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Abstract

A fixed gain version of the SPSA (simultaneous per-
turbation stochastic approximation) method for func-
tion minimization is developed and the error process
is characterized. The new procedure is applicable to
optimization problems over Z”, the grid of points in
RP with integer components. Simulation results and a
closely related application, a resource allocation prob-
lem, is shortly described.

Keywords. Fixed gain stochastic approximation;
higher order difference schemes; ODE-method; re-
source allocation; asynchronous stochastic approxima-
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1 Introduction

The simultaneous perturbation stochastic approxima-
tion (SPSA) method developed in [12] is considered
an efficient tool for the solution of difficult optimiza-
tion problems. It is essentially a randomized Kiefer-
Wolfowitz method where the gradient is estimated us-
ing only two measurements per iteration. The method
is particularly suited to problems where the cost func-
tion can be computed only by expensive simulations
(cf. [2]). The almost sure convergence, the limit dis-
tribution and the rate of convergence of higher order
moments of the estimator process have been established
or reported in a series of papers [4], [9], [8] [12].

The main objective of this paper is to develop an ap-
propriate modification of SPSA for certain discrete op-
timization problems and state its basic properties. In
. particular we consider optimization problems where the
value of the cost function can be evaluated only for
integer-valued variables, is defined in terms of a proba-
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bility or expectation and has no closed-form expression.

The motivation for the discrete algorithm stems from a
class of discrete resource allocation problems. In broad
terms, the problem is to distribute a finite number of
resources, in discrete amounts, to finitely many users in
such a way that the allocation optimizes some perfor-
mance measure. Several settings in which this problem
arises are: scheduling data and message transmissions
in communication and computer networks, distributing
a search effort to detect the location of a moving target,
and determining the sizes of buffers in a manufactur-
ing system. A common feature of these problems that
makes them difficult to solve is the cardinality of the
search space, which is large even in low dimensions.

We are going to develop a stochastic search algorithm
on Z*, where Z is the set of integers. Before intro-
ducing the algorithm, we introduce some notation and
review some results from [7] on the fized gain SPSA
method on R?, where both the size of the perturbation
and the stepsize of the parameter update are fixed.

2 The problem formulation

Consider the following problem: given a function
L(.) = L(B), for 8eD, where D C RP? is an open do-
main. However, this function is not explicitly known,
but noise-corrupted measurements are available, given
in the form

M(n,8,w) = L(0) + ¢,

where €, = ¢{n,8,w) is a random variable over some
probability space (2, F,P). The objective is to mini-
mize L using only noise-corrupted measurements.

The function L{.) is assumed to be three-times contin-



vously differentiable within D and have a unique min-
imizing value in D, say §*. The measurement-noise
process € is a zero-mean, so-called L-mixing, uniformly
{(in 6) bounded process, which is smooth with respect
to 8 in an appropriate technical sense. L-mixing is an
essential technical condition that apparently can not be
relaxed. It can be defined as follows: first we say that
an R™-valued stochastic processes {z,) is M -bounded
ifforalll<g< o

M,y(z) := EV9z,(0)}* < .
If (z») is M-bounded we shall also write =, = Opm(1).

Similarly if ¢, is a positive sequence we write z,
Oumlcn) if zp/c, = Op(1).

Let (F}),n > 0, be a monotone increasing family
of o-algebras, and (F;),n > 0, be a monotone de-
creasing family of o-algebras. We assume that for all
n > 0, F} and F, are independent. An R™-valued
stochastic process (z.), n > 0, is L-mizing with re-
spect to (F},F.), if it is F;'-adapted, A-bounded,
and for any 1 < ¢ < oo we have

Fq(-’”) = Z’)‘Q(T, I) < o0,

=0
where

Ye(7, 2} = sup EY9|z,, — E(zal F1_,)I% 7 >0.
n>r

To estimate the gradient of L at # we use simultaneous
random perturbations. Letting k denote the iteration
time, at time k we take a random vector

Ak = (Akl, veey Akp)T,

where Ajg; is a (doubly-indexed) sequence of ii.d.
Bernoulli random variables, taking values +1 or —1
with equal probability 1/2. The Ay;’s are assumed to
be independent of the noise process (¢,). (Distribu-
tions other than Bernoulli are possible. See {12].)

In fixed gain SPSA the size of the perturbation is fixed,
say to some ¢ > 0. Let Dy C D be an appropriate
compact, convex domain. For each feDy we take two
measurements

M (6)
M)

L(8 + cAy) + (2k — 1,0 + cAy)
L(0 — cAy) + £(2k, 8 - cAy).

Then the estimator of the gradient at time k and at @

|

M (8) - M (6)
2CAk1

MF(6) — M, (6)
2cAyyp

H(k,8) =

T
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3 The fixed gain SPSA method

Before introducing the discrete SPSA algorithm, we re-
view some results on fixed gain SPSA for continuous
parameter optimization.

Let @ > 0 be a fixed stepsize of the updating formula,
called the gain. Starting with an initial estimate 6;, we
compute recursively a sequence of estimated parame-
ters, 8y, by

Oy = O — aH(k + 1,6%). (1)
The assumed boundedness of the noise and the as-
sumed stability of the so-called associated ODE ensures
the boundedness of the sequence ;. The pathwise be-
haviour of estimator processes generated by fixed gain
SPSA methods can be analyzed using the result of [7}:

Theorem. Under appropriate technical conditions,
among others for good initial conditions

6: - 6*| < &

where (8x) is an L-mizing process. In the small gain
case with a = X\, c = A/® we have & = Opr(N1/3).

An improved estimator can be obtained using the av-
eraged estimator sequence. Define

H

8.

I
1

D
bl

k=

1

Corollary. Under appropriate technical conditions
and with a = X\, ¢ = A8, X small, we have with proba-
bility 1 _
lim sup |0 — 8°| = O(\'/?).
n-—o00

Another way of improving SPSA is to use higher order
approzimation of the gradient. For a function f having
2m+1 continuous derivatives we have can approximate
f'(z) with an error of the order of

h2m+1(—l)m(m!)zf(2m+1)(§)
(2m+1)!

(cf. [6]), which can be very small for even if we take
h = 1 when f is sufficiently smooth. Higher order
SPSA methods based on classical numerical differen-
tiation schemes were developed and analyzed in [9].
Another possibility of improving efficiency is to use
a second-order or Newton-type SPSA-method as pro-
posed in 13, 14]. In the case of decreasing gains the
asymptotic rate of convergence of Newton-type SPSA
methods is slower than that of higher order SPSA
methods, but for fixed gain procedures it may well be
the other way round.



Assume now that @ is restricted to be integer-valued,
i.e. 8eD N XP. Assume that L is convex in the sense
that at any point of its graph there is a supporting
hyperplane such that graph is on one side of this plane.
Assume that there exists an extension of L to real-
valued variables f¢D, say L7(.) = L"(6), so that the
extended function is convex and sufficiently smooth.
Then apply a suitably defined fixed gain SPSA method,
with the additional caveat that we stay on the grid all
the time. For this purpose we set

H*(k,0) = [H(k,0))],

where [z] = ([z1], ..., [zp]) and [zi] denotes the integer
that less then or equal to z; and closest to z;, 1 < i < p.

For the analysis of the resulting procedure we replace
the function [.] by the smooth approximating function.
Then the modified right hand side will be an L-mixing
process, and [7] is applicable. Omitting the technical
details, the viability of the procedure will be demon-
strated by simulation results. The procedure can be
extended to simple constrained optimization problems
on grids.

4 Resource allocation

Our interest in SPSA on grids is motivated by multiple
discrete resource allocation problems, which we briefly
describe. The goal of discrete resource allocation is to
distribute a finite amount of resources of different types
to finitely many classes of users, where the amount of
resources that can be allocated to any user class is dis-
crete. Suppose there are n types of resources, and that
the number of resources of type ¢ is N;. Resources of
the same type are identical. The resources are allo-
cated over M user classes: the number of resources of
type i that are allocated to user class j is denoted by
8;;. The matrix consisting of the ;;’s is denoted by ©.

For each allocation O, there is an associated perfor-
mance or reliability cost, which is denoted by L(©).
We assume that the total cost is weakly separable in
the following sense:

M
L(©) =Y L;(6;)

i=1

where L;(8;) is the individual cost incurred by class
j, 8 = (8ij,...,6i;), i.e. the class j cost depends only
on the resources that are allocated to class j. An im-
portant feature of resource allocation problems is that
often the cost L; is not given explicitly, but rather in
the form of an expectation or in practical terms by
simulation.

Then the discrete, multiple constrained resource allo-
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cation problem is:

min L(6)
subject to
M
Zeij:Ni, fi; >0, 1<i<n (2)
i=l

where the 6;;’s are non-negative integers. We will as-
sume that a solution exists with strictly positive com-
ponents. Then the minimization problem is uncon-
strained on the linear manifold defined by the balance
equations.

Problem (2) includes many problems of practical in-
terest including the problem of optimally distributing
a search effort to locate a moving target whose posi-
tion is unknown and time varying (cf. [5]) and the
problem of scheduling time slots for the transmission
of messages over nodes in a radio network (cf. [3]). The
above problem is a generalization of the single resource
allocation problem with m = 1, considered in [2}, where
the total cost is separable.

Cassandras et al. [2] present a relaxation-type algo-
rithm for the single resource, in which at any time the
allocation is rebalanced between exactly two tasks. The
continuous-variable version of their algorithm is as fol-
lows: for a pair of tasks (4, k) the new allocation vector
8+ will differ in just two components from the previous
value, which are given by

8 0
6F 6 e y
o= 6+ a(gg;ll:‘(oj) ~ 3g; Lx(0x)-

Here a is a suitable stepsize. Obviously, the above re-
balancing satisfies the balance equations. The selection
of the pair (j,k) is done by a stochastic comparison
method.

A stochastic version of the above algorithm is obtained
if we replace Eg—)_Lj (8;) by their estimates obtained by
simultaneous perturbation at time ¢, and denoted by
Hj(t,8;). Thus we arrive to the following recursion: at
time ¢ select a pair (J, k) and then modify the allocation
for this pair of tasks as follows:

= 0j +a(Hk(t,6k) — H;(2,6;))

= Ok, +a(H;(t,0;) — Hi(t,6x)),
where a is a fixed gain. Obviously, the balance equa-
tions are not violated by the new allocation. The se-

lection of the pair (j, k) can be done by a simple cyclic
visiting schedule.

01'.t+1
Ok 041

To ensure the non-negativity constraints we use a stan-
dard resetting mechanism. A new feature of the pro-
posed algorithm is that it is asynchronous in the sense



that only two components are updated at a time. Anal-
ysis of such procedures for very general, approximately
Markovian visiting schedule for the pairs (j, k) has been
given in [1] in the decreasing gain case (cf. condition
(2.6) of the cited work). Taking @ = 1 and replacing
H by [H] we get a stochastic approximation procedure
searching over the grid of feasible allocations.

5 Simulation results

We present simulation results concerning fixed gain
SPSA for randomly generated simple quadratic func-
tion L(#) in R?® the minimal value of which is 0. In
Figures 1-4 below we plot the value of the cost func-
tion vs. the iteration time for different (fixed) stepsizes
a = 0.01 and @ = 1 respectively, and the distance of the
true minimum and the improved estimator obtained by

averaging, i.e. ﬁk. In contrast to what is predicted by
theory we had to add a resetting mechanism to ensure
stability of the procedure. On Figure 5 and 6 the corre-
sponding results are given, when the minimization over
Z*° was considered.

6 Discussion

We have presented a fixed gain SPSA method and have
given its basic theoretical properties. In contrast to by
now standard weak-convergence results (cf. (10, 11])
our result is not of asymptotic nature. In fact it is ap-
plicable when the gain is fixed say to be equal to 1. Tak-
ing the size of the perturbation to 1 as well and trun-
cating the estimated gradient we arrive to an SPSA-
based estimator sequence that lives on a grid. An asyn-
chronous version of this algorithm is very well suited for
the solution of multiple resource allocation problems.
The viability of the basic procedure is demonstrated by
simulation examples.
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Figure 1: The value of L(8;), when a = ¢ = 0.01 Figure 4: The distances ||f; — 8|/, vhena =c =1
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Figure 3: The value of L(§k), whena=c=1 Figure 6: T_hg d.lsmflces 18« - 8. Whenz% =c¢ =1, the
minimization was made over &
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