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The design of the supply chain, and in particular of the distribution phase, for fresh-food

products, such as fresh and fresh-cut produce, fruit or meat, cannot be achieved without

considering the perishable nature and the variability of the products entering the chain.

Motivated by these considerations, this paper presents a novel approach for the

optimisation of fresh-food supply chains that manages a trade-off between logistic costs

and some indices measuring the quality of the food itself as perceived by the consumer,

such as ripeness, microbial charge or internal temperature. The supply chain and the

behaviour of the product during its delivery are described using a hybrid model consisting

of two specific parts. The first part takes into account event-driven dynamics (typically

product handling) while the second one describes time-driven dynamics (the dynamics of

some parameters characterising the food product in the supply chain). The performance of

the supply chain, expressed in terms of both logistic costs and final product quality, are

then enhanced using a specific optimisation algorithm that uses the model to assure the

feasibility of the proposed optimal solutions.

In a companion paper [Dabbene F; Gay P; Sacco N (2008). Optimisation of Fresh-Food

Supply Chains in Uncertain Environments, Part II: a Case Study. Biosystems Engineering,

accepted], this new methodology is applied to a real-world example concerning meat

refrigeration.

& 2007 IAgrE. Published by Elsevier Ltd. All rights reserved.
1. Introduction

The supply chain, and more specifically the distribution of

fresh-food products such as meat, vegetables, fruits and

dairy from producer to vendor, is in general a complex

process, owing to the perishable nature of these agricultural

products. In food supply chains, in fact, there is a continuous

change in the quality from the time the raw material

leaves the grower (or e.g. the slaughterer for meat products)

to the time the product reaches the consumer. This phase
Published by Elsevier Ltd
.it (F. Dabbene), paolo.ga
contributes considerably to the determination of the

final cost of the product as well as to the quality perceived

by the consumer. It is therefore of great importance to design

and manage the distribution chain in order to deliver the

product at the right time, while guaranteeing the desired

quality level. Moreover, this should be done keeping as

low as possible the costs associated with the handling

(storage, cooling, etc.) of the product itself. In addition, the

presence of unavoidable biological variability in the products

and the uncertainty affecting some aspects of the delivering
. All rights reserved.
y@unito.it (P. Gay), nicola.sacco@unige.it (N. Sacco).
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Nomenclature

ai arrival time of the ith job at the first node

Cj capacity of the jth node

C(yC,yNC) term of the cost function taking into account the

costs due to the adopted operating condition yC

c(k) Positive sequence converging to 0

c0,b2, parameters of the step multiplier c(k)

D(yC,yNC) term of the cost function taking into account the

logistic aspects of the chain

DE(y) cost due to earliness

DT(y) cost due to tardiness

di desired due date of the ith job

EyNC
fJðyC; yNCÞg expectation of J(yC,yNC) with respect the pdf

pnðnÞ
E(yC) compact notation of the expectation

EyNC
fJðyC; yNCÞg

ÊNðyCÞ empirical approximation of E(yC)

Ê�ðkÞ empirical value of the cost function taken at the

parameters values yC(k)7c(k)Z(k), respectively

f(x(t),t,y) function, in general nonlinear, giving the first

derivative of x(t) knowing x(t), t, and y
g(x(t),t,y) function, in general nonlinear, giving the attri-

butes y(t) knowing x(t), t, and y
_gðtÞ ¼ d

dt gðtÞ first derivative of a generic function g with

respect of the time t

J(y) cost function of the optimisation problem

J(yC, yNC) cost function of the optimisation problem with

explicated arguments

K maximum number of iteration in the optimisa-

tion process

m number of jobs in the supply chain

mj(t) number of jobs in the jth cell at time t

N total number of samples

n number of nodes of the supply chain

P(yC,yNC) term of the cost function taking into account the

achievement of the product attributes target

pi(t) position on the ith job at time t

pn(n) probability density function of the stochastic

variable n
q total number of parameters of the system

qo Number of physical parameters of the system

qC Number of controllable parameters

qNC Number of non controllable parameters

R Field of real numbers

Rp Space of the vectors of real numbers with

dimension p

So Hyper-rectangle defining the admissible values of o
ST Set defining the admissible values of T

sj
iðTÞ Actual time ith job spends in the jth node,

eventually taking into account finite capacity

constraints

T Subset of y gathering the logistic parameters

describing the way the jobs move into the supply

chain

Tj
i Time interval spent by the ith job in the jth cell

TC Subset of T gathering the controllable logistic

parameters

TNC Subset of T gathering the non controllable logistic

parameters
~T

j
i Not necessarily feasible value of the time interval

spent by the ith job in the jth cell computed by the

optimisation algorithm
~Ti Vector gathering the not necessary feasible time

intervals ~T
j
i

~TCðkÞ kth estimate of the optimal, not necessarily

feasible, value of the logistic parameters

t Time

n Generic stochastic variable with zero mean

nðkÞ kth sample of the stochastic variable n
w(k) Step size multiplier

w0, W, b1 Parameters of the positive sequence w(k) which

give the step multipliers

x(t) Vector gathering the state variables of the differ-

ent products and the states variables describing

the interaction with the surrounding environ-

ment

x[i] ith entry of the vector x

ȳi Desired value of y(t) at time tn
i

yi(t) Attribute of the ith job at time t

y(t) Vector 2 Rm gathering the attributes yi(t) of the m

jobs at time t
~yðtÞ Reference values for y(t), 8t

d(t) Dirac delta function

YC Set of admissible values of the controllable

parameters

[ � ]T Transposing vector operator

gC Weight of the term C(yC,yNC) in the cost function

gD Weight of the term D(yC,yNC) in the cost function

gP Weight of the term P(yC,yNC) in the cost function

z0 Initial value of x(t)

Z(k) Vector gathering the kth sample of qc random

values Zi(k), i ¼ 1,y,qC

[Z�1(k)] vector containing the inverse values of Z(k)

Zi(k) kth sample of the stochastic variable Zi

{Z(k)} sequence of the random vectors Z(k), k ¼ 1,y,K

y vector of the parameters representing the opera-

tion conditions under which the network is

running

yC subset of y gathering the controllable parameters

y�C optimal value of the controllable operation con-

dition

yC(k) kth estimate of the optimal feasible value of the

controllable operation condition

yNC subset of y gathering the non-controllable para-

meters

ȳNC vector gathering the nominal values of the non-

controllable parameters
~yCðkÞ kth estimate of the optimal, not necessarily

feasible, value of the controllable operation con-

dition

yk
C approximate optimal value of the controllable

parameter computed by the optimisation algo-

rithm

Py[ � ] projection operator which computes a feasible

value of ~yCðkÞ
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Po[ � ] projection operator which computes a feasible

value of ~oCðkÞ

PT[ � ] projection operator which compute a feasible

value of ~TCðkÞ

sE, sT weight for the earliness and tardiness costs terms

tj
i Switching time, i.e., the time instant the ith job

leaves the jth node

ti Vector gathering the switching times of ith job

t Vector gathering the vectors ti of the switching times

c Threshold reflecting a trade-off between

the number of not useful iterations and the

admissible local solution worsening at each

iteration

o Subset of y gathering the physical parameters

representing some physical properties of the

system

oC subset of o gathering the controllable physical

parameters

oNC subset of o gathering the non controllable physi-

cal parameters

~oCðkÞ kth estimate of the optimal, not necessarily

feasible, value of the physical parameters

B I O S Y S T E M S E N G I N E E R I N G 9 9 ( 2 0 0 8 ) 3 4 8 – 3 5 9350
process render the management of this phase even more

complex.

A supply chain represents the sequence of activities

performed in order to deliver the fresh product to a

destination with the highest possible quality (Tijskens et al.,

2001). Any activity performed in the chain has a potential

impact on the product, due to the interaction between the

surrounding environment and the product itself (Apaiah et al.,

2005; Broekmeulen, 2001). In the general case, the evolution of

the product characteristics is governed by the interaction of

the product itself with the plant and, eventually, with other

products stored in the same place. This is the case, for

instance, for apples stored in bins inside a refrigeration cell,

for meat carcasses in a chilling tunnel or for the processing

and distribution of fresh-cut produce.

With the aim of deriving a mathematical model of the

chain, each product can be considered as an ‘‘object’’

described by a dynamical model which takes into account

the physiological processes occurring in the product itself.

These processes are generally affected by the conditions

(e.g. temperature, humidity, etc.) in the immediate surround-

ings of the product. At the same time, the products may

themselves affect the immediate environment. The objective

of a modelling process should be to describe the product

behaviour as a collection of interacting processes, such that

their combined action can describe the observed phenomen-

on and such that each sub-process can be fully understood in

its description. The nature of the sub-process is largely

defined by means of fundamental physical laws and the

generally accepted rules in a particular discipline. A typical

approach, see e.g. Sloof and Everest (2000), consists of

separating high-level processes analysing intrinsic product

properties that, in general, correspond to quality attributes in

the phenomenon under study. Some interesting modelling

approaches can also be found in Minegishi and Thiel (2000)

and Georgiadis et al. (2005).

The design of a supply chain cannot be effected node by

node, but the entire chain has to be considered as a whole. As

explained well in Gigiel (1996), the poor design encountered in

many existing networks is mainly due to a mismatch between

the purposes the nodes were originally designed for and how

they are actually used. Notice that, in the usual practice, the

first step in the design of a node in a supply chain (e.g. a

chiller, a storage cell or transportation) is for the user to draw

up specifications, in terms of node load and throughput. For

determining these quantities, a viable way may consist of
developing and tuning a mathematical model for the entire

chain, able to capture the dynamics present in the chain.

Once such a model has been determined and its parameters

have been identified, it is then possible to simulate different

scenarios and eventually proceed to an optimisation phase.

Unfortunately, the nominal operating conditions, expressed

in terms of product flow, machine loads, plant efficiency, raw

food material properties, etc., with respect to which the chain

has been designed, can vary in time due to uncontrollable

factors affecting the supply chain efficiency and the final

product quality. In a real supply chain, in fact, there are many

factors that can introduce uncertainty. First of all the natural

variance of biological products may render the behaviour

(time-driven dynamics) of each food product slightly differ-

ent. In many applications this kind of variability cannot be

neglected and could have a great influence on the observed

system (see e.g. Hertog, 2002; Hertog et al., 2004; Peirs et al.,

2002). Second, the process conditions in each node can vary

and, third, discrete-events dynamics could be perturbed by

external and unmodelled factors or disturbances.

The role of uncertainty and the ways to manage it in post-

harvest and food engineering processes have been recently

considered in many works (see e.g. Van Impe et al., 2001;

references therein). In the so-called second-order modelling

approach (Nauta, 2000), for example, the perturbations

affecting empirical data and/or model parameters are sub-

divided into uncertainty and/or variability. Uncertainty re-

presents the lack of perfect knowledge of a parameter value,

which may be reduced by additional measurements, further

improvement of a measurement method (e.g. detection limit,

precision) or, if applicable, model structure improvement

(Delignette-Muller & Rosso, 2000). Variability, on the other

hand, represents a true heterogeneity of the population that

is a consequence of the physical system and is irreducible by

additional measurements. However, since in a quantitative

study it is often difficult to separate variability and uncer-

tainty (Nauta, 2000), especially when both have the same

order of magnitude, an alternative is to globally characterise

them by associating a probability function to each quantita-

tive parameter (Delignette-Muller & Rosso, 2000). Different

methods have been proposed to quantify the effects of the

propagation of the uncertainty affecting model parameters on

the output of the studied system. One widely used method is

the Monte Carlo method (see e.g. Nicolaı̈ et al., 1998; Demir

et al., 2003; Poschet et al., 2003). The main drawback of this

technique may be the large number of repetitive simulations
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necessary to obtain an acceptable level of accuracy and the

fact that the distribution over the data points must be

completely specified in a probabilistic sense.

Other methods have been suggested to provide computa-

tionally attractive alternatives for specific applications, like,

for example, for distributed parameter systems with para-

meter fluctuations in space (e.g. the first-order perturbation

algorithm; see Nicolaı̈ et al., 2000) or simultaneously in space

and time (e.g. the variance propagation algorithm; see Nicolaı̈

et al., 1998 and Scheerlinck et al., 2001). Since the objective of

this research is methodology-oriented, only the (overall)

perturbation on parameters is considered without attempting

to distinguish between uncertainty and variability.

The aim of this paper is to introduce a new modelling

framework that allows the discrete-event behaviour of the

logistics of the chain and the continuous-time dynamics of

some product characteristics to be merged, taking into

account uncertainties, and then to propose a dynamic

model-based optimisation method that allows the perfor-

mances of the chain to be improved. The proposed hybrid

model is used for developing the optimisation strategy aimed

at finding an optimal operation point for the chain, in terms

of optimal scheduling and/or proper design of one or more

node specifications.

The problem of supply-chain optimisation has been con-

sidered in many recent papers (see e.g. Altiparmak et al., 2006;

Apaiah & Hendrix, 2005; Beamon, 1998; Mo et al., 2005; Perea-

López et al., 2003; Shapiro, 2004). All these contributions deal

with the supply chains of generic manufactured or assembled

products and do not consider the case of products that can

perish or, in general, change some of their attributes while

they are managed by the chain. In the specific field of food

engineering, the first approaches proposing the use of

optimisation algorithms for improving food processes can

be traced back to the work of Teixeira and Shoemaker (1988).

For a recent survey on the use of modern optimisation in food

processing, the reader is referred to Banga et al. (2003), and the

references therein. Quoting Banga et al. (2003): ‘‘Model-based

simulation of food processing units and/or full plants has

received great attention during the past three decades,

especially in academic environments (Datta, 1998; Fryer,

1994; Nicolaı̈ et al., 2000, Nicolaı̈ & Van Impe, 1996; Van Impe,

1996). Since most processes are operated in batch mode, these

models are usually dynamic in nature, consisting of sets of

ordinary and/or partial differential and algebraic equations

(y) Thus, these mathematical models usually consist of sets

of algebraic, partial and ordinary differential equations

(PDAEs), with possible integral equations, and sometimes

even logic conditions (modeling discrete events and/or

transitions, i.e. hybrid systems).’’ As suggested also in Barton

et al. (2000) and Garcı́a et al. (2006), a modern approach to

tackle such dynamic optimisation problems is to transform

the original problem into a nonlinear programming problem

(NLP): this is exactly the approach adopted in this paper.

Then, various local/global optimisation techniques can be

employed to solve this problem numerically, as discussed in

detail in Section 3.

A somewhat similar approach can also be found in the

classical literature on integrated manufacturing systems. For

instance, Cassandras et al. (2001) optimised a manufacturing
process consisting of a series of nodes that perform a

sequence of operations on a set of jobs. Such operations

modify some physical characteristics of the jobs. However,

such an approach cannot be directly applied in our frame-

work since it does not allow the single nodes to process more

than one job at a time, which is the typical situation arising in

fresh-food supply chain. Moreover, this paper—as mentioned

previously —considers the situation in which not only the

operations performed in the nodes modify some physical

characteristic of the single job, but the jobs may influence

each other and also the way they influence the node itself.

The presence of various variability sources affecting both

product characteristics and logistic parameters has been

explicitly taken into account.

The paper is structured as follows: in Section 2 a thorough

theoretical analysis is carried out and a hybrid dynamic

model describing the supply chain is derived. In Section 3 the

proposed optimisation algorithm is introduced and its salient

features (cost function definition, uncertainty handling and

feasibility issues) are discussed. Finally, conclusions are

drawn in Section 4. In the second part of this paper (Dabbene

et al., 2008), the proposed methodology is applied to a case

study of a fresh-meat supply chain, showing the concrete

effectiveness of the introduced framework.
2. Theoretical analysis and model
development

This section presents the analytic framework for modelling a

fresh-food supply chain. The proposed model is hybrid,

consisting of a part with time-driven dynamics—the dy-

namics of some parameters characterising the products in

the supply chain—and a part with event-driven dynamics (see

e.g. Cassandras & Lafortune, 1999)—the logistic aspects of the

chain. To keep the formalism at a general level, the term job

will be used through the paper to refer to the generic portion

or unit of food to be treated individually (e.g. a bin of fresh

fruits, a meat carcass, a lot of fresh cut salad, etc.), and the

term nodes to refer to the servers in which different activities

are performed on the jobs (e.g. refrigeration or storage cells,

washing or cutting machines, transportation, etc.).
2.1. Preliminary notation and definitions

Consider a supply chain consisting of a network formed by n

successive nodes in which the different jobs are processed in

a sequential way. The total number of jobs that enter the

chain is m. The jobs enter the first node at different instants

in time (and with possibly different initial conditions of the

parameters describing them) and are processed sequentially

from node 1 to node n. Every node can process more than one

job at a time. The number of jobs processed in a node at a

specific instant could be unbounded (infinite process capa-

cities) or, more realistically, bounded (finite process capaci-

ties). In the case of unbounded capacity, a job immediately

leaves a node and enters the next one as soon as it has been

processed. On the other hand, if a node possesses only finite

capacity and has no slot available, any new job has to wait in



ARTICLE IN PRESS

B I O S Y S T E M S E N G I N E E R I N G 9 9 ( 2 0 0 8 ) 3 4 8 – 3 5 9352
the preceding node until another job leaves the node. Both

cases of infinite and finite capacity are addressed in the paper.

Associated with the ith job define a measure yi(t), called

attribute, which represents some characteristic (e.g. internal

temperature, firmness, ripeness, microbial charge, etc.) that is

chosen as representative of the product quality. The attri-

butes yi(t) of the different jobs vary in time according to a

differential equation which depends on the operating condi-

tions of the network and on the different jth node where the

job is being processed at time t.

The supply chain is characterised by a vector of parameters

yARq that represent the operating conditions under which the

network is running. Two different types of parameters y are

considered, on the basis of their interpretation. In particular,

a distinction is made between physical parameters, which

represent some physical properties of the nodes in the

network (such as power of a refrigeration cell or air composi-

tion in controlled atmosphere environments), and the logistic

parameters of the chain, describing the way in which the

various jobs move into the chain. To this end, the vector yARq

is partitioned in the following way:

y ¼
o

T

� �
; o 2 Rqo ; T 2 Rnm; q ¼ qo þ nm (1)

where o is the physical parameters vector and T is the logistic

parameters vector, which is given by the vector of time intervals

T ¼ ½T1
1 � � � Tn

1 � � � Tj
i � � � T1

m � � � Tn
m �

T (2)

The time interval Tj
i represents the time spent by job i in

node j in the case of an infinite capacity network. In the more

general case of finite capacity, the precise meaning of Tj
i is

clarified in Section 2.3.2.

2.2. Controllable and non-controllable parameters

It is important to note that some of the parameters of the

chain (both physical and logistic ones) may be directly

imposed by the network manager, and can therefore be

considered control variables, while other parameters are not

directly accessible. In a general setting, these uncontrollable

parameters may be either fixed (deterministic) and possibly

not perfectly known, or stochastic, subject to random

variations. For what concerns physical parameters, examples

of uncontrollable parameters may be the power of already

existing plants, external temperature, etc. Uncontrollable

logistic parameters account for the fact that some nodes

could require a minimum amount of time to process the job.

This is the case, for instance, for transportation times or unit

operations for which only information about minimum proces-

sing time can be given. Following this distinction, the following

two vectors are introduced:

yC ¼
oC

TC

" #
2 RqC and

yNC ¼
oNC

TNC

" #
2 RqNC ; qC þ qNC ¼ q, (3)

where oC, TC and oNC, TNC represent respectively the vectors

of controllable and uncontrollable physical and logistic

parameters.
The controllable parameters, either the physical or the

logistic ones, are constrained within specific intervals. In

particular, the controllable physical parameters can assume

values only in given intervals, that is, oC should lie in a given

hyper-rectangle So. On the other hand, the logistic para-

meters can assume only values TCAST, ST being the set of all

possible residence times that do not violate the capacity

constraint (see for details Section 2.3.2). The above con-

straints are summarised by introducing the notation yCAYC.

2.3. Hybrid model derivation

The following sections provide the theoretical derivation of

the hybrid model proposed for describing the dynamical

behaviour of a food supply chain. In particular, the discrete-

event dynamics of the supply chain are introduced in the first

two following sections, while the time-driven dynamics of the

attributes yi(t) are discussed in Section 2.3.3.

2.3.1. Discrete-event dynamics
To describe the dynamics of the discrete-event system, define

first the event-occurrence time tj
i as the time instant in which

the ith job leaves the jth node. Then, for notation ease, it is

useful to introduce the vectors

ti ¼ t0
i t1

i . . . tn
i

h iT
; i ¼ 1; . . . ;m, (4)

which gather the switching times of the ith job, and the

composite vector

t ¼ tT
1 tT

2 . . . tT
m

h iT
; t 2 Rmðnþ1Þ

With this notation settled, the discrete-event dynamics can

be formally stated by means of the following recursion, for

i ¼ 1,y,m and j ¼ 1,y,n

tj
i ¼ tj�1

i þ sj
iðTÞ

t0
i ¼ ai (5)

where ai denotes the arrival time of the ith job in the first

node. The function sj
iðTÞ depends on the logistic parameters T

and is introduced to take into account the case of finite

capacity. This function provides the actual time the ith job

spends in the jth node. Therefore, for an infinite capacity

network, it results that

sj
iðTÞ ¼ Tj

i, (6)

where Tj
i belongs either to TC or TNC. Consequently, Eq. (5)

simply becomes

tj
i ¼ tj�1

i þ Tj
i

t0
i ¼ ai (7)

The explicit derivation sj
iðTÞ for the case of networks with

finite capacity is discussed in Section 2.3.2.

Some useful parameters that describe the behaviour of the

chain and that directly depend on the evolution of the events

tj
i are now introduced.
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First, define the position pi(t) as the node in which the ith

job is at time t. Then, the evolution of the variables pi(t),

i ¼ 1,y,m can be represented by means of the following

differential equation:

_piðtÞ ¼
Xn�1

j¼0

dðt� tj
iÞ

pið0Þ ¼ 0 (8)

where d( � ) is the Dirac delta function. Clearly, the variable pi(t)

can assume only the integer values 0,1,2,y,n and is a

monotonically non-decreasing function of time. An example

of the possible evolution of pi(t) is depicted in Fig. 1.

Analogously, at each time instant t, mj(t) denotes the total

number of jobs being processed in the jth node at time t. This

quantity is governed by the following differential equation:

_mj
ðtÞ ¼

Xm
i¼1

dðt� tj�1
i Þ �

Xm
h¼1

dðt� tj
hÞ

mj 0ð Þ ¼ 0 (9)

This latter equation explicitly shows that the number of

jobs in the jth node increases when a generic job i leaves the

(j–1)th node at tj�1
i and enters the jth node and decreases

when a generic job h (not necessarily the ith one) leaves the

jth node at tj
h, as depicted in Fig. 2.
i i i
4

i

i

i
1 2 3

1

3

4

( )p  t

tp ( )

τττττ

2

Fig. 1 – Example of the trajectory of the function pi(t)

describing the position of the generic ith job.

j j

4  3
j−1−1j

2  1
−1−1

 3
jj

2 j

1 

j

j

m

2

t( )

( )t

1

3

m

τ

τττ

τ τ ττ

Fig. 2 – Example of a generic trajectory of mj(t) and _mj
ðtÞ.
Eqs. (8) and (9) fully describe the dynamic behaviour of the

network, providing, at each time instant, the number of the

jobs present in each node. In the next section, an explicit

form for the function sj
iðTÞ appearing in (5) is formally derived

in the case of networks with finite capacity.

2.3.2. Finite Capacity Constraints
As previously mentioned, a more realistic description of the

considered systems should take into account the case of finite

capacity of the supply chain nodes. To this end, let Cj40 be

the capacity of the jth node, j ¼ 1,y,n. Then, it follows that a

generic job i can leave the jth node at the time tj
ionly if

mjþ1ðtj
iÞoCjþ1 (10)

that is, only if there is at least one free slot in the (j+1)th node

at time tj
i.

Taking into account such capacity constraints, the function

sj
iðTÞ appearing in the event-driven dynamics described by (5)

takes the more involved form

sj
iðTÞ ¼

Tj
i if mjþ1ðtj�1

i þ Tj
iÞoCjþ1

min
h

tjþ1
h jt

jþ1
h 4tj�1

i þ Tj
i

n o
� tj�1

i if mjþ1ðtj�1
i þ Tj

iÞ ¼ Cjþ1

8><
>:

(11)

This function gives the time spent by the ith job in the jth

node in both cases when the (j+1)th node has at least a free

slot or not. In particular, the first line of (11) coincides with (7)

in the case when free space is available in the node (j+1). On

the other hand, the second equation in (11) says that the ith

job can leave the jth node as soon as another job departs from

the (j+1)th node.

2.3.3. Time-driven dynamics
Denote by y(t) ¼ [y1(t) y2(t)yym(t)]T the vector of attributes. As

already mentioned, the attribute yi(t) relative to the ith job

evolves in time according to a (usually nonlinear) differential

equation. Consequently, y(t) can be seen as the output of a

system of differential equations of the type

_xðtÞ ¼ f ðxðtÞ; t; yÞ

xð0Þ ¼ B0

(

yðtÞ ¼ gðxðtÞ; t; yÞ (12)

x(t) being a vector gathering the state variables of the different

products and the state variables that describe the interaction

with the surrounding environment. Notice that Eqs. (5) and

(12) define in all aspects a hybrid system, where the time-

driven dynamics of (12) depend on the vector of events t,
whose dynamics are expressed by the recursion (5). From a

different perspective, (12) may be seen as a switching system,

whose switching times are regulated by the recursion (5).

2.3.4. An illustrative example
In this section, a simple example of fresh-food supply chain is

described to clarify the model and notation introduced above.

Consider a fresh-cut produce supply chain managing two

stocks of different ready-to-eat salads. This supply chain

consists of three nodes: the first one represents the producer,

where the two stocks of fresh-harvested salad are washed,

cut, and packed. The arrival times of the two stocks have been

assumed to be a1 ¼ 7 p.m. and a2 ¼ 8 p.m. The second node
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represents the transportation of the processed stocks of salad

from the producer to the retailer, while the third one is the

retailer.

For what concerns the intervals Tj
i, i ¼ 1,2, j ¼ 1,2,3, we

assume the following: the producer processing times are

T1
1 ¼ T1

2 ¼ 10 h, the transportation times are T2
1 ¼ T2

2 ¼ 2 h, and,

finally, the time the produce may spend in the retailer node is

T3
1 ¼ T3

2 ¼ 84 h (3.5 days). Note that such values fulfil the

constraint of keeping the whole process time under 96 h

(4 days) to guarantee a commercial quality of the salad, that is

X3

j¼1

Tj
ip96 h; i ¼ 1;2. (13)

Then, given the time the fresh cuts arrive at the producer, it

is immediately possible to compute the switching times by

means of the recursive Eq. (7), obtaining for both jobs

t0
1 ¼ 19 : 00 day 1

t1
1 ¼ 05 : 00 day 2

t2
1 ¼ 07 : 00 day 2

t3
1 ¼ 19 : 00 day 5

and

t0
2 ¼ 20 : 00 day 1

t1
2 ¼ 06 : 00 day 2

t2
2 ¼ 08 : 00 day 2

t3
2 ¼ 20 : 00 day 5

(14)

The relevant Gantt diagram is reported in Fig. 3 while the

diagrams of mj(t), j ¼ 1,2,3, and pi(t), i ¼ 1,2, are reported in

Figs. 4 and 5, respectively.
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3. Optimisation

The model described in the previous section discriminates

the possible behaviours that the system can exhibit acting on

the controllable parameters yC. The role of the network

manager consists of choosing the best operating conditions

considering different aspects such as operating expenses,

product and process conditions and the final product quality.
3.1. Performance function

The goal of the optimisation algorithm is to choose the

controllable parameters yC in order to minimise an objective

function that measures the performance of the supply chain.

In particular, introduce a performance function J constituted

by the sum of three terms

JðyÞ ¼ JðyC; yNCÞ ¼ gCCðyC; yNCÞ þ gPPðyC; yNCÞ þ gDDðyC; yNCÞ (15)

The first term takes into account the cost related to the

particular operating condition yC (e.g. power consumption,

transport costs, etc.). The second term accounts for the

achievement of a target performance, measured in terms of

product attributes. These could be expressed in different

ways depending on the specific product. For instance, the
 1
3  2

3 2
2

t

84 hours

84 hours

s

τ τ τ

of salad in the three different cells of the supply chain. In this

1
3

2
3

t

t

t

ττ

), j ¼ 1,2,3 for the considered example.
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following requirements may be considered:
1.
 Trajectory tracking: y(t) should follow a given reference ~yðtÞ;

namely PðyC; yNCÞ ¼ jjyðtÞ � ~yðtÞjj, being || � || a norm (for

instance || � ||2, || � ||N, etc.). This is a typical requirement

for instance in the case of meat-conditioning processes.
2.
 Final value objective: yi(t) should achieve the desired value ȳi

when leaving the last node at tn
i . This objective can be

imposed by setting PðyC; yNCÞ ¼ jjyiðt
n
i Þ � ȳijj. This is the

case, for example, of the ripeness level that the fruit

should have when reaching the shelf.

Notice that, since the behaviour of the attribute y(t) directly

depends on the operating conditions y, requirements 1 and 2

translate into a cost term PðyC; yNCÞ which is a function of yC

and yNC.

The third term in (15) is related to the logistic aspects of the

chain and measures the difference between the actual final

time tn
i and the desired due-date di by means of costs of

earliness DEðyÞ ¼
Pm

i¼1ðmaxf0;di � tn
i gÞ

sE or tardiness DTðyÞ ¼Pm
i¼1ðmaxf0; tn

i � digÞ
sT , where sE and sT are suitable integers

which allow to consider linear, quadratic, etc., earliness and

tardiness costs.

An important point that should be taken into consideration

is the fact that the cost function depends on the controllable

parameters yCAYC, which are those that should be designed

in order to optimise the behaviour of the chain, but also on

the uncontrollable parameters yNC, whose effect should be

accounted for. The simple situation when the uncontrollable

parameters yNC assume fixed values ȳNC is discussed first. In

this case, the optimisation problem simply becomes

min
yC2YC

JðyC; ȳNCÞ (16)

We refer the reader to Banga et al. (2003), for an excellent

review on the state-of-the-art methodologies for model-based

dynamic optimisation in the food processing literature. In

particular, the main categories of optimisation techniques

can be roughly classified as follows: local gradient-based

optimisation techniques and global optimisation techniques.

The latter may be deterministic, for instance branch-

and-bound (see e.g. Floudas, 2000), or stochastic methods,

which can be further divided into clustering methods,
stochastic (adaptive) search and biologically or physically

inspired methods (such as genetic algorithms or simulating

annealing). It should be noted, however, that, for a generic

formulation, no global optimisation algorithm can guarantee

to find a global solution with certainty in finite time (Banga

et al., 2003). In principle, all these optimisation techniques

may be applied to solve the optimisation problem (16).

However, it should be noted that the situation considered in

this paper is somewhat more general than the ones con-

sidered in the cited literature. In fact, we assume that the

optimisation algorithm should be able to make decisions in

an uncertain environment. Formally, this uncertainty is taken

into account assuming that the uncontrollable parameters

yNC are not fixed, but may vary according to a given

distribution, as discussed in the next section. In this

situation, a direct application of the above-listed techniques

is not always possible, since most of them would require

some ad hoc adjustments (for instance, by incorporating in

some way the uncertainty in the cost function as a penalty).

We propose instead an algorithm, based on the results in

Spall (1992) which can be seen as a stochastic gradient

technique combined with ad-hoc gradient estimation, that

allows the presence of stochastic uncertainty to be taken into

account in a direct way. The choice of this optimisation

method has been motivated by the following reasons:

(i) reduced computational requirements in terms of cost

function evaluations, (ii) capability of handling uncertainty

and (iii) ease of implementation. This approach is discussed

in detail in the next section.
3.2. Uncertainty in the supply chain

In general, the vector of uncontrollable parameters yNC may

be affected by random uncertainty. This is formally written as

yNC _¼ȳNC þ n (17)

where ȳNC represents in this case the (known) nominal value

of the uncontrollable parameters, while n is a random vector

with zero mean and is associated with the given probability

density function (pdf) pv(n). With this assumption, the cost

function J(yC,yNC) becomes a random quantity. Therefore,
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problem (16) needs to be formulated in a stochastic frame-

work.

A frequently used requirement in this context is to optimise

an ‘‘average’’ instance of the problem: in other words, one

asks to minimise the expected value of the objective function

taken with respect to the random uncertain parameters yNC

(see for instance Kushner & Yin, 1997), that is

min
yC2YC

EðyCÞ;EðyCÞ _¼EyNC
fJðyC; yNCÞg (18)

where E(yC) is defined as the expectation of J(yC,yNC) taken

with respect to the pdf pn(v). Notice that the above stochastic

optimisation problem is in general very hard to solve, since

the mere evaluation of the expected value E(yC) (even if an

analytical expression of the cost function were available,

which is not our case) would require the solution of a multiple

integral. Recently, however, approaches based on uncertainty

randomisation have proven their efficacy for the approximate

solution of stochastic programs, see e.g. Tempo et al. (2004)

and Vidyasagar (2002).

In this paper, following a similar philosophy, the expecta-

tion in (18) is approximated by introducing its empirical

version. To this end, draw N independent identically dis-

tributed (iid) random samples of the uncertainty vector v

nð1Þ; nð2Þ; . . . ; nðNÞ, (19)

according to the density function pn(v), and construct the so-

called empirical mean

ÊNðyCÞ _¼
1
N

XN

i¼1

J yC; ȳNC þ nðiÞ
� �

(20)

As is well known in the Monte Carlo literature, from the

Borel–Cantelli Lemma (see for instance Vidyasagar, 2002) it

follows that the empirical mean (20) converges with prob-

ability one to the true mean defined in (18) when N goes to

infinity. Hence, in the approach of this paper, the empirical

approximation ÊN yCð Þ � E yCð Þ is employed for building up a

solution for the optimisation problem (18). In other words,

ÊNðyCÞ is taken as ‘‘noisy measurements’’ of the cost function

E(yC). Formally, one may write EðyCÞ ¼ ÊNðyCÞ þ u, where u is a

random variable with zero mean whose statistics depend on

those of the uncertainty vector n.
The solution methodology proposed in this paper for the

solution of problem (18) is a modification of a classical

gradient descent method, in which the gradient of the cost

function is not computed exactly, but is approximated using

only a few function evaluations. In particular, the approach

adopted here follows the one proposed by Spall (see for

instance Spall, 1992, 2003) and tackles the problem via a

simultaneous-perturbations stochastic approximation (SPSA)

approach. This method approximates the gradient at each

iteration using only two evaluations of the cost function. This

allows the computation complexity of the problem to be

reduced greatly. In detail, the general structure of an SPSA

algorithm is based on a recursion in which successive

approximations of the optimal value

y�C _¼arg min
yC2YC

EðyCÞ (21)

are sequentially constructed based on noisy observations of

the cost function. Formally, let yC(k) denote the kth estimate
of the optimal solution, and let {Z(k)} be a random sequence of

column random vectors where Z(k) ¼ [Z1(k) Z2(k) y ZC(k)]T are

not necessarily identically distributed. The two-sided SPSA

algorithm to update yC(k) is constructed as follows:

yCðkþ 1Þ ¼ yCðkÞ �wðkÞ½Z�1ðkÞ�
ÊþðkÞ � Ê�ðkÞ

2cðkÞ
(22)

where c(k) is a positive sequence converging to zero, w(k) is

the step-size multiplier and [Z�1(k)] is defined as the vector

containing the inverses of the elements of Z(k). Notice that

recursion (22) mimics a classical gradient descent method,

where the gradient with respect to yC of the functional E(yC),

which is not available, is approximated at each step using

only two noisy evaluations of the cost function.

The values Ê�ðkÞ represent the empirical cost function

evaluated at parameter values yC(k)7c(k)Z(k), i.e.

Ê�ðkÞ _¼ÊN yCðkÞ � cðkÞZðkÞð Þ (23)

Various convergence results for this algorithm have been

proven under different hypotheses, see for instance Spall

(2003), Gerencsér et al. (2001), He et al. (2003) and references

therein. In particular, it can be shown that the algorithm still

converges when the empirical mean is constructed with a

very small number of samples. Indeed, even a single sample

is sufficient, i.e. N ¼ 1 in (20), thus allowing the algorithm to

be simplified significantly, generating at each step a single

instance n(k) of the uncertainty and letting

Ê�ðkÞ _¼Ê1ðyCðkÞ � cðkÞZðkÞÞ ¼ JðyCðkÞ � cðkÞZðkÞ; ȳNC þ nðkÞÞ (24)

This approach of considering a single realisation of the

uncertainty at each step is quite classical in the stochastic

approximation literature. In this sense, recursion (22) can be

seen as an approximate stochastic gradient approach; see for

instance Kushner and Yin (1997).
3.3. Building feasible solutions

In general, the optimisation algorithm introduced in Section

3.2 provides solutions which may be not feasible for the

problem at hand, since some physical parameter yC may not

belong to their admissible set YC, and/or the logistic

parameters T may violate the finite capacity constraints. This

section discusses how to modify the recursion (22) in order to

manage such unfeasibility. To this end it is worth noting that,

at each step of the recursion, a feasible vector yC(k+1) can be

built starting from an unfeasible one ~yCðkþ 1Þ by means of a

projection step. To this end, the projection operator Py½�� :

RqC ! YC is introduced into Eq. (22) and the recursion

modified as follows:

~yCðkþ 1Þ ¼ yCðkÞ �wðkÞ½Z�1ðkÞ�
ÊþðkÞ � Ê�ðkÞ

2cðkÞ
(25)

yCðkþ 1Þ ¼ Py½
~yCðkþ 1Þ�. (26)

Eqs. (25) and (26) represent a classical projection-based

approach to constrained stochastic approximation which is

treated extensively in Kushner and Yin (1997).
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The construction of the projection operator Py[ � ] for

building a feasible solution yCðkþ 1Þ ¼
oCðkþ 1Þ

TCðkþ 1Þ

" #
is dis-

cussed next.

Notice that the operator Py[ � ] should operate in two

different ways for the physical and the logistic parameters,

that is

oCðkþ 1Þ ¼ Po½ ~oCðkþ 1Þ� (27)

Tðkþ 1Þ ¼ PT½ ~Tðkþ 1Þ� (28)

where ~oCðkþ 1Þ and ~Tðkþ 1Þ are the (possibly unfeasible)

solutions provided at the kth step by the SPSA algorithm

defined in Eq. (25), and oC(k+1) and T(k+1) are the projected

(feasible) solutions of Eq. (26).

For what concerns the operator Po[ � ], its role is simply to

compute the orthogonal projection of ~oCðkþ 1Þ into the set So.

Since usually the set So consists of the union of intervals, its

implementation is immediate.

Analogously, the operator PT[ � ] projects the solution with

respect to the finite capacity requirements. However, the

implementation of such an operation is in general non-trivial.

A possible solution proposed here is to follow the develop-

ments of Section 2.3.2. Namely, given a vector ~Tðkþ 1Þ, a set of

feasible residence times may be computed as Tj
iðkþ 1Þ ¼

sj
ið
~T

j
iðkþ 1ÞÞ, where the function sj

ið�Þis defined in Eq. (11). This

operation is reported next for completeness

Tj
i ¼

~T
j
i if mjþ1 tj�1

i þ
~T

j
i

� �
oCjþ1

min
h

tjþ1
h jt

jþ1
h 4tj�1

i þ
~T

j
i

n o
� tj�1

i if mjþ1 tj�1
i þ

~T
j
i

� �
¼ Cjþ1

8><
>: .

(29)

Actually, two different approaches can be adopted for

dealing with the finite capacity constraint. The first metho-

dology is the one explained so far, and consists of performing

the operation in (29) at each step of the algorithm. Another

approach, which is quite standard in the literature on

scheduling, see for instance Luh et al. (1998) and Zhang et al.

(2001), is to carry on the optimisation algorithm without

taking into account this constraint, and then perform the

operation in (29) on the final solution only. These two

approaches are referred to as each-step projection and final

projection, respectively. These issues will be discussed in more

detail in Part II of this paper.

3.4. The optimisation algorithm

In this section, a formal description of the optimisation

algorithm previously introduced is given, and its implemen-

tation issues are discussed in detail. A pseudo-code of the

modified SPSA algorithm for the approximate solution of the

optimisation problem (18) is given next.
Modified SPSA algorithm

1. Select initial point y(0) and maximum number of steps K

2. k ¼ 0

3. While kpK

a. k ¼ k+1
b. Generate a sample n(k) according to the pdf pn(n) and

compute

yNCðkÞ ¼ ȳNC þ nðkÞ

c. Generate a vector Z(k) according to a Bernoulli process

d. Build Ê�ðkÞ ¼ JðyCðkÞ � cðkÞZðkÞ; yNCÞ
e. Construct the (possibly unfeasible) point

~yCðkþ 1Þ ¼ yCðkÞ �wðkÞ½ZðkÞ�1� ÊþðkÞ � Ê�ðkÞ
2cðkÞ

f. Project the point to build a feasible solution

yCðkþ 1Þ ¼ Py
~yCðkþ 1Þ
h i

4. end while

5. return (approximate) optimal value yK
C ¼ yCðKÞ.
To be implemented, the algorithm needs the determination

of some parameters, namely the gain sequences w(k) and c(k).

In this regard, precise guidelines for their choice are given in

Spall (1998). These guidelines were developed based on many

test cases conducted by the author and others, and form a

reasonable starting basis. In particular, the choice of the

following sequences is proposed:

wðkÞ ¼
w0

ðW þ kÞb1
; cðkÞ ¼

c0

kb2
. (30)

The asymptotically optimal values for the parameters w0

and c0 in (30) are 1.0 and 1/6, respectively. Practically effective

and theoretically valid values for these parameters are also

suggested as 0.602 and 0.101. Regarding the parameters W, b1

and b2, practical guidelines are given in Spall (1998).

Another point that is worth noting is that the innate

stochastic nature of the algorithm and the presence of

uncertainty do not guarantee that the solution yC(k) decreases

at each step. Indeed, in the numerical implementation of the

algorithm, this behaviour was frequently observed, and

sometimes led to excessive increases of the cost function

values. To tackle this problem, a possibility also suggested in

Spall (1998) is to introduce at each step a limit to the

worsening of the cost function. In detail, the candidate

solution yCðkþ 1Þ ¼ Py½~yCðkþ 1Þ� is not considered whenever

it gives rise to a cost function value that does not satisfy the

relation

J yCðkþ 1Þ; ȳNC þ nðkÞ
� �

� J yCðkÞ; ȳNC þ nðkÞ
� �

J yCðkÞ; ȳNC þ nðkÞ
� � pc, (31)

where c is a threshold that should be selected as a trade-off

between the number of not useful iterations, which should be

as low as possible, and the admissible local solution worsen-

ing. The first constraint should lead to high values of c
whereas the second one requires low values of this threshold.

It should be noted that the introduction of (31) slows the

execution of the algorithm slightly, since it requires an

additional cost function evaluation at each step.
4. Conclusions and future research directions

In this paper a general framework for describing a fresh-food

supply chain and an optimisation methodology to improve

the performances of the network preserving the quality of the

product are presented. The performance is improved by
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optimising the values of the physical and the logistic

parameters describing the supply chain. Moreover, the

presence of uncertainty in the behaviour of the chain is

explicitly taken into account in the optimisation phase,

leading to results that are robust with respect to parameter

changes. It should also be noted that a subject of independent

interest is to investigate the possibility of applying different

global optimisation approaches for solving the optimisation

problem (18). This is the subject of ongoing research by the

authors of the present paper, in particular, concentrating on

the application of evolutionary strategies, such as differential

evolution (Storn & Price, 1997), and adaptive stochastic search

methods, such as ICRS (Banga & Casares, 1987).

In the second part of this paper (Dabbene et al., 2008) the

proposed approach is extensively illustrated on a case study

relevant to a beef meat refrigeration and distribution chain.

The results of this case study confirm the effectiveness of the

approach. In particular, the solutions provided by the algo-

rithm are proved to be good and robust with respect to

uncertainty.
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