

1 < g<o0 In the case wheli < p < A, we use the same estimate for
1/m m S
M,(z) = sup EY4z,(6)] < 0. EY™|z,|™, but the role of\ andp is interchanged thus we get
n>0
= )\n

6CD EY™ g, ™ < My ().
If (x,,)is M-bounded we shall also write,, = Op,(1). Sim- " . . _
ilarly, if ¢, is a positive sequence we writg, = Oy/(c,,) if Let (7,),n > 0 be a monotone increasing family of -
2, /e, = Op(1). The definition trivially extends to parameter-algebras, and.%),n > 0 be a monotone decreasing family
independent processes. of o-algebras. We assume that for all> 0, F,, and 7 are

The first part of the following result was stated in [11independent. A standard example is
Lemma 7.4]. The second part of the quoted lemma was not . + .
i n — it < = it 1
correctly stated and is therefore restated and proved here. Frn=olezisny Fy=olei>n} (73)
Lemma 5.1:Let (u,),n > 0 be anM-bounded process where (¢;),i > 0 is an independent sequence of random
and define a process:,,) by variables.

Definition 5.2: An IR™-valued stochastic proce&s,, ), n >

Tnt1 = A A+ U, o =0 (71) 0 is L-mixing with respect to( F,,, F.7) if it is F,-adapted,
where0 < A < p< 1. Then for anym > 1 we have M-bounded, and with- being a nonnegative integer and
K ,x) = sup EYx, — E(x,|FI_ )|
El/nl|$n|nl S p_)\ Mm,(u)- ,Y’I(T .’L’) :gg |$ (.’L’ | n—‘r)|

. <
On the other hand i0 < p < A <1, then we have we have for anyl < ¢ <oo

oo

EY ™, < AM M (). L(w) =) valrw) <oo.
—p

=0
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Note that in the definition of’;(x) the momentr = 0 is Definition 5.4: The random field(z,(#)) is M-Holder-
included, so thaf’,(z) # 0 even if thex,’s constitute an continuous ind with exponente, where0 <« < 1, if the
independent sequence of random variables not all of whiciindom fieldAz /A6 is M-bounded, i.e., if forall < g< oo
are constants. we have

The continuous-time extension of Definition 5.1 is straight-

forward. The extension of the concept di-mixing for

continuous-time processes requires an additional technical

condition. Thus let a pair of families af-algebras(F;, F;)

be given such that: 1)/, C F is monotone increasing;

2) 7 C F is monotone decreasing and;" is right-
continuous int, i.e., F¥ = o{Up<. Fi.}; 3) F and
F;t are independent for al.

Definition 5.3: A stochastic process:;),¢ > 0 is L-mixing
with respect ta 7, F;"), if it is F;-adapted M -bounded, and
with

’7(1(7—7 ‘T) = sup El/q|xt - E($t|FttT)|q7
t>T

720

we have for anyl < g<oo

Ly()

/ (T, ) dr < 0.
0

Although,(7, z) is in general not monotone decreasingrin
we have (cf., [9, (2.1)]) forl < g< 00,7 < 7/

Yo(7! 2) < 274(7,2). (74)

M, (Az/A%6)
EYz, (0 4+ h) — 2,(0)|7/] | < 0.

sup

n>0
o£0-Fhe D
For « = 1 we say that the random field i87-Lipschitz-
continuous inf.

Let us assume thate,(#)) is measurable, separabl®{-
bounded, andM-Holder continuous ingd for 6 € D. By
Kolmogorov's theorem (cf., [14]) the realizations 6f,,(6))
are continuous i with probability one. Hence, foby C D
being a compact domain, we can define for almostall

oy = max |z, (6)]. (75)
The quoted result also gives an upper bound for the expectation
of the continuity modulus ofx,,(#)), which in turn can be
used to estimate the moments €f. An upper bound was
already derived in [18, Lemma 7.15, Ch Il], and a simple
extension of that result yields the following result, given as
[9, Th. 3.4]:

Theorem 5.2: Assume that(x,(6)) is a measurable, sep-
arable, M-bounded random field, which is alst/-Hdolder-
continuous with exponent for 6 € D C R”. Let z* be the
random variable defined in (75). Then we have forgalt 1
andr>p/a

A fundamental technical tool in estimation theory is a
moment inequality given as [9, Th. 1.1]. Based on this result,

EY4(2")! < O(Myp(2) + My, (Da/A0))  (76)

and using a continuous-time extension of a basic inequality d@ere C depends only onv, p, ¢, and D, D°.

to Méricz (cf., [23]), we get the following maximal inequality
given as [9, Th. 5.1].

Theorem 5.1:Let (x;),t > 0 be a real-valued.-mixing
process withEx, = 0 for all t and let(f;)
function that is locally inL3[0, o).

l<m<oo
’ 2m
EY?™ sup / Sraedt
i<r<r |Jo
T 1/2 [1]
<a, ( / ffdt) My (2)T 5 () 2]
0

where C! depends only omn. 3
The theorem obviously extends to vector-valued processes,
weighted by matrix-valued;. [4]
An important technical tool is an inequality that provides
an upper bound for the maximal value of random fields. Tqs]
formulate this let0O<a < 1 and define the time-varying [6]
random field(Az, /A%8) by
[71

(8]
El

Az, /AY0(0,0 + h) = |z,(0 +h) — 2, (0)|/|R]*

forn > 0,0 #£60+heD.
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