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Abstract 
We consider the use of a fixed gain version of SPSA 

(simultaneous perturbation stochastic approximation) for 
optimizing a class of discrete functions. The procedure has 
been modified to obtain an optimization method that is 
applicable to cost functions defined on a grid of points in 
Euclidean p-space having integer components. We discuss 
some related results on fixed gain SPSA and describe an 
application of the method to a resource allocation problem. 

1. INTRODUCTION 
The simultaneous perturbation stochastic 

approximation (SPSA) method [9] is a tool for solving 
optimization problems in which the cost function is 
analytically unavailable or difficult to compute. The 
method is essentially a randomized version of the Kiefer- 
Wolfowitz method in which the gradient is estimated using 
only two measurements of the cost function at each 
iteration. SPSA is particularly efficient in problems of high 
dimension and where the cost function must be estimated 
through expensive simulations. The convergence properties 
of the algorithm have been established in a series of papers 
([2], [5], [61, [9]). 

The present paper discusses a modification [7] of SPSA 
for discrete optimization. In particular we consider an 
optimization problem where the cost function is an 

expectation and is defined only on the grid Z p of points in 

R p having integer components. The main motivation for 
the algorithm is a class of resource allocation problems, 
which arise in a variety of applications that include, for 
example, the problems of distributing search effort to detect 
a target, allocating buffers in a queueing network, and 
scheduling data transmission in a communication network. 

2. PROBLEM FORMULATION 
Consider the problem of fmding the minimum of a real- 

valued fimction L(O), for 0~ D, where D is an open 

domain in R p . The function is not assumed to be explicitly 
known, but noisy measurements M(n, O) of it are available: 

0) = L(0) + (0) 

where {~n t is the measurement noise process. We assume 

that the function L(- ) is at least three-times continuously 

differentiable and has a unique minimizer in D. The 
process {en } is a zero-mean process, uniformly bounded 

and smooth (in 0 ) in an appropriate technical sense ([4]). 
The problem is to minimize L(-) using only the noisy 

measurements M(.  ). 

The simultaneous perturbation stochastic 
approximation (SPSA) algorithm for minimizing functions 
relies on the simultaneous perturbations (SP) gradient 
approximation. At each iteration k of the algorithm, we take 

a random perturbation vector A~ = (Akl,...,Akp ~ ,  where 

the A~ 's form an i.i.d, sequence of Bemoulli random 

variables taking the values +1. The perturbations are 
assumed to be independent of the measurement noise 
process. In fixed gain SPSA, the step size of the 
perturbation is fixed at, say, some c > 0. To compute the 
gradient estimate at iteration k, we evaluate M(- )  at two 

values of 0 :  

M2(O)=L(O+CAk)-[-~2k_I(O+CAk) 

. : ( 0 )  = 

The i-th component of the gradient estimate is 

(,,.+ (o)- ( ' f i  

2cA~ 
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3. THE FIXED GAIN SPSA M E T H O D  
Let a > 0 be fixed. Starting with an initial estimate 

()1, we recursively compute a sequence of estimates 

6k+l = dk - aH( k + l, dk ) (1) 

The assumed boundedness of the noise and assuming 
the stability of an associated ODE ensures that the sequence 
of estimates is bounded. (The pathwise behavior of 
estimator process generated by fixed gain SPSA can be 
analyzed using the result of [4].) 

Proposition: Suppose that L( . )  has a unique 

minimizing value at, say, 0". Under appropriate technical 

conditions I~ 0 " 1 ~  where (~Sk)is an L-mixing 

process. 

Assume that 0 is restricted to the integer grid in R p 
Suppose that L(" ) is convex in the sense that at any point 

of its graph there is a supporting hyperplane. There exists a 
(sufficiently smooth) extension of L to all of R P, which we 

denote by L .  Apply a suitably defined fixed gain SPSA 
method to the smooth extension, with the additional 
requirement that we stay on the grid all the time. To 
achieve a version of (1) that evolves on the grid, take a = 1 
and replace H with its truncation [H], where 

[H]-([HI~...,[H~]), where for [y] denotes the integer 

that is closest to y for each y ~ R.  

Suppose that L(. ) h a s a  unique minimizing value 0". 

Assume there is (smooth) strictly convex extension L .  The 
extension provides an estimate of the tracking error 

[()~ - 0"[, where the SA sequence ~k } is obtained from the 

extension. Suppose that L has a unique minimizing value 

0". From the proposition, I()k-0* [ is bounded by an L- 

mixing process; hence E(I0 k - 0 " 1 / i s  uniformly bounded. 

3. RESOURCE ALLOCATION 
The discrete version of SPSA is motivated by a class of 

multiple discrete resource allocation problems ([1], [7], 
[8]). The goal is to distribute a fmite amount of resources 
of different types to finitely many classes of users, where 
the amount of resources that can be allocated to any user 
class is discrete. There are n types of resources, where Nj 
denotes the number of resources of type j, j = 1, ..., n. 
These resources are to be allocated over M user classes. 
Let 0jk denote the number of resources of type j that are 

allocated to user class k, and 0 be the vector consisting of 
all the 0jk's. The allocation of resources to users in class k 
is denoted Ok, thus 0h = (01k, ..., 0n~). For each allocation 
vector 0 there is an associated cost function or performance 
index L(O), which is the expected cost. The goal is to 
distribute the resources in such a way that cost is 
minimized: 

minimize L(0) 
M 

subject to ~ 0 j~ = N: ,  
k=l 

O:k >O, l < j < n  

The case of interest, of course, is when the cost is 
observed with noise and the expected cost L(0) is non- 

separable and convex. 
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