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Abstract 

The SPSA (simultaneous perturbation stochastic ap- 
proximation) method developed in [la] is applied and 
analyzed for function minimization under quantization 
error. Following [7] it is proved that under certain 
conditions the estimator sequence converges with rate 
O(n-fil’) for some ,B > 0, where t,he rate is mea- 
sured by the L,-norm of the estimation error for any 
1 5 Q < 00. The viability of SPSA for the present prob- 
lem will also be demonstrated by simulation results. 

tochastic approximation, Kiefer-Wolfovitz method, 
SPSA method, optimization, quantization 

1 Introduction 

Estimation under quantization error is an impor- 
tant problem in signal processing and high accuracy 
stochastic adaptive control (cf. [ll, 81). The interest in 
the latter methodology has been motivated by control 
problems of surgical microrobots, where quantization 
errors are due to low accuracy of sensors and A/D or 
D/A conversion. 

To put the present paper in perspective consider 
the problem is quantized linear regression, following 
[ll, 4, 51. Let CY* be a scalar-valued, unknown physi- 
cal quantity, which is to be det,ermined by some mea- 
surement procedure. Measurements are performed in 
an environment corrupted by external noise, such as 
vibration, using a device of low precision. The a.ddi- 
tive external noise will be denoted by e, and the actual 
measurement will be written as ~(cx’ + e), where q is a 
quantizer. This means a mapping from the real line int,o 
integer multiples of a fixed, small positive number, say 
h: if x is a real number with nh - h/2 5 x < nh. + h/2, 
t,hen q(x) = nh. At time k we get the measurement 

Yk = Q(a* -k ek), 
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where the unknown noise process is assumed to be 
an independent sequence of Gaussian random variables 
with distribution N(0, (T’), with u2 known. 

It is easy to see that the parameter a* is identifiable on 
the basis of the measurements yk. Note that, in con- 
trast to plain linear regression, the a priori knowledge 
of the distribution of the additive noise is an essential 
ingredient of the method. 

In this paper the following related problem is consid- 
ered: minimize a function L( ,) which is defined over an 
open domain B E D C Rp. At any time k and for each 
0 we have a measurement 

M(k, 0) = q(L(6) + ek) (1) 

where ek = ek(w) is a sequence of i.i.d. random vari- 
ables defined over some probability space (a, F’, P). In 
contrast to [ll, 4, 5] the distribution of (ek) is assumed 
to be completely unknozun. We would like minimize 
L(.) by an iterative procedure using measured values 
of L(0). 

We assume that the function L( .) is three times contin- 
uously differentiable with respect to 0 for 0 E D, and 
the absolute values of the derivatives up to order three 
are bounded. It is also assumed that the minimizing 
value of L(B) is unique in D and will be denoted by 0’. 

Obviously, the function value L(B) can not be recon- 
structed from these measurements. However, we have 
the at first sight surprising result: under reasonably 
technical conditions the iterative determination of the 
minimum of L( .) b ased on measurements of the form 
given above can be carried out. In fact, it is easy to see 
that under reasonable conditions on the additive noise 
ek the minimizing point 8’ is identifiable, even if L(.) 
is not. To see this, assume that ek has a density func- 
tion f(.) such that the support off contains an interval 
(a,! u+h) with some a. Then defining I = Eq(a+ek) 
it is easy to see that ,u(.) is strictly monotone increasing 



in (Y, and defining 

z(B) = EM(n, 8) = p@(B)) (2) 

it is straightforward to see that r( .) is minimized at 8’. 
Under simple technical conditions on .f the auxiliary 
function z(.) is also three times continuously differen- 
tiable with respect to B for 0 E D. 

2 The SPSA method 

The natural approach to minimize r(B) is to use 
a stochastic approximation method such as Kiefer- 
Wolfowitz or SPSA. The latter method is particularly 
designed for problems where the experimental evalua- 
tion of the function is expensive. There are a number of 
recent papers analyzing the SPSA method. The techni- 
cal differences among these papers are in the conditions 
imposed on the noise, the truncation procedures and 
the type of convergence that is obtained. In [la] the 
noise is a state-independent martingale-difference se- 
quence, and boundedness of the estimator sequence is 
assumed a priori. A remarkable observation of [2, 31 
was that the randomization procedure that is inher- 
ent in the SPSA procedure ensures almost sure con- 
vergence on a larger product-probability space for any 
bounded and state-independent noise sequence, using a 
randomly truncated version of the SPSA method. In 
[7] the sta.te-independent noise process was assumed to 
satisfy certain mixing conditions and the rate of con- 
vergence for the moments of the estimation error has 
been established for the SPSA method with enforced 
resetting. Finally, in [6] th e noise process was assumed 
to be mixing and state-dependent, without hypothesiz- 
ing the standard martingale assumption. However the 
noise was assumed to be a sufficiently smooth func- 
tion of the state. A second order version of the SPSA 
methods has been given in [13]. SPSA has also been 
analyzed within the systematic theory of stochastic ap- 
proximation given in [lo]. 

The technical noise that is relevant for the convergence 
analysis for the present problem is defined by 

&(k, 0) = &(k, f3,u) = M(k, 0) - Z(S). (3) 

This is a state-dependent but discontinuous noise- 
process, therefore the methods of [6] are applicable. 
It is not clear if existing results for stochastic approx- 
imation with discontinuous observations (cf. [l]) a.re 
not applicable, either. However, it turns out that the 
special structure of the problem can be exploited and 
the analysis given in [7] is applicable with sma.11 modi- 
fications. 

To minimize r(B) we use an estimator of its gradient 
using simultaneous random pert,urbations of the com- 
ponents of 8. Let k denote the iteration time. At time 

k we take a random vector over some probability space 
(cl’, F’, P’) 

A,(J) = (A/cl, . . . . Akp) T , 

where Aki = Aki(w’) is a double sequence of i.i.d., 
random variables. A standard choice is a Bernoulli- 
sequence so that 

P’(Aki(w’) = $1) = l/2 

?(Aj&‘) = -1) = l/2 

The size of the perturbation will be denoted by ck. 
A standard choice for ck is ck = c/k7 with some y > 0. 
Furthermore let De be a compact, convex truncation 
domain. For each 0 E De we take two measurements: 

n/l,+(O) = q(L(o + w&s) + %k-1) 

M;(e) = q(L(o - c&A,+) + e2k). 

Then the estimator of the gradient given by the SPSA 
method, denoted by H(le, 0), is given by 

Now we define an iterative procedure: let ak be a fixed 
sequence of positive numbers with ak denoting the step- 
size at time k. In the sequel we shall assum_e that 
ak = a/k. We start with an initial estimate 8i, and 
then a sequence of estimated parameters, denoted by 
8k+i = e,++i(W,W’), k = O,l, . . . is generated recursively 
by 

&+I = e3, - ak+lH(k + 1, &). (4) 

Enforced boundedness of the estimator proc_ess is en- 
sured by a resetting mechanism as follows: if ek+i @ Dn 
then redefine the estimator at time k + 1 to be &. 

3 The main result 

Assume that the stability condition for the associated 
ODE is given as Condition 2.4 in [7] is satisfied. Then 
using the arguments of the cited paper we get the fol- 
lowing result: 

Theorem 1 Let ,8 = min(4y, 1 - 27) > 0. Assume 
that the smallest eigenualue of the Hessian-matrix of 
L at 0 = B’, denoted by CY, satisfies aa > p/2. Then 
under the conditions above 

& - ~9’ = OM(k-p’z). 
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Here the notation 0~ (.) means that the L,(fl x SY, F x 
F’,P x P’)-norm of the left hand side decreases with 
the rate given on the right hand side for any q > 1. 

The proof given in [7] is based on a sophisticated 
stochastic averaging principle. A critical term that can 
not be handled the old way is 

d,*(JE) = (5) 

where Uk = (E(2k - 1,&-l + ck&) - &(21e,&-1 - 
ck&))Ai’, q’ > 1 and T(C) is the first hitting time 
after CT. An analogous quantity has been introduced 
following equation (3.18) of [7] in continous-time and 
for state-independent noise. 

To estimate the higher order moments of 6f(J”) note 
that (?&) is martingale-difference process, due to as- 
sumed independence of the sequences ek and Ak. Note, 
however, that for a general state-dependent error- 
process the process (uk) may be neither a martingale- 
difference process nor an L-mixing process. Thus in 
the general case the arguments of [7] are not directly 
applicable. 

Since (uk) is a martingale-difference process, applying 
Doob’s maximal inequality and Burkholder’s inequality 
(cf. Theorems 2.2 and 2.10 of [9]) we may proceed as 
in [7], and thus finally get the required inequality 

which is the key estimate required for the completion 
of the proof. 

4 Tuning the noise 

The effect of the additive noise ek on the asymptotic 
properties of 0k is an interesting problem. Intuitively, 
for very small additive noise the performance of the 
algorithm will be poor. Assuming that intensity of the 
noise can be controlled, we may ask what is the opt,imal 
intensity to get best performance. 

An insight to this problem can be obtained by using 
the asymptotic theory given in [12] developed under 
conditions different from those of the present paper. 
Letting 

A = $&B) lo=o’ > CT’ = EC”& 8*) (6) 

we have under the conditions of [la] that 

k”“(& - e*) -+ h1(o,s) (7) 

where S is the solution of the Lyapunov-equation 

(-aA + ;I)S + S(-aA + ;I)T + $‘I = 0. 

This Lyapunov equation is explicitly solvable by a 
simple coordinate transformation (cf. PI): write 
PAPT = diag(Xi) with some orthonormal P, then we 
immediately get that 

with 

PSPT = diaggi (8) 

ui = $?(2aXi - pp. 

Thus we get for tr S = tr PSPT 

(9) 

tr S = C $U2(2aXi - /?)-‘. 
i 

Write y* = L(B*) and 

and let the noise intensity be denoted by X. Introducing 
the notations 

P(Y, A) = &I(Y + xe) flZ(y, X) = &(y + Ae) 

we have 

A =pLy(y*,X)A*, CT’ = a2(y,X). 

Thus we get for tr S(X) the expression 

The condition aa > P/2 in Theorem 1 is equivalent to 
the condition 2aXipY(y*, X) - /3 > 0 for all i. Now if 
X gets small then p(y*, X) gets flat with respect to y, 
hence pLy ( y* , X) will get close to the value where one 
of the conditions above is violated. Obviously, in the 
vicinity of this value tr S(X) tends to infinity. Similarly, 
it can be shown that when X tends to infinity then also 
tr S(X) tends to infinity. The empirical optimization 
of t,r S(X) is an interesting open problem. 

The functions ,u(y, X), c2(y, X) are not arbitrary. 
Namely, empirical studies show that the function 

I(X) = 9 (Y’ 7 A) 
(Py(Y* 1 A)lZ 

is unimodal in X for Gaussian additive noise (cf. [4]). 

Simulation results have been carried out for quadratic 
functions in 50 dimensions. The additive noise is zero 
mean normal with variance cr’. The quantization step 
is 0.1. We present the results of two experiments, in 
which the results for a moderate variance c = 0.5 is 
compared with the results for a large and a small vari- 
ante 
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5 Conclusion 

We have shown that SPSA is applicable for the function 
minimization when measurements are corrupted both 
by additive state-independent noise and quantization. 
The remarkable feature of the method that it, is appli- 
cable under very weak assumptions on the distribution 
of the noise. The paradoxical role of additive noise has 
been analyzed both theoretically and experimentally 
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Figure 1: The value of L(B)c) for (r = 0.5 (dotted line) 
and for CF = 5 (dash-dot line) 
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Figure 2: The value of L(&) for g = 0.05 (dotted 
line) and for (T = 0.5 (dash-dot line) 
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