
An Efficient Calculation of Fisher Information Matrix: Monte Carlo
Approach using Prior Information

Sonjoy Das, James C. Spall and Roger Ghanem

Abstract— The Fisher information matrix (FIM) is a critical
quantity in several aspects of system identification, including
input selection and confidence region calculation. Analytical
determination of the FIM in a general system identification
setting may be difficult or almost impossible due to intractable
modeling requirements and/or high-dimensional integration. A
Monte Carlo (MC) simulation-based technique was introduced
by the second author to address these difficulties [1]. This
paper proposes an extension of the MC algorithm in order to
enhance the statistical qualities of the estimator of the FIM.
This modified MC algorithm is particularly useful in those
cases where the FIM has a structure with some elements
being analytically known from prior information and the
others being unknown. The estimator of the FIM, obtained
by using the proposed MC algorithm, simultaneously preserves
the analytically known elements and reduces the variances of
the estimators of the unknown elements by capitalizing on the
information contained in the known elements.

Index Terms— Fisher information matrix, Monte Carlo sim-
ulation.

I. INTRODUCTION AND MOTIVATING FACTORS

The Fisher information matrix (FIM) plays a key role
in estimation and identification, and information theory. A
standard problem in the practical application and theory of
statistical estimation and identification is to estimate the
unobservable parameters, θ, of the probability distribution
function from a set of observed data set drawn from that
distribution [2]. The FIM is an indicator of the amount
of information contained in this observed data set about
θ. Some important areas of applications of FIM include,
to name a few, confidence interval computation of model
parameter, configuration of experimental design, and deter-
mination of noninformative prior distribution (Jeffreys’ prior)
for Bayesian analysis.

However, the analytical determination of the FIM may be
a formidable undertaking in a general setting, specially in
nonlinear models, due to intractable modeling requirements
and/or high-dimensional integration. To avoid this difficulty,
the resampling approach [3, Section 13.3.5], [1], a Monte
Carlo (MC) based simulation technique, may be employed
to estimate the FIM.

There may be also instances in practice when some
elements of the FIM are analytically known from prior
information while the other elements are unknown (and
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need to be estimated) [2]. In such cases, the resampling
approach, however, still yields the full FIM without taking
any advantage of the prior information contained in the
analytically known elements. The resampling based estimates
of the known elements are also “wasted” because these
estimates are simply replaced by the analytically known
elements. The issue yet to be examined is whether there
is a way of focusing the averaging process (required in
the resampling algorithm) — on the elements of interest
(unknown elements that need to be estimated) — that is
more effective than simply extracting the estimates of those
elements from the full FIM estimated by employing the
existing resampling algorithm.

The current work, similar in some sense to the one for
Jacobian/Hessian estimates presented earlier [4], presents a
modified and improved (in the sense of variance reduction)
version of the resampling approach for estimating the un-
known elements of the FIM by “borrowing” the information
contained in the analytically known elements.

II. FISHER INFORMATION MATRIX: DEFINITION AND
NOTATION

Consider a set of n random data vector (to be treated
as column vector), {Z1, · · · , Zn}, and form Zn by Zn =
[ZT

1 , · · · , ZT
n ]T . Here, the superscript, T , is transpose op-

erator. Let the multivariate joint probability density or mass
(or hybrid density/mass) function (pdf) of Zn be denoted by
pZn(·|θ) that is parameterized by θ. The likelihood function
of θ is then given by `(θ|Zn) = pZn(Zn|θ) and the associ-
ated log-likelihood function by L(θ|Zn) ≡ ln `(θ|Zn).

Let us define the p × 1 gradient vector, g, of L by
g(θ|Zn) = ∂L(θ|Zn)/∂θ and the p × p Hessian matrix,
H, by H(θ|Zn) = ∂2L(θ|Zn)/∂θ ∂θT . Then, the p × p
FIM, Fn(θ), is defined [3, Section 13.3.2] as follows,

Fn(θ)≡E
[
g(θ|Zn)·gT(θ|Zn)

∣∣θ]=−E[H(θ|Zn)|θ] , (1)

provided that the derivatives and expectation (the expectation
operator, E, is with respect to the probability measure of Zn)
exist. The equality ‘=’ in (1) is followed [3, p. 352 − 353]
by assuming that L is twice differentiable with respect to
θ and the regularity conditions [5, Section 3.4.2] hold for
`. The Hessian-based form above is more amenable to the
practical computation for FIM than the gradient-based form
that is used for defining the FIM.

III. CURRENT RESAMPLING ALGORITHM — NO USE OF
PRIOR INFORMATION

The current resampling approach is based on producing a
set of large (say N ) number of Hessian estimates from either



the values of the log-likelihood function or (if available)
its exact stochastic gradient both of which, in turn, are
computed from a set of statistically independent pseudo data
vector, {Zpseudo(1), · · · ,Zpseudo(N)}, Zpseudo(k) ∼ pZn(·|θ),
k = 1, · · · , N . This set of pseudo data vector acts as a proxy
for the observed data set in the resampling algorithm. The
average of the negative of these Hessian estimates is reported
as an estimate of Fn(θ).

Denote the k-th estimate of the Hessian matrix,
H(θ|Zpseudo(k)), in the resampling algorithm by Ĥk. Then,
Ĥk, as per resampling scheme, is computed as [1],

Ĥk=
1
2

{
δGk

2 c

[
∆−1

k1,· · ·,∆−1
kp

]
+

(
δGk

2 c

[
∆−1

k1,· · ·,∆−1
kp

])T}
, (2)

in which c > 0 is a small number, δGk ≡ G(θ +
c∆k|Zpseudo(k))−G(θ− c∆k|Zpseudo(k)) and the perturba-
tion vector, ∆k = [∆k1, · · · , ∆kp]T , is a user-generated ran-
dom vector statistically independent of Zpseudo(k). The ran-
dom variables, ∆k1, · · · ,∆kp, are mean-zero and statistically
independent and, also the inverse moments, E[|1/∆km|],
m = 1, · · · , p, are finite.

The symmetrizing operation (the multiplier 1/2 and the
indicated sum) as shown in (2) is useful in optimization
problems to compute a symmetric estimate of the Hessian
matrix with finite samples [1]. This also maintains a sym-
metric estimate of Fn(θ), which itself is a symmetric matrix.

Depending on the setting, G(·|Zpseudo(k)), as required
in δGk, represents the k-th direct measurement or ap-
proximation of the gradient vector, g(·|Zpseudo(k)). If
the direct measurement or computation of g is feasible,
G(θ ± c∆k|Zpseudo(k)) represent the direct k-th measure-
ments of g(·|Zpseudo(k)) at θ ± c∆k. Otherwise, G(θ ±
c∆k|Zpseudo(k)) represents the k-th approximation of g(θ±
c∆k|Zpseudo(k)) based on the values of L(·|Zpseudo(k)).

If the direct measurements or computations of g are not
feasible, G in (2) can be computed by using the classical
finite-difference (FD) technique [3, Section 6.3] or the simul-
taneous perturbation (SP) gradient approximation technique
[6], [3, Section 7.2] from the values of L(·|Zpseudo(k)). For
the computation of gradient approximation based on the
values of L, there are advantages to using one-sided [3,
p. 199] SP gradient approximation (relative to the standard
two-sided SP gradient approximation) in order to reduce the
total number of function measurements or evaluations for
L. The SP technique for gradient approximation is quite
useful when p is large and usually superior to FD technique
when the objective is to estimate Fn(θ) by employing the
resampling algorithm. The formula for the one-sided gradient
approximation using SP technique is given by,

G(1)(θ±c∆k|Zpseudo(k))=(1/c̃)
[
L(θ+c̃∆̃k±c∆k|Zpseudo(k))

−L(θ ± c∆k|Zpseudo(k))
]



∆̃−1
k1
...

∆̃−1
kp


 , (3)

in which superscript, (1), in G(1) indicates that it is one-
sided gradient approximation (G = G(1)), c̃ > 0 is a small
number and ∆̃k = [∆̃k1, · · · , ∆̃kp]T is generated in the same
statistical manner as ∆k, but otherwise statistically indepen-
dent of ∆k and Zpseudo(k). It is usually recommended that
c̃ > c.

At this stage, let us also formally state that the perturbation
vectors, ∆k and ∆̃k, satisfy the following condition,[3,
Chapter 7].

C.1: (Statistical properties of the perturbation vec-
tor) The random variables, ∆km (and ∆̃km), k =
1, · · · , N , m = 1, · · · , p, are statistically indepen-
dent and almost surely (a.s.) uniformly bounded for
all k, m, and, are also mean-zero and symmetri-
cally distributed satisfying E[|1/∆km|] < ∞ (and
E[|1/∆̃km|] < ∞).

Let us also assume that the moments of ∆km and 1/∆km

(and, of ∆̃km and 1/∆̃km) up to fifth order exist (this
condition will be used later in Section IV-C). Since ∆km (and
∆̃km) is symmetrically distributed, 1/∆km (and 1/∆̃km) is
also symmetrically distributed implying that,

I: (Statistical properties implied by C.1) All the
odd moments of ∆km and 1/∆km (and of ∆̃km

and 1/∆̃km) up to fifth order are zeros, E[(∆km)q]
= 0 and E[(1/∆km)q] = 0 (E[(∆̃km)q] = 0 and
E[(1/∆̃km)q] = 0) , q = 1, 3, 5.

The random vectors, ∆k (and ∆̃k), are also indepen-
dent across k. The random variables, ∆k1, · · · , ∆kp (and
∆̃k1, · · · , ∆̃kp), can also be chosen identically distributed.
In fact, independent and identically distributed (i.i.d.) (across
both k and m) mean-zero random variable satisfying C.1 is
a perfectly valid choice for ∆km (and ∆̃km). In particular,
Bernoulli ±1 random variable for ∆km (and ∆̃km) is a valid
— but not the necessary — choice among other probability
distributions satisfying C.1.

Given the form of the Hessian estimate in (2), an estimate,
F̂n, of Fn(θ) is computed by taking the (negative) average
of the Hessian estimates, Ĥk, F̂n = −(1/N)

∑N
k=1 Ĥk.

IV. IMPROVED RESAMPLING ALGORITHM — USING
PRIOR INFORMATION

Let the k-th estimate of Hessian matrix, H(θ|Zpseudo(k)),
per proposed resampling algorithm be denoted by H̃k. In
this section, the estimator, H̃k, is shown separately for two
different cases: Case 1 :— when only the measurements of
L are available and, Case 2 :— when the measurements of
g are available. To contrast the two cases, the superscript,
(L), is used in H̃(L)

k and Ĥ(L)
k to represent the dependence

on L for Case 1 and, the superscript, (g), in H̃(g)
k and Ĥ(g)

k

for Case 2.

A. Additional Notation

Denote the (i, j)-th element of Fn(θ) by Fij(θ). Let Ii,
i = 1, · · · , p, be the set of column indices of the known
elements of the i-th row of Fn(θ) and Ici be the complement



of Ii. Consider a p × p matrix, F(given)
n , whose (i, j)-th

element, F
(given)
ij , is defined as follows,

F
(given)
ij =

{
Fij(θ), if j ∈ Ii
0, if j ∈ Ici

, i = 1, · · · , p. (4)

Consider another p × p matrix, Dk, defined by, Dk =
∆k [∆−1

k1 , · · · ,∆−1
kp ] together with the matrix, D̃k, obtained

by replacing all ∆ki in Dk with the corresponding ∆̃ki

(note that Dk is symmetric when the perturbations are i.i.d.
Bernoulli distributed).

B. The Step-by-Step Description of the Proposed Resampling
Algorithm

The new estimate, H̃k, is extracted from H̃k0 that is
defined below separately for Case 1 and Case 2.

Case 1: only the measurements of L are available,

H̃(L)
k0=Ĥ(L)

k −
1
2

[
D̃T

k(−F(given)
n )Dk+(D̃T

k(−F(given)
n )Dk)T

]
. (5)

Case 2: measurements of g are available,

H̃(g)
k0 = Ĥ(g)

k − 1
2

[
(−F(given)

n )Dk+((−F(given)
n )Dk)T

]
. (6)

The estimates, H̃(L)
k and H̃(g)

k , are readily obtained from,
respectively, H̃(L)

k0 in (5) and H̃(g)
k0 in (6) by replacing the

(i, j)-th element of H̃(L)
k0 and H̃(g)

k0 with known values of
−Fij(θ), j ∈ Ii, i = 1, · · · , p. The new estimate, F̃n, of
Fn(θ) is then computed by taking the (negative) average of
the Hessian estimates, H̃k.

A summary of the salient steps, required to produce
the estimate, F̃n (i.e., F̃(L)

n or F̃(g)
n with the appropriate

superscript) of Fn(θ) per modified resampling algorithm as
proposed here, is presented next.

Step 0. Initialization: Construct F(given)
n in (4) by using

the analytically known elements of the FIM. De-
termine θ, the sample size (n) and the number
(N ) of pseudo data vectors that will be gener-
ated. Determine whether log-likelihood, L(·), or
gradient vector, g(·), will be used to compute the
Hessian estimates, H̃k. Pick a small number, c,
(perhaps c = 0.0001) to be used for Hessian
estimation (see (2)) and, if required, another small
number, c̃ (perhaps c̃ = 0.00011), for gradient
approximation (see (3)). Set k = 1.

Step 1. At the k-th step perform the following tasks,

a. Generation of pseudo data: Based on
θ, generate the k-th pseudo data vector,
Zpseudo(k), by using MC simulation tech-
nique.

b. Computation of Ĥk: Generate ∆k (and
also ∆̃k, if required, for gradient approxima-
tion) by satisfying C.1. Using Zpseudo(k), ∆k

or/and ∆̃k, evaluate Ĥk (i.e., Ĥ(L)
k or Ĥ(g)

k )
by using (2).

c. Computation of Dk and D̃k: Use ∆k or/and
∆̃k, as generated in the above step, to con-
struct Dk or/and D̃k as defined in section IV-
A.

d. Computation of H̃k0: Modify Ĥk as pro-
duced in Step 1b by employing (5) or (6)
as appropriate in order to generate H̃k0 (i.e.,
H̃(L)

k0 or H̃(g)
k0 ).

Step 2. Average of H̃k0: Repeat Step 1 until N estimates,
H̃k0, are produced. Compute the (negative) mean
of these N estimates. (The standard recursive
representation of sample mean can be used here
to avoid the storage of N matrices, H̃k0). The
resulting (negative) mean is F̃n0.

Step 3. Evaluation of F̃n: The new estimate, F̃n, of
Fn(θ) per modified resampling algorithm is sim-
ply obtained by replacing the (i, j)-th element of
F̃n0 with the analytically known elements, Fij(θ),
j ∈ Ii, i = 1, · · · , p, of Fn(θ). To avoid the
possibility of having a non-positive semi-definite
estimate, it may be desirable to take the sym-
metric square root of the square of the estimate
(the sqrtm function in MATLAB may be useful
here).

The new estimator, F̃n, is better than F̂n in the sense that
it would preserve exactly the analytically known elements of
Fn(θ) as well as reduce the variances of the estimators of
the unknown elements of Fn(θ).

C. Theoretical Basis for the Modified Resampling Algorithm

For notational simplification, the subscript ‘pseudo’ in
Zpseudo(k) and the dependence of Z(k) on k would be
suppressed (note that Zpseudo(k) is identically distributed
across k). Since, ∆k is usually assumed to be statistically
independent across k and an identical condition for ∆̃k

is also assumed, their dependence on k would also be
suppressed in the forthcoming discussion. Let also the (i, j)-
th element of Ĥk and H̃k be, respectively, denoted by Ĥij

and H̃ij with the appropriate superscript. The two cases as
described earlier by (5) and (6) are considered next.

1) Case 1 — only the measurements of L are available:
The main objective here is to compare variance of Ĥ

(L)
ij and

variance of H̃
(L)
ij to show the superiority of H̃(L)

k , which
leads to the superiority of F̃(L)

n .
It is assumed here that the gradient estimate is based on

one-sided gradient approximation using SP technique given
by (3). Based on a Taylor expansion, the i-th component
of G(1)(θ|Z), i = 1, · · · , p, that is an approximation of
the i-th component, gi(θ|Z) ≡ ∂L(θ|Z)/∂θi, of g(θ|Z)
based on the values of L(·|Z), can be shown to given by
[7, Section 2.3.1],

G
(1)
i (θ|Z) =

∑

l

gl(θ)
∆̃l

∆̃i

+
1
2
c̃
∑

l,m

Hlm(θ)
∆̃m∆̃l

∆̃i

+
1
6
c̃2

∑

l,m,s

∂Hlm(θ)
∂θs

∆̃s∆̃m∆̃l

∆̃i

, (7)



in which Hlm(θ|Z) ≡ ∂2L(θ|Z)/∂θl ∂θm is the (l, m)-th
element of H(θ|Z), θ = λ(θ + c̃∆̃) + (1 − λ)θ = θ +
c̃λ∆̃ (with λ ∈ [0, 1] being some real number) denotes a
point on the line segment between θ and θ + c̃∆̃ and, in the
right-hand-side of (7), the condition on Z is suppressed for
notational clarity and, also the summations are expressed in
abbreviated format where the indices span their respective
and appropriate ranges.

Given Gi(·|Z) ≡ G
(1)
i (·|Z) by (7), the (i, j)-th element

of Ĥ(L)
k can be readily obtained from,

Ĥ
(L)
ij =

1
2

[
Ĵ

(L)
ij + Ĵ

(L)
ji

]
, (8)

in which the expression of Ĵ
(L)
ij based on a Taylor expansion

can be shown to be given by [7, Section 2.3.1],

Ĵ
(L)
ij =

∑

l,m

Hlm(θ|Z)
∆m

∆j

∆̃l

∆̃i

+ O∆̃,∆,Z(c2)

+ O∆̃,∆,Z(c̃) + O∆̃,∆,Z(c̃2). (9)

The subscripts in the ‘big-O’ terms, O∆̃,∆,Z(·), explicitly
indicate that they depend on ∆̃, ∆ and Z. In these random
‘big-O’ terms, the point of evaluation, θ, is suppressed for
notational clarity. By the use of C.1 and further assump-
tions on the continuity and uniformly (in k) boundedness
conditions on all the derivatives (up to fourth order) of L,
it can be shown that |O∆̃,∆,Z(c2)/c2| < ∞ almost surely
(a.s.) (a.s. with respect to the joint probability measure of
∆̃, ∆ and Z) as c −→ 0 and, both |O∆̃,∆,Z(c̃)/c̃| < ∞
a.s. and |O∆̃,∆,Z(c̃2)/c̃2| < ∞ a.s. as c̃ −→ 0. The effects
of O∆̃,∆,Z(c̃2) are not included in O∆̃,∆,Z(c̃). The reason
for showing O∆̃,∆,Z(c̃) separately in (9) is that this term
vanishes upon expectation because it involves either E[∆̃r]
or E[1/∆̃r], r = 1, · · · , p, both of which are zero by impli-
cation I and rest of the terms associated with O∆̃,∆,Z(c̃)
do not depend on ∆̃. The other terms, O∆̃,∆,Z(c2) and
O∆̃,∆,Z(c̃2), do not vanish upon expectation. By using (8)-
(9), it can then be shown that [7, Section 2.3.1],

E[Ĥ(L)
ij |θ] = −Fij(θ) + O(c2) + O(c̃2). (10)

Note that the ‘big-O’ terms, O(c2) and O(c̃2), satisfying
|O(c2)/c2| < ∞ as c −→ 0 and |O(c̃2)/c̃2| < ∞ as c̃ −→ 0,
are deterministic unlike the random ‘big-O’ terms in (9).

Next, the variance of Ĥ
(L)
ij is given by,

var[Ĥ(L)
ij |θ]=

1
4

(
var[Ĵ (L)

ij |θ]+var[Ĵ (L)
ji |θ]+2cov[Ĵ (L)

ij ,Ĵ
(L)
ji |θ]

)
. (11)

The expression of the typical variance term, var[Ĵ (L)
ij |θ],

and the covariance term, cov[Ĵ (L)
ij , Ĵ

(L)
ji |θ], would now be

considered.
Based on (9), it can also be shown that [7, Section 2.3.1],

var[Ĵ (L)
ij |θ] =

∑

l,m

alm(i, j)var [Hlm(θ|Z)|θ]

+
∑
l,m

lm6=ij

alm(i, j) (E [Hlm(θ|Z)|θ])2

+O(c2) + O(c̃2) + O(c2c̃2), (12)

in which alm(i, j) = E[∆2
m/∆2

j ]E[∆̃2
l /∆̃2

i ]. It should be
remarked here that, in deriving (12), it is assumed that all
the combinations of covariance terms involving Hlm(θ|Z),
Hlm,s(θ|Z) and Hlm,rs(θ|Z), l, m, s, r = 1, · · · , p, exist
around θ that indicates the point of evaluation of these
functions.

Similarly, the expression of cov[Ĵ (L)
ij , Ĵ

(L)
ji |θ], j 6= i, can

also be deduced and it is given by [7, Section 2.3.1], j 6= i,

cov[Ĵ (L)
ij , Ĵ

(L)
ji |θ]

= 2
{

var [ (Hij(θ|Z))|θ] + (E [ (Hij(θ|Z))|θ])2
}

+2E[Hii(θ|Z)Hjj(θ|Z)|θ]−F 2
ij(θ)+O(c2)+O(̃c2)+O(c2c̃2). (13)

Now, the variance of Ĥ
(L)
ij , var[Ĥ(L)

ij |θ], for j 6= i, can
be readily obtained from (11) by using (12) and (13). Note
that var[Ĥ(L)

ii |θ] is same as var[Ĵ (L)
ii |θ] that can be directly

obtained from (12) by replacing j with i. The contributions
of the variance and covariance terms (as appeared in (11))
to var[Ĥ(L)

ij |θ] are compared next with the contributions of
the respective variance and covariance terms to var[H̃(L)

ij |θ].
Consider the (i, j)-th element of H̃k associated with (5)

that is given by,

H̃
(L)
ij =

1
2

(
J̃

(L)
ij + J̃

(L)
ji

)
, ∀j ∈ Ici , (14)

H̃
(L)
ij = −Fij(θ), ∀j ∈ Ii. (15)

In (14), J̃
(L)
ij is defined as,

J̃
(L)
ij = Ĵ

(L)
ij −

∑

l

∑

m∈Il
(−Flm(θ))

∆m

∆j

∆̃l

∆̃i

, ∀j ∈ Ici . (16)

Uses of (14)-(16) now yield [7, Section 2.3.1] E[H̃(L)
ij |θ] =

E[Ĥ(L)
ij |θ], ∀j ∈ Ici , and E[H̃(L)

ij |θ] = −Fij(θ), ∀j ∈ Ii.
While var[H̃(L)

ij |θ] = 0, ∀j ∈ Ii, by (15) clearly imply-
ing that var[H̃(L)

ij |θ] < var[Ĥ(L)
ij |θ], ∀j ∈ Ii, comparing

var[H̃(L)
ij |θ] to var[Ĥ(L)

ij |θ], ∀j ∈ Ici , is the task that will be
considered now. In fact, this is the main result associated
with the variance reduction from prior information available
in terms of the known elements of Fn(θ).

The first step in determining var[H̃(L)
ij |θ] is to note that

the expression of Ĵ
(L)
ij in (9) can be decomposed into two

parts as shown below,

Ĵ
(L)
ij =

∑

l


∑

m∈Il
Hlm(θ|Z)

∆m

∆j

∆̃l

∆̃i

+
∑

m∈Icl
Hlm(θ|Z)

∆m

∆j

∆̃l

∆̃i




+O∆̃,∆,Z(c2) + O∆̃,∆,Z(c̃) + O∆̃,∆,Z(c̃2). (17)

The elements, Hlm(θ|Z), of H(θ|Z) in the right-hand-side
of (17) are not known. However, since by (Hessian-based)
definition E[Hlm(θ|Z)|θ] = −Flm(θ), approximation of
the unknown elements of H(θ|Z) in the right-hand-side
of (17), particularly those elements that correspond to the
elements of the FIM that are known a priori, by the negative
of those elements of Fn(θ) is the primary idea based on



which the modified resampling algorithm is developed. This
approximation introduces an error term, elm(θ|Z), that can
be defined by, ∀m ∈ Il, l = 1, · · · , p,

Hlm(θ|Z) = −Flm(θ) + elm(θ|Z), (18)

and this error term satisfies the following two conditions that
directly follow from (18), ∀m ∈ Il, l = 1, · · · , p,

E[elm(θ|Z)|θ] = 0, (19)
var[elm(θ|Z)|θ] = var[Hlm(θ|Z)|θ]. (20)

Also, introduce Xlm, l = 1, · · · , p, as defined below,

Xlm(θ|Z) =
{
elm(θ|Z), if m ∈ Il,
Hlm(θ|Z), if m ∈ Icl .

(21)

Now, substitution of (18) in (17) results in a known part in
the right-hand-side of (17) involving the analytically known
elements of FIM. This known part is transferred to the left-
hand-side of (17) and, consequently, acts as a feedback to
the current resampling algorithm yielding, in the process, the
expression of J̃

(L)
ij in (16). By making use of (21), it can be

shown that,

J̃
(L)
ij =

∑

l,m

Xlm(θ|Z)
∆m

∆j

∆̃l

∆̃i

+ O∆̃,∆,Z(c2) + O∆̃,∆,Z(c̃)

+ O∆̃,∆,Z(c̃2), ∀j ∈ Ici . (22)

The variance of J̃
(L)
ij , ∀j ∈ Ici , can be computed by

using (19)-(22) and, subsequently, it can be shown [7,
Section 2.3.1] that, ∀j ∈ Ici , i = 1, · · · , p,

var[Ĵ (L)
ij |θ]− var[J̃ (L)

ij |θ] =
∑

l

∑

m∈Il
alm(i, j) (Flm(θ))2

+ O(c2) + O(c̃2) + O(c2c̃2) > 0. (23)

The inequality above follows from the fact that alm(i, j)=
(E[∆2

m/∆2
j ] E[∆̃2

l /∆̃2
i ]) > 0, l, m = 1, · · · , p, for any given

(i, j) and assuming that at least one of the known elements,
Flm(θ), in (23) is not equal to zero. It must be remarked
that the bias terms, O(c2), O(c̃2) and O(c2c̃2), can be made
negligibly small by selecting c and c̃ small enough that
are primarily controlled by users. Note that if ∆1, · · · ,∆p

and ∆̃1, · · · , ∆̃p are both assumed to be Bernoulli ±1 i.i.d.
random variables, then alm(i, j) turns out to be unity.

At this point it should be already clear that var[H̃(L)
ii |θ] <

var[Ĥ(L)
ii |θ], if j = i ∈ Ici , by (23).

Next, by using (22), the expression of cov[J̃ (L)
ij , J̃

(L)
ji |θ]

can be deduced and, subsequently, it can be concluded that
[7, Section 2.3.1],

cov[Ĵ (L)
ij , Ĵ

(L)
ji |θ]− cov[J̃ (L)

ij , J̃
(L)
ji |θ]

= 2(E [Hii(θ|Z)Hjj(θ|Z)|θ]−E [Xii(θ|Z)Xjj(θ|Z)|θ])
+ O(c2) + O(c̃2) + O(c2c̃2), j 6= i,∀j ∈ Ici . (24)

Here, E[Hii(θ|Z)Hjj(θ|Z)|θ]−E[Xii(θ|Z) Xjj(θ|Z)|θ] ≥
0 that follows from (18) and by the positive-definiteness
of Fn(θ). Using this fact and (23), and also noting that
the bias terms, O(c2), O(c̃2) and O(c2c̃2), above can be

made negligibly small by selecting c and c̃ small enough,
the following can be immediately concluded,

var[H̃(L)
ij |θ] < var[Ĥ(L)

ij |θ], i, j = 1, · · · , p.

In deducing the expressions of mean and variance, several
assumptions related to the existences of derivatives of L with
respect to θ and also the existences of expectations of these
derivatives are required as ‘hinted’ earlier sporadically. For a
complete list of assumptions and rigorous derivation of these
expressions, readers are referred to [7].

Since Case 2 is simpler than Case 1 that has already been
considered in full possible detail within the limited space,
the next section simply presents the final results for Case 2
highlighting var[H̃(g)

ij |θ] < var[Ĥ(g)
ij |θ], i, j = 1, · · · , p.

2) Case 2 — measurements of g are available: As shown
for Case 1, it can also be shown here that ∀i = 1, · · · , p,
E[H̃(g)

ij |θ] = E[Ĥ(g)
ij |θ], ∀j ∈ Ici , and E[H̃(g)

ij |θ] =
−Fij(θ), ∀j ∈ Ii [7, Section 2.3.2] .

While the difference between var[Ĥ(g)
ii |θ] and var[H̃(g)

ii |θ]
in this case is given by ∀j ∈ Ici [7, Section 2.3.2],

var[Ĵ (g)
ij |θ]−var[J̃ (g)

ij |θ]=
∑

l∈Ii
bl(j)(Fil(θ))2+O(c2)>0, (25)

the difference between the covariance terms is given by [7,
Section 2.3.2],

cov[Ĵ (g)
ij ,Ĵ

(g)
ji |θ]−cov[J̃ (g)

ij ,J̃
(g)
ji |θ]=E[Hii(θ|Z)Hjj(θ|Z)|θ]

−E [Xii(θ|Z)Xjj(θ|Z)|θ]+O(c2), j 6= i, ∀j ∈ Ici . (26)

In (25), bl(j) = E[∆2
l /∆2

j ] > 0, l = 1, · · · , p, and it turns
out to be unity if ∆1, · · · , ∆p is assumed to be Bernoulli ±1
i.i.d. random variables.

Therefore, as for Case 1, we also have the following
conclusion for Case 2,

var[H̃(g)
ij |θ] < var[Ĥ(g)

ij |θ], i, j = 1, · · · , p.

Finally, since Ĥk and H̃k, k = 1, · · · , N , both are statisti-
cally independent across k, it can be concluded straightway
for any (i, j)-th element, i, j = 1, · · · , p, of F̂n and F̃n that,

var[F̃ij |θ] =
var[H̃ij |θ]

N
< var[F̂ij |θ] =

var[Ĥij |θ]
N

. (27)

V. NUMERICAL ILLUSTRATIONS AND DISCUSSIONS

Consider independently distributed scalar-valued random
data zi with zi ∼ N(µ, σ2 +ciα), i = 1, · · · , n, in which µ
and (σ2+ciα) are, respectively, mean and variance of zi with
ci being some known nonnegative constants and α > 0. Here,
θ is considered as θ = [µ, σ2, α]T . This is a simple extension
of an example problem already considered in literature [3,
Example 13.7]. The analytical FIM, Fn(θ), can be readily
determined for this case so that the MC resampling-based
estimates of Fn(θ) can be verified with the analytical FIM.
It can be shown that the analytical FIM is given by,

Fn(θ) =




F11 0 0
0 F22 F33

0 F33 F33


 ,



Error in FIM estimates MSE
relMSE(F̂n) relMSE(F̃n) (variance)

Cases [MSE(F̂n)] [MSE(F̃n)] reduction
Case 1 0.3815 % 0.0033 % 99.1239 %

[1.9318] [0.0169] (97.7817 %)
Case 2 0.0533 % 0.0198 % 62.8420 %

[0.2703] [0.1005] (97.5856 %)
TABLE I

MSE AND MSE REDUCTION OF FIM ESTIMATES (N = 2000).

in which F11 =
∑n

i=1(σ
2+ciα)−1, F22 = (1/2)

∑n
i=1(σ

2+
ciα)−2 and F33 = (1/2)

∑n
i=1 ci (σ2 + ciα)−2. Here, the

value of θ, that is used to generate the pseudo data vector
(as a proxy for Zn = [z1, · · · , zn]T ) and to evaluate Fn(θ),
is assumed to correspond to µ = 0, σ2 = 1 and α = 1.
The values of ci across i are chosen between 0 and 1, which
are generated by using MATLAB uniform random number
generator, rand, with a given seed (rand(‘state’,0)).
Based on n = 30 yields a positive definite Fn(θ) whose
eigenvalues are given by 0.5696, 8.6925 and 20.7496.

Let us assumed for the sake of illustration that only the
upper-left 2 × 2 block of the analytical FIM is known a
priori. Using this known information, both the existing [1]
and the modified resampling algorithm as proposed in this
work are employed to estimate the FIM. For Hessian esti-
mation per (2), c is considered as 0.0001 and, for gradient-
approximation per (3), c̃ is considered as 0.00011. Bernoulli
±1 random variable components are considered to generate
∆k and ∆̃k.

The results are summarized in Table I. The mean-squared
error (MSE) of F̂n and F̃n are first computed; for example,
in the case of F̂n, MSE(F̂n) is computed as MSE(F̂n) =∑

ij(F̂ij − Fij(θ))2. The relative MSE are computed, for
example, in the case of F̂n, as relMSE(F̂n) = 100 ×
MSE(F̂n)/

∑
ij(Fij(θ))2. The effectiveness of the modified

resampling algorithm can be clearly seen from the fourth
column of the table that shows substantial MSE reduction.
The relative MSE reduction in the table is computed as
100 × (MSE(F̂n) −MSE(F̃n))/MSE(F̂n). In this column
also shown within parentheses are variance reduction. The
relative variance reduction are computed as 100×(A−B)/A,
in which A =

∑
ij var[F̂ij |θ] and B =

∑
ij var[F̃ij |θ].

It would also be interesting to investigate the effect of
the modified resampling algorithm on the MSE reduction
in the estimators of the unknown elements of the FIM in
contrast to a rather ‘naive approach’ in which the estimates
of the unknown elements are simply extracted from F̂n.
To see the improvement in terms of MSE reduction of the
estimators of the unknown elements of the FIM, the elements
corresponding to the upper-left 2 × 2 block of F̂n obtained
from the current resampling algorithm are simply replaced
by the corresponding known analytical elements of the FIM,
Fn(θ). Therefore, the results (shown in Table II) only display
the contributions of the MSE from the estimators of the
unknown elements of FIM. This table clearly reflects the
superiority of the modified resampling algorithm as presented
in this work over the current resampling algorithm.

Table I-II essentially highlight the substantial improvement
of the results (in the sense of MSE reduction as well as

MSE(F̂n) MSE(F̃n) MSE
(and A): (and B) (variance)

Cases naive approach reduction
Case 1 0.1288 0.1021 20.7235 %

(0.0159) (0.0006) (95.9179 %)
Case 2 0.0885 0.0878 0.7930 %

(0.0030) (0.0002) (94.4222 %)
TABLE II

MSE COMPARISON FOR F̂n AND F̃n ONLY FOR THE UNKNOWN

ELEMENTS OF Fn(θ) ACCORDING TO F
(GIVEN)
n (N = 100000)

(SIMILAR RESULTS ON VARIANCE ARE REPORTED WITHIN

PARENTHESES, A =
∑p

i=1

∑
j∈Ici VAR[F̂ij |θ] AND

B =
∑p

i=1

∑
j∈Ici VAR[F̃ij |θ]).

variance reduction) of the modified MC based resampling
algorithm over the results of the current MC based re-
sampling algorithm. Of course, this degree of improvement
is controlled by the values of the known elements of the
analytical FIM; see (23) and (24) for Case 1 and (25) and
(26) for Case 2.

VI. CONCLUSIONS

The present work re-visits the resampling algorithm and
computes the variance of the estimator of an arbitrary ele-
ment of the FIM. A modification in the existing resampling
algorithm is proposed simultaneously preserving the known
elements of the FIM and improving the statistical character-
istics of the estimators of the unknown elements (in the sense
of variance reduction) by utilizing the information available
from the known elements. The numerical example showed
significant improvement of the results (in the sense of MSE
reduction as well as variance reduction) of the proposed
resampling algorithm over that of the current resampling
algorithm.
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