
894 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 5, MAY 1999

Convergence Rate of Moments in Stochastic
Approximation with Simultaneous Perturbation

Gradient Approximation and Resetting
Lászĺo Gerencśer

Abstract—The sequence of recursive estimators for function
minimization generated by Spall’s simultaneous perturbation
stochastic approximation (SPSA) method, presented in [25], com-
bined with a suitable restarting mechanism is considered. It is
proved that this sequence converges under certain conditions with
rate O(n��=2) for some � >0, the best value being� = 2=3,
where the rate is measured by theLq-norm of the estimation
error for any 1 � q <1. The authors also present higher order
SPSA methods. It is shown that the error exponent�/2 can be
arbitrarily close to 1/2 if the Hessian matrix of the cost function at
the minimizing point has all its eigenvalues to the right of 1/2, the
cost function is sufficiently smooth, and a sufficiently high-order
approximation of the derivative is used.

Index Terms—L-mixing processes, limit theorem for moments,
linear stochastic systems, maximal inequalities, recursive estima-
tion.

I. INTRODUCTION

T HE aim of this paper is to prove a rate of convergence
theorem for a class of stochastic approximation processes

for function minimization developed by Spall in [25]. The
main feature of Spall’s method is a new way of estimating the
gradient using only two measurements at properly selected
random parameter values. One of the main application areas
of simultaneous perturbation stochastic approximation (SPSA)
is direct stochastic adaptive control (cf., [25]).

A Kiefer–Wolfowitz method using randomized differences
was first proposed in [17, Sec. III-B]. However, the number
of measurements required for this method is the same as for
the standard Kiefer–Wolfowitz method, i.e., twice the number
of dimension. The argument behind the use of randomized
differences was that by their use, sensitivity with respect to
bias is reduced. A random direction Kiefer–Wolfowitz method
with just two measurements has been proposed in [19, Sec.
II-C.5], using random unit vectors as perturbing vectors; see
also [20].

The main advances of this paper are that a crucial bound-
edness hypothesis, given as [25, Assumptions A3 and A5, p.
335] is removed by forcing the estimator to stay in a bounded
domain, and we get the rate of convergence of higher order
moments of the estimation error. Finally, in Section IV, higher
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order SPSA methods are developed and their convergence
properties are established.

The boundedness of the estimator sequence isa priori
assumed also in [17], and a similar but weaker boundedness
condition is assumed in [19]. Namely, it is assumed that the
estimator sequence visits a certain fixed domain infinitely often
(cf., Theorem 2.3.5).

The rate that we get is—not surprisingly—identical to what
appears in the CLT (cf., [25, Proposition 2]). It is expected
that the present rate of convergence result will play a role in
solving practical problems, such as the analysis of the effect
of parametric uncertainty on performance. The present paper
also extends results given in [11] in which a complete analysis
for the convergence of Ljung’s scheme (cf., [5], [4], [21], [1])
with resetting is given.

Higher order Kiefer–Wolfowitz methods were first con-
sidered in [7], where the rate of mean-squared error for
globally defined procedures had been established. The results
of Section IV complement these results: we consider SPSA
methods rather than Kiefer–Wolfowitz methods, the proce-
dures are localized using a resetting mechanism, and the rate
of higher order moments of the error process is established.

The analysis given in [25] is based on the early work of
Fabian in connection with the Kiefer–Wolfowitz method (cf.,
[6]). It is hoped that the ideas that had emerged since then in
the theory of recursive identification yield a more transparent
proof that can be adapted to future needs.

The present paper also complements recent results of
[2], where an almost sure convergence rate has been given
[2, Th. 3] for a modified version of the SPSA algorithm.

II. THE PROBLEM FORMULATION

The -dimensional Euclidean space will be denoted by
The Euclidean norm of a vectorwill be denoted by The
operator norm of a matrix will be denoted be i.e.,

Finally a convention: in the various
estimations below we shall frequently have constants which
depend only on the constants that appear in the conditions
below. These constants will be called system constants.

We consider the following problem: minimize the function
defined for where is an open domain,

for which only noise corrupted measurements are available,
given in the form
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where is a random variable over some probability
space It is assumed that the measured values of

can be obtained for each via a physical
experiment, and if necessary the experiment can be repeated.
Note that the measurement-noise does not depend on
thus we have what is called a state-independent noise. The
extension of the results of this paper to state-dependent noise
is possible, but a number of additional technical details have
to be clarified. This is the subject of a forthcoming paper.

Condition 2.1: The function is three times continu-
ously differentiable with respect to for Let
denote an upper bound of the operator norms of the derivatives
up to order three. It is assumed that the minimizing value of

is unique in and will be denoted by
Condition 2.2: The measurement noise process

is assumed to be a zero-mean-mixing process with
respect to a pair of families of-fields

For the definition of -mixing, cf., Definition 5.2 of the
Appendix and [9]. Actually we need less than-mixing,
namely it is sufficient that an “improved Ḧolder inequality”
given below in (1), (cf., [9, Lemma 2.3] for continuous
time), is satisfied. Analogous inequalities for uniformly mixing
stationary sequences are given in [16] and for strong mixing
stationary sequences in [3]. The quoted result is the following:
let be a zero-mean -mixing process with respect
to and let be an -measurable random variable
for some such that its moments, which appear in
the inequality below, are finite. Then

(1)

for every such that
The class of -mixing processes has been first system-

atically studied in [9] and later in [13]. The usefulness of
-mixing processes in stochastic systems theory has been

demonstrated in a number of papers, a survey of which is given
in [10] and [12]. A basic example of -mixing processes is
obtained as follows: let be an -bounded (cf.,
Definition 5.1 of the Appendix) independent sequence of real-
or vector-valued random variables and define a vector-valued
process by

(2)

with stable and Then it is easy to see that the process
is -mixing with respect to defined as

(3)

An important property of -mixing processes is that if
is a vector-valued -mixing process and is a function
such that the function itself and the function

are polynomially increasing,
then the process is also -mixing. Thus the sum or
product of -mixing processes is -mixing. Furthermore, if

is -mixing and is generated by (2), then is
also -mixing.

To minimize we need an estimator of its gradient,
denoted by

(4)

The conventional finite difference approximation of partial
derivatives that requires a large number of function evaluations
is replaced by an approximation using simultaneous random
perturbations of the components ofLet denote the iteration
time for the stochastic gradient algorithm to be developed. At
time we take a random vector over some probability space

Condition 2.3: is a double sequence of
i.i.d., symmetrically distributed, bounded random variables
such that for any (cf., [25, Sec. III]).

Remark: Note that the processes and
are defined on different probability spaces.

From now on we consider the product space
and write and

Thus the processes and are independent
over Mathematical expectation will
be always meant to be taken over the mentioned probability
space unless otherwise stated.

A standard perturbation that will be used in the rest of the
paper is the double sequence

Let

and

(5)

Since is an i.i.d. sequence of bounded random variables
it follows that is -mixing with respect to

Now let be a fixed sequence of positive
numbers and let be a compact convex domain specified
in Condition 2.4 below. For each we take two
measurements that are denoted by
and defined as

Then the estimator of the gradient at timefor is
defined as

(6)

A convenient representation is obtained if we define the
random vector
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Then the gradient estimator at can be written as

(7)

The common numerator of these differences can be written
as where is the
compound measurement error defined by

(8)

Define Then it is easy to see that

is -mixing with respect to
Thus we can write as

(9)

A standard choice for is

with some (10)

Note that in [25] the condition imposed on the measurement
noise is expressed in terms of the compound measurement
noise which is assumed to be a martingale difference
process (cf., the condition preceding [25, (2.2), p. 333]). The
condition of the present paper given as Condition 2.2 is a
possible alternative to Spall’s condition.

The ordinary differential equation (ODE)

(11)

will be called the associated differential equation.
is defined in and it has continuous partial derivatives up
to second order. Under the condition above (11) has a unique
solution in which we denote by It is well
known that is a continuously differentiable function
of

Condition 2.4: Let denote a compact convex
domain such that and the closure of the
neighborhood of of radius denoted as is inside

For every is defined and
we have with some

(12)

Here denotes the operator norm of a matrix. Furthermore,
we assume that the initial condition
where is a compact domain which is invariant for (11)
and that for any

and for the solution trajectory converges
to

Inequality (12) is equivalent to the condition that the dif-
ferential equation

(13)

is exponentially asymptotically stable with exponenti.e., if
the solution of (13) is denoted by then we have

This is obtained by a simple change of time-scale
It is easy to see that in Condition 2.4can be taken to be

the smallest eigenvalue of the Hessian-matrix ofat
The SPSA Method:Let be a fixed sequence of positive

numbers with denoting the stepsize at time Then, in
the original form of Spall’s method, we start with an initial
estimate and then a sequence of estimated parameters,
denoted by is generated
recursively by

(14)

A standard choice is with and
The central limit theorem (CLT) given as

[25, Proposition 2] indicates that for any fixed choice
of the best rate of convergence is obtained if we choose

Thus, in the sequel we shall assume that
There seems to be no technical difficulty to extend the
analysis presented in this paper to the case

The almost sure convergence of the estimator process for
the case when the noise is a martingale difference process has
been established in [25] using results of [22]. In the same
paper asymptotic normality of a properly scaled estimation
error process is established by a nontrivial application of [6].
The scaling is nonstandard compared to classical statistical
theory: assuming and a normal limit
distribution of exists for

A main advanceof the present paper is that the “bound-
edness conditions” [25, Conditions A3 and A5] repeatedly
criticized in the literature on recursive identification (cf., [1,
remarks, pp. 46 and 47]) are removed by the application of
a resetting or truncation mechanism as described below. A
further advance is that by the application of the methods of
[11] we get an upper bound for the rate of convergence of the
moments of the error process, which is likely to be tight (cf.,
the remarks following the theorem).

Resetting: Assume that the initial estimate is in De-
fine, following (14) a tentative value

and then set

when

and

when (15)

Remark: The above resetting mechanism seems to lose
information obtained up to time However, if the noise
sequence is “untypical” so that it drives the estimator out
of the domain then we can not expect to extract much
information. An alternative resetting mechanism would be to
chose However, may be at a position from
which the solution of the ODE does not converge toat all,
or hits the boundary of the truncation domain, and this would
force the estimator to be reset infinitely many times.

The choice of the initial estimate and of the set
requires somea priori knowledge of the problem. However,
if the associated ODE is globally asymptotically stable in
the domain of definition of then for any initial condition

a “sufficiently large” is a suitable truncation
domain. This approach is practical if the parameterization of
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the domain is simple and it is easy to describe what is
a large domain As an example consider the problem of
system identification. Let the parameterdenote the system’s
parameters of a stable, linear single-input/single-output (SISO)
system. If we use the balanced parameterization of Ober
(cf., [24]), then the parameter-space is very simple, and the
proposed procedure is feasible.

In the theorem below the notation means that the
-norm of the left-hand side

decreases with the rate given on the right hand side for any

Theorem 2.1:Let Assume that
the smallest eigenvalue of the Hessian matrix ofat
denoted by satisfies Then under the conditions
above, i.e., Conditions 2.1–2.4 we have

(16)

For we have Finally for
we have for any

The value of is maximized for
from which we get and

The best rate is then
Remark: The proof of the theorem yields the following

stronger result: let and define

then, for
Remark: The role of the relation between and can be

roughly explained as follows: it will be proved in Lemma 3.2
that the estimator sequence locally tracks the solution of the
ODE given by (11) with an error irrespective of
the value of But the solution of the ODE converges to
with a rate If this rate is better than the rate of the
local error, then the latter will dominate. Otherwise, it is the
other way around.

Remark: The theorem does not claim that the given con-
vergence rate is sharp. But the CLT given as [25, Proposition
2] indicates that in the case the convergence rate
given in the theorem is sharp, indeed.

Remark: Note that we do not need to have the lower bound
as in [25, Proposition 2], this is only needed for

the asymptotic normality result of [25]. The reason for this
is that for the contribution of the third-order term of
the Taylor-series expansion (called in (27) below)
dominates the error process [cf., (30) below], hence the
stochastic effect is suppressed and the existence of a limiting
distribution is not ensured.

For the next theorem we consider an alternative noise
condition, in whichno dependencestructure is imposed on

This theorem is based on an observation in [2].
Condition 2.5: The measurement noise process

is assumed to be a bounded sequence of random
variables.

Theorem 2.2:Let the conditions of Theorem 2.1 be satisfied
so that Condition 2.2 is replaced by Condition 2.5. Then the
conclusions of Theorem 2.1 remain valid.

The validity of the conclusion of Theorem 2.1 under such
weak condition imposed on the noise is a surprising result. This
remarkable feature of SPSA has been first observed in [2] in
the context of almost sure convergence. Note that no similar
result is known for the standard Kiefer–Wolfowitz method.
However randomized Kiefer–Wolfowitz methods (cf., [17] and
[19, Sec. II-C.5]) do exhibit similar robustness with respect to
noise.

An interesting special case is when there is no measurement
noise. Then we have a standard optimization problem which is
solved by a randomization method. The use of SPSA is justi-
fied for large scale problems with low precision requirements.

Theorem 2.3:Let for all Choose and
assume that the smallest eigenvalue of the Hessian matrix of

at denoted by satisfies Then under
Conditions 2.1, 2.3, and 2.4 we have

(17)

III. T HE ANALYSIS

Step 1—Continuous-Time Embedding:Some of the calcu-
lations to follow are easier to carry out in continuous time,
hence we embed our discrete-time data and procedure into a
continuous-time data and procedure. Consider the piecewise
linear curve defined for as

where is the tentative value
of the estimator computed by (14). If then the
straight line will lie completely in since is convex,
and then we set On the other hand if
then let denote the moment when first
hits the boundary of Let us then reset to i.e., we
define for and In the period

we keep constant:
Furthermore, let the piecewise constant continuous-

time extension of denoted as
be defined as for

We define the continuous-time extensions of
the sequences similarly.

Set for
Then it is easy to see, using, e.g., inequality (74) of the
Appendix, that the process is -mixing with respect to

Similarly, defining
for the process is -mixing with respect
to

Lemma 3.1: In the period the straight line
will be the solution of a differential equation of the form

(18)

where If the measurement noise is
zero, then we have for any

Proof: The correction term is defined by the re-
quirement that the right-hand side yields the constant velocity

i.e., we require
From here we get
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The time-dependent random field is easily seen to
be Lipschitz-continuous with respect to First note that for

we have

where A similar
expression can be obtained for
Since the measurement noise is independent ofwe get,
subtracting the latter expression from the former one

Using a second-order Taylor-series expansion for
around it is easy to see that the

Euclidean norm of the integrand is bounded by and thus
the Lipschitz continuity of is established with a Lipschitz
constant

To get an upper bound for we subtract and add
to get

(19)

For the first term we have

Now consider the expression for the random field
given in (9). We have

with some deterministic constant uniformly in for
On the other hand

thus we get altogether that for the standard choice

We conclude that the contribution of the first term in (19) is

For the second term in (19) we get
and the norm of the latter is majorated by Since

we conclude that the second term
in (19) is also of the order of magnitude and
thus finally we get that

(20)

which completes the proof.
If the measurement noise is zero, then

and thus we get an error term for any

Step 2—Analysis on Finite Intervals:Let and
We consider the trajectory on the interval
Let denote the first moment after at which hits the
boundary of If does not hit the boundary of at all,
then we set Further, let denote the solution of
(11) with initial condition , i.e.,
A main technical tool used in the proof is the development of
a locally uniform upper bound for the increments
Note that the validity of the lemma is independent ofthe
smallest eigenvalue of the Hessian-matrix ofat Let

Lemma 3.2:Let and let
Then we have If

the measurement noise is zero, then taking we get

Proof: First fix Since we have for

(21)

where is the cumulative error defined as

(22)

This error process will be decomposed according to the source
of the error. First write

(23)

To analyze substitute the free variablefor Define

Then Now we continue to decom-
pose taking into account the representation of

given in (7): we write

(24)

The first term, will be further decomposed using a
third-order Taylor-series expansion. Write
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where and denotes appro-
priate tensor products. A similar expansion can be obtained for

Subtracting the latter expansion from the
one given above the first- and third-order term will be doubled
and the second-order terms will be cancelled, thus we get

(25)

Note that we have

and thus the first term on the right-hand side of (25) can be
written as

(26)

In randomness is purely due to
the random perturbation of the parameters. The conditions
imposed on imply that

Since is -mixing with respect to we get that
is also -mixing with respect to and we

conclude that is a zero-mean -mixing process with
respect to The same holds trivially for its first three
derivatives with respect to

For the third-order term we introduce the notations

(27)

It is easy to see that whenis restricted to we have

and hence

(28)

Thus we have arrived at the following decomposition of the
error process

(29)

For the sake of further reference the relevant terms are
summarized as follows:

We further decompose in order to simplify the
randomness present in Let us write

Since is restricted to a compact domain in which the first
and second derivatives of are bounded, and the components
of have absolute value equal to one, it follows from the
definition of [cf., (3.9)] that is Lipschitz-
continuous, say where

is a deterministic constant, depending only onand
Now write

The advantage of this approximation is that the randomness
of is purely due to the randomness of the initial condition

Define the modified error process

(30)

Substituting into (21) and taking into account the inequality
we get that is majorated

by

(31)

Now we are in a position to apply the Bellman–Gronwall
lemma with fixed. But first we need to get a tight upper
bound for the first term on the right-hand side.

Step 3—Estimation of the Constant Term:Let us consider
the expressions

Note that since Condition 2.4 above implies that
is defined for all and hence the definition

of is correct. Defining the compound error term

(32)

we get from (31) for any with

(33)
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Estimation of It is easy to see that for fixed
and the process

and its first two partial derivatives with respect toare
zero-mean -mixing processes over Using this
fact, [11, Lemma 3.1] implies that

(34)

in the sense that the -norm of the left-hand
side decreases with the rate given on the right-hand side for
any Obviously, if we consider as a random
variable over the product space the
same proposition holds.

Estimation of Using (28) and the assumption
we get

(35)

with some
Estimation of We have [cf., (24)]

By Condition 2.2 the process considered as a process
over is a zero-mean -mixing process with respect
to It is easy conclude that considered as a
process over the product space is a
zero-mean -mixing process with respect to

Similarly considered as a process over the
product space is a zero-mean -
mixing process with respect to Since

and are independent we conclude that is a
zero-mean -mixing process over
with respect to

Thus for fixed we can estimate the moments of the integral
on the right-hand side using the maximal inequality given as
[9, Th. 5.1] and restated as Theorem 5.1 in the Appendix. We
get for any and fixed

where depends on and the processes but is
independent of and when the latter is confined to a bounded
interval. Substituting we get for the right-hand side

To proceed we need to develop an extension of [11, Lemma
3.1]. Defining

(36)

we can write the above inequality as

(37)

The additional difficulty in estimating is in the handling
of the supremum with respect toover a set of dilating inter-
vals. This will be done with the application of an appropriate
change of time scale. Let us set and define

(38)

With this notation we have the following proposition.
Lemma 3.3:The processes and

are -bounded.
Proof: We have already shown that

therefore Let us now
take a small and estimate the moments of
Write then we can write

The difference can obviously be majorated by
the sum of the following two terms:

(39)

(40)

We estimate similarly to for any

where depends on and the processes but is
independent of and when the latter is confined to a bounded
interval. Substituting we get for the right-hand side

where depends only on and Thus we get

(41)

Similar estimates can be obtained for thus we finally get

(42)

Now write

Then, by (42) the first term on the right-hand side is
when is confined to a bounded interval. For the
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second term we get by (37) and by the elementary inequality
that its order of

magnitude is Since for small we have
we finally get

(43)

Thus Lemma 3.3 has been proved.
Now let be fixed and let Set

and Then applying the maximal inequality given
as Theorem 5.2 of the Appendix to the congruent compact
intervals with varying we get

(44)

Observing that [cf., (38)], we im-
mediately get that

thus we conclude that

(45)

If the measurement noise is zero, then obviously
for any

Estimation of Using (20) we get

(46)

If the measurement noise is zero, then
for any

Summarizing (34), (35), (45), (46) it is easy to see that
for the dominant terms are arising from the
approximation error in the numerical differentiation scheme,
and arising from the measurement error. Thus for the
compound error term defined under (32) we get

(47)

It follows that we can write

with (48)

If the measurement noise is zero, then summarizing (34), (35),
(45), (46) we see that for the dominant term is

It follows that we have

(49)

Now from (33) we get using the Bellman–Gronwall lemma
with fixed

(50)

with

Since the right-hand side of (50) is independent ofwe
can take supremum over on the left-hand side, and thus
Lemma 3.2 is proved.

Step 4—Hitting Probabilities:Let denote the event that
a resetting takes place in the interval It has been
shown in [11, Lemma 2.3] that Lemma 3.2 implies that

for all It follows that in the whole
interval we have

(51)

where is the diameter of Note that the validity of this
estimate is independent of

Step 5—Pasting Together the Interval Estimates:Let us
now take a subdivision of by the points
with some Then

(52)

Assume that Following the arguments on [11,
p. 1208] and using the stability condition imposed on the
associated ODE, it follows that with denoting the solution
of the associated ODE starting from we have

Since the proposition
of the theorem follows. The case is handled anal-
ogously (cf., [11]), using a corrected version of [11, Lemma
7.4], given as Lemma 5.1 in the Appendix of this paper. The
case trivially follows from the previous results. The
proof of Theorem 2.3 is completed analogously.

Proof of Theorem 2.2:We have to reconsider only the
arguments given under the heading “Estimation of ”
The main idea is that the boundedness of implies that
for any fixed the process is a zero-mean

-mixing process over with respect to
uniformly in (cf., [9]). Writing

(53)

we get by the arguments given above that for all we
have

(54)

where is independent of Integrating this inequality over
with respect to we get the desired inequality (45),

and the rest of the proof is the same.

IV. HIGHER ORDER SCHEMES

The idea behind SPSA can be generalized to get
higher order approximations of the gradient. Higher order
Kiefer–Wolfowitz methods were first considered in [7], where
a special ad hoc approximation scheme is used. In contrast
to this we rely on approximation schemes the numerical
properties of which are known to be very good. The rate of
mean-squared error established in [7] is identical to the rate
that we get for higher order moments of the error process.
However, better numerical procedures may improve the
asymptotic covariance of the estimation error.
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Following [8, Ch. 2], let be a real-valued function
of the real variable and let Then define the shift
operator by

(55)

and the central difference operator by

(56)

Clearly we can write

(57)

On the other hand, for analytic, a Taylor-expansion around
gives

which can be expressed in the form
where is the differentiation operator. But

thus we can write formally

(58)

Combining this with (57), we conclude that

(59)

from which we get for the representation

(60)

The first few terms of the Taylor-series expansion of the
right-hand side gives the approximation

(61)

Let the th-order formal Taylor-series expansion of the right-
hand side of (60) be denoted by It is stated (cf.,
[8, p. 22]) that for a function having continuous
derivatives, we have

(62)
where in the last term is in the range

This approximation of the derivative is favored in numerical
analysis because of its good convergence properties, namely
the coefficients of the expansion of the right-hand side of (60)
decay faster to zero, than for other expansions.

For a multivariable function we approximate the partial
derivatives analogously. For this we fix and define the
central difference operator in the direction by applying
the operator to the function of the scalar
variable Thus if the function is continuously
differentiable, then we have

(63)

when is restricted to a compact domain.
Now take random as in Section II and let
be a fixed sequence of positive numbers. The gradient

estimator will be based on measurements taken for
at A single measurement has

the form where
is the measurement error. Note that for the positions
at which measurements are taken are halfway betweenand
the positions taken by standard SPSA. We assume that for

we have Let denote
a generic measurement taken at, i.e.,

Then the gradient estimator at is defined as

(64)

where the notation is self-explanatory. We
define the estimator sequence as in (14) replacing
by the expression given above in (64) and using the same
resetting rule.

The analysis of higher order SPSA methods is analogous to
that of the second-order SPSA method given above. In view
of the assumed independence of and we have

Furthermore by (63) the latter expression is equal to

The effect of using higher order approximation schemes is that
the residual term defined under (27) will be replaced
by a higher order residual term for which we
have [cf., (28)]

(65)

The estimation of will proceed as in (35): we get

(66)

with some Summarizing (34), (66), (45), (46) it
is again easy to see that for the dominant terms
are and the latter arising from the
measurement error. Thus for the compound error term[cf.,
(32)] which is now defined as

(67)

we get the estimation

(68)

It follows that we can write

with (69)

Thus we get in general the following result.
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Theorem 4.1:Let Assume that
the smallest eigenvalue of the Hessian matrix ofat
denoted by satisfies Assume that the conditions
of Theorem 2.1, i.e., Conditions 2.1–2.4, are satisfied with
the following additions: the function is times
continuously differentiable in and in Condition 2.4 the
neighborhood of of radius is inside Then
for the estimator sequence defined by (14), combined with
a resetting mechanism, with being defined under (64), we
have

(70)

For we have Finally for
we have for any

The value of is maximized for
from which we get and

The best rate that is
obtained is

This rate can be arbitrarily close to if is sufficiently
large.

APPENDIX

In this section, we summarize some definitions and earlier
results that have been used in the paper. Let a probability
space be given and let be an open domain.
A parameter-dependent stochastic process or
equivalently a time-varying random field, is a sequence of
measurable mappings for from to

Here denotes the -field of Borel sets of
Definition 5.1: We say that the -valued parameter-

dependent stochastic process is -bounded if for all

If is -bounded we shall also write Sim-
ilarly, if is a positive sequence we write if

The definition trivially extends to parameter-
independent processes.

The first part of the following result was stated in [11,
Lemma 7.4]. The second part of the quoted lemma was not
correctly stated and is therefore restated and proved here.

Lemma 5.1:Let be an -bounded process
and define a process by

(71)

where Then for any we have

On the other hand if then we have

Proof: Let and set Then
we have after multiplying (71) by

which can be solved explicitly for

Using the triangle inequality for the norm and
the condition we get

from which the first proposition follows.
A useful reformulation of the above derivation is as follows:

write

Then we have

(72)

Thus it is sufficient to establish that for

and this has been done above. The advantage of this refor-
mulation is that the left-hand side is the convolution of the
sequences and and thus it is symmetric in and

In the case when we use the same estimate for
but the role of and is interchanged thus we get

Let be a monotone increasing family of-
algebras, and be a monotone decreasing family
of -algebras. We assume that for all and are
independent. A standard example is

(73)

where is an independent sequence of random
variables.

Definition 5.2: An -valued stochastic process
is -mixing with respect to if it is -adapted,
-bounded, and with being a nonnegative integer and

we have for any
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Note that in the definition of the moment is
included, so that even if the ’s constitute an
independent sequence of random variables not all of which
are constants.

The continuous-time extension of Definition 5.1 is straight-
forward. The extension of the concept of-mixing for
continuous-time processes requires an additional technical
condition. Thus let a pair of families of-algebras
be given such that: 1) is monotone increasing;
2) is monotone decreasing and is right-
continuous in , i.e., ; 3) and

are independent for all
Definition 5.3: A stochastic process is -mixing

with respect to if it is -adapted, -bounded, and
with

we have for any

Although is in general not monotone decreasing in
we have (cf., [9, (2.1)]) for

(74)

A fundamental technical tool in estimation theory is a
moment inequality given as [9, Th. 1.1]. Based on this result,
and using a continuous-time extension of a basic inequality due
to Móricz (cf., [23]), we get the following maximal inequality
given as [9, Th. 5.1].

Theorem 5.1:Let be a real-valued -mixing
process with for all and let be a deterministic
function that is locally in Then we have for all

where depends only on
The theorem obviously extends to vector-valued processes,

weighted by matrix-valued
An important technical tool is an inequality that provides

an upper bound for the maximal value of random fields. To
formulate this let and define the time-varying
random field by

for

Definition 5.4: The random field is -Hölder-
continuous in with exponent where if the
random field is -bounded, i.e., if for all
we have

For we say that the random field is -Lipschitz-
continuous in

Let us assume that is measurable, separable, -
bounded, and -Hölder continuous in for By
Kolmogorov’s theorem (cf., [14]) the realizations of
are continuous in with probability one. Hence, for
being a compact domain, we can define for almost all

(75)

The quoted result also gives an upper bound for the expectation
of the continuity modulus of which in turn can be
used to estimate the moments of An upper bound was
already derived in [18, Lemma 7.15, Ch II], and a simple
extension of that result yields the following result, given as
[9, Th. 3.4]:

Theorem 5.2:Assume that is a measurable, sep-
arable, -bounded random field, which is also -Hölder-
continuous with exponent for Let be the
random variable defined in (75). Then we have for all
and

(76)

where depends only on and
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