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Abstract— This paper describes the implementation of a 

self-optimizing embedded control scheme for an induction 
motor drive. The online design problem is formulated as a 
search problem and solved with a stochastic optimization 
algorithm. The objective function aggregates several 
performance indices on tracking error and control signals, and 
is measured directly on the hardware bench. The online 
optimization is performed with Simultaneous Perturbation 
Stochastic Approximation (SPSA) algorithms, which offer a 
very effective tradeoff between simplicity of implementation, 
speed of convergence and quality of the final solutions. The 
cascaded control system obtained by SPSA in about three 
minutes of search outperforms alternative schemes obtained 
with model-based linear design techniques generally used in 
industrial practice. 

I. INTRODUCTION 
Embedded control systems are becoming increasingly 

widespread in industrial automation. In these systems, the 
actuators are equipped with relatively-low-cost 
microcontrollers that can also perform self-tuning and 
adaptation functions. The authors of this paper are engaged 
with the development of computationally efficient and 
reliable self-tuning strategies for such embedded 
controllers. In the case of position control of induction 
motors (IMs), the problem is made particularly challenging 
by the typical cascaded structure of the control loops (see 
Fig.1), which are often tuned consecutively (first the speed 
controller and then the position controller). Clearly, this 
approach neglects the possible interactions between the 
cascaded loops, and may lead, in principle, to suboptimal 
solutions. The idea investigated in this paper is to optimize 
the parameters of both controllers of the IM simultaneously 
and online, using an efficient and “computationally-light” 
optimization algorithm known as Simultaneous Perturbation 
Stochastic Approximation (SPSA) method [8]. SPSA is 
based on a highly efficient approximation of the gradient 
based on loss function measurements. In particular, for each 
iteration, the SPSA only needs two loss measurements to 
estimate the gradient, regardless of the dimensionality of 
the problem. Moreover, the SPSA is grounded on a solid 

mathematical framework that permits to assess its stochastic 
properties also for optimization problems affected by noise 
or uncertainties. Due to these striking advantages, SPSA 
has been recently used as optimization engine for many 
adaptive control problems (see e.g., [1,4, 11, 12], or the 
extensive survey in [8]). 

With respect to the available literature, the contribution 
of our research is the direct implementation of SPSA on the 
same microcontroller running the feedback control laws. 
We believe that this study is interesting because (1) the 
preponderance of the mentioned application of SPSA has 
been validated in simulated case studies where the 
optimization algorithm has a virtually unlimited 
computational time for each iteration, and (2) other online 
optimization schemes [2] proposed for a similar hardware 
bench (based on DC motors instead of IMs) need a host 
computer to run the optimization algorithm and the various 
routines necessary to synchronize and reset the hardware 
controllers, and process the measured signals. Since our 
research aims at finding an adequate compromise between 
noise rejection, speed of convergence and quality of the 
final solution, we implement two variants of the SPSA 
algorithms and discuss their advantages and limitations.  

II. OVERVIEW OF SPSA ALGORITHMS 
This section provides a short overview of the basic concepts 
related to SPSA methods. As technical details are 
thoroughly described in related literature [8], here we only 
overview the essential concepts. Consider the problem of 
finding the minimum of a differentiable loss function  

 (The subscript n here is used to indicate 
that the loss measurements are affected by noise, whose 
distribution must satisfy some important conditions [8]). 
There is a large variety of stochastic algorithms that could 
be used to find the value of 

( ) : p
nL Rϑ →

ϑ  (say *ϑ ) that minimizes 
( )nL ϑ  [7]. The SPSA method computes the estimated value 

ϑ̂  at the (k+1)th iteration as 
  1
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Fig.1.  Induction motor drive block diagram. 

where  is the estimated gradient at the kth iteration, 
and a

ˆ ( )kg i
k is a gain scheduled to decrease over iterations with 

the law ( )ka a k A α= + , where a, A, and α are positive 
configuration coefficients. SPSA estimates  using the 
following “simultaneous perturbation” method. Let 

1 2 1

ˆ ( )kg i

[ ... ] p
k k k k R∆ = ∆ ∆ ∆ ∈  be a vector of p mutually 

independent zero-mean random variables (satisfying the 
conditions described in [8]), and let the sequence of vectors 
{ }k∆  be a mutually independent sequence with k∆  
independent of . The basic SPSA  (bSPSA) 
method computes two new points in the solution space, and 
evaluates the corresponding loss as follows 

ˆ ,  0,1,...,j jϑ = k

)

)

  (2) ˆ(k n k k ky L cϑ+ = + ∆

  (3) ˆ(k n k k ky L cϑ− = − ∆

where ck is a gain sequence ( 1)kc c k γ= + , and c and γ  are 
nonnegative configuration coefficients. Then, the 
estimation of the gradient at the kth iteration is computed as 
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It can be noted that all the elements of the vector ϑ̂  are 
perturbed simultaneously, and that only two measures of the 
loss are needed to estimate the gradient independently of 
the size of ϑ̂ . Moreover, as the sequence { }k∆  is usually 
obtained with a Bernoulli ±1 distribution with equal 
probability for each value, the perturbations have the same 
amplitude for all the components of ϑ̂ . It has been proven 
[8] that under certain conditions the bias in  as an 
estimate of 

ˆ ( )kg i
( )g i tends to zero as k→∞, and k̂ϑ  converges 

“almost surely” to *ϑ . Literature also provides effective 
and theoretically valid values for most configuration 
coefficients, as mentioned in the next sections.  

In addition to the bSPSA algorithm described above, a 
number of effective variants have been recently developed 
with different aims (e.g., [9,10]). In this paper, we have also 
considered the one-measurement form of SPSA (1SPSA), 

proposed in [10]. Its peculiarity resides in the formula to 
estimate the gradient, which is the following variant of (4): 

 1 1 1
1 2

ˆˆ ( ) ...
Tk

k k k k kp
k

y
g

c
ϑ

+
− − −⎡ ⎤= ∆ ∆ ∆⎣ ⎦ . (5) 

In spite of the fact that this variant does not explicitly 
calculate the gradient using the difference between loss 
values, it has been shown that it shares the same nearly 
unbiased properties of the bSPSA. As noted in [8], since 
this variant uses only one loss measure for each gradient 
estimation, it may be advantageous in real-time algorithms 
as those generally needed for feedback control.  

III. THE LOSS FUNCTION  
The overall scheme of the control system is illustrated in 

Fig.1. The whole control scheme is implemented in 
discrete-time on the dSPACE 1104 real-time control board, 
equipped with a 250 MHz Motorola PPC working as 
microcontroller. The microcontroller runs the whole control 
scheme and a stability supervision algorithm that interrupts 
the experimentation of badly performing solutions. The 
various modules have different sampling times. In 
particular, controller and stability supervisor run with a 200 
µs sampling time, while the SPSA algorithms have a 1.125 
s sampling time. The execution time of a complete iteration 
of the control scheme is about 100 µs, and one iteration of 
the SPSA requires about 180 µs. 

The main advantage of the proposed embedded 
optimization scheme is the reliability of final results. While 
all the model-based techniques expressly rely on the 
accuracy of the model (generally used in simulations), in 
the online tuning case the effects of the actual and unknown 
high-order phenomena and nonlinearities are fully 
accounted in the loss measurement, and the final controller 
(the one generating the smallest loss) is ready-for-use with 
known performance. This permits to obtain automatic 
design tools that do not require skilled expertise for system 
modelling, or trial-and-error controller optimization.  

The design of the experiment for loss measurement plays 



a fundamental role in the success of the online design. In 
this paper, the position reference signal corresponds to the 
minimum time trajectory for a rotation of π radians (see 
Fig.2). After 0.7 s from every change of the reference 
signal, a step change of load torque (from 0 to 70% of 
motor rated torque) is applied, in order to evaluate also the 
overall disturbance rejection. In the final part of the loss 
evaluation experiment (after 1.125 s) the load torque is 
suddenly removed (see Fig.2). 

The profiles of motor position speed and control action 
of the PI speed controller (the current ( )*

sqi t ) are acquired 
during the experiment, and used to compute the loss, which 
essentially takes into account three criteria, i.e. the tracking 
performance, the disturbance rejection, and the smoothness 
of the control action. Namely, we define the following loss 
function (to be minimized): 
   (6) ( ) ( )( ) ( )( )( *

1 1 1 2 1 3( )
EXP

sq
T

L f f t f i tϑ α θ α ω α= + +∫ ) dt

where TEXP is the duration of the loss evaluation 
experiment, αj represent positive weights, and fj are three 
performance indices defined as follows:  
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Fig.2. Acceleration, speed and position desired trajectories and load torque 
applied during the test. 
 

The first two functions f1 and f2 take into account the 
tracking performance and disturbance rejection. More 
specifically, the position θ and speed ω tracking errors are 

considered only in the time intervals in which the current 
feed  is lower than a predefined threshold isq* ( )sqi t max (the 
tracking error due to controller saturation cannot be further 
reduced). The third function f3 compares the control action 

 filtered by a first-order linear filter with time 

constant τ=0.02 s, with the unfiltered actual action 

* ( )F
sqi t

( )*
sqi t  

itself. As smoother control actions give lower values of the 
integral of f3, this index is intended to penalize controllers 
with an excessively oscillatory control action, which may 
cause stresses for the IM producing vibrations, acoustic 
noise, and extra losses. The hardware scheme computes 
each index contributing to the total loss online, i.e. updating 
its value at each time sample of the experiment. The online 
value of each loss term is constantly monitored, and 
whenever it exceeds a predefined threshold the current 
experiment is immediately stopped. This allows the system 
to detect unstable (or highly unsatisfactory) solutions well 
before the involved signals reach potentially dangerous 
values. In case a monitored index exceeds the prescribed 
threshold, the value of the loss is multiplied by a penalty 
factor and assigned to the individual, and the algorithm 
proceeds with another experiment. In this way, the 
stochastic search is never interrupted until the terminating 
condition occurs. On average, less than 1% of the 
experiments of the first 10-20 iterations are prematurely 
interrupted due to bad performance, while the remaining 
iterations always generate stable solutions.  

The weights αj used in loss aggregation permit to 
emphasize or reduce the contribution of each single 
performance index in the final value of the loss. In this 
paper, the αj are set heuristically, i.e. performing 
preliminary experiments with changed weights until the 
desired trade-off between indices is achieved. 

Finally, the vector of parameters optimized by SPSA is 
defined as: 
 T

pw iw pos sm eqk k kϑ τ τ⎡ ⎤= ⎣ ⎦  (10)  
in which kpw and kiw  are the proportional and integral 

gain of the anti-windup discrete-time PI speed controller 
(see Fig.1), kpos is the gain of the proportional position 
controller, smτ  is the time constant of the first order 
smoothing filter and eqτ  is the equivalent time constant of 
the position control loop (generally estimated offline with 
system identification procedures [3]). The stopping 
criterion is the maximum number of loss function calls 
chosen equal to 200 (i.e. the whole experiment lasts 225 
seconds, although the entire algorithm converges in about 
one third of this interval).  

IV. SUMMARY OF EXPERIMENTAL RESULTS  
As mentioned, we use SPSA algorithms to optimize 

online a feedback control system for a vector-controlled 
induction motor drive. The IM is loaded using a torque 



controlled brushless generator, mounted on the same shaft. 
The IM nameplate parameters are as follows: voltage 
220 V, current 3.1 A, power 750 W, speed 2860 rpm, 
torque 2.5 Nm, inertia 0.0012 kgm/s2, pole pairs 1, torque 
constant Kc=0.7795 Nm/A. 

The performances of SPSA-based controllers are 
compared with those obtained using controllers obtained by 
linear design techniques basing on the best available model 
of the IM [3,5]. In particular, for the model-based 
controllers, the gains of the current controllers are set so as 
to achieve a first order closed loop response with time 
constant equal to 1.2is msτ = . The same current controllers 
have been used in all the experiments. For the speed 
controller, the plant between the output of the speed 
controller and the measured rotor speed is approximated to 
a  first order system having time constant 

is fw shωτ τ τ τΣ = + + , i.e. it is equal to the sum of all the lags 
found in the speed control loop (current control isτ , speed 
low pass filter fwτ , and delays due to the digital 
implementation of the control scheme shτ ). In this way The 
open loop transfer function reduces to the following: 

 1 1
1

pi
pw c

i

ns
G k K

s s J
ω

ω
ω ω

τ
τ τ Σ

+
=

+ s
 (11)  

where i pw ik kω wτ =  is the time constant of the PI 
controller, J is the inertia of the motor and its load and np 
the number of pole pairs. In order to obtain good 
disturbance rejection, we use the symmetric optimum 
theory [5,6], which leads to the following setting 

 4 ,   
2i pw

p c

Jk
n Kω ω

ω

τ τ
τΣ

Σ

= =  (12)  

The gain of the position controller is selected equal to 1/4 
of the value that gives a marginally stable system so to 
eliminate position oscillations near the steady state. 
Between the position controller and the speed control loop a 
first order smoothing filter is placed to avoid poorly 
damped speed responses. The filter time constant is chosen 
equal to 1.2 4sm ωτ τΣ= ⋅ ⋅ [5]. Then the plant between the 
output of the position controller and the measured rotor 
position can be modelled with a first order system with time 
constant equal to 1.5 4eq smTθ ωτ τ τ Σ= ⋅ + + ⋅ , where Tθ  is the 
sampling period of the position controller. Hereinafter, we 
will refer to the controller designed using the mathematical 
model as “model-based controller” (MBC). The MBC has 
gains , , , 0.067pk ω = 1.46ik ω = 27posk = 0.017smτ =  and 

0.032eqτ = . 
Also for the SPSA method there are several 

configuration parameters that must be selected 
appropriately, which include c and γ, used to define the 
perturbed points for gradient estimation (2-4), and a, A, and 
α used to find the new solutions in (1). For this task, we 

have performed an extensive preliminary configuration 
study using a simulation model of the IM, also considering 
the general suggestions provided by literature [4],[7], [8] to 
properly setup SPSA methods. The main conclusions of this 
study are that, for our specific problem, the SPSA 
algorithms can find a reasonable solution in about 200 
iterations, with A=20 (10% of the expected iterations to 
find optimum), and γ  and α  both equal to 0.3 (i.e., slightly 
different from the values suggested by theory). These 
values make ck and ak reach small and almost constant 
values after about 150 iterations, letting the SPSA spend the 
final 50 iterations in local refinements the of controller (see 
Fig. 3). For the values of a and c, a grid of possible value 
was investigated. In particular, each couple of parameters 
was tested 100 times considering different starting points in 
the search space and calculating the average final loss 
function value and the percentage of satisfactory runs (i.e., 
with the final loss function below a predetermined threshold 
of satisfaction). This study led to the following set: 
Parameters a=0.03 and c=0.1 for bSPSA and equal to 
a=0.0025 and c=0.05 for 1SPSA. The performances of 
both algorithms during simulations were comparable. The 
bSPSA reached an average loss function equal to 1.31 and 
satisfactory performances in the 83% of the runs. The 
bSPSA reached an average loss function equal to 1.20 and 
satisfactory performances in the 86% of the runs. Even if 
the cost function improvement is not much appreciable in 
terms of performances of the IM, the simulation results 
suggest that 1SPSA can be profitably used in our online 
problem. 

Once configured as described, both bSPSA and 1SPSA 
were tested experimentally, obtaining comparable 
performances that substantially confirm the extensive 
simulation investigation. As an example of the behaviour of 
the algorithms, Fig. 4(a) shows the loss function, and the 
estimates of KP and τeq during a typical run. The respective 
average values, measured during 10 experimental run are 
also reported in figure 4(b). 

The best set of parameters for the selected loss function 
is 0.50pk ω = , iω 11.2k = , pos , sm27k = 0.04τ =  and 

eq 0.034τ =  [hereinafter referred to as SPSA controllers 
(SPSACs)]. The position response obtained using this set of 
parameters is reported in Fig. 5 and confirms the 
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remarkable performances of the SPSA approach.  

Figure 6-8 compare the performances obtained by using 
the SPSACs and the MBCs, in terms of position and speed 
errors and current references. The disturbance rejection of 
the model-based control is quite unsatisfactory. Even 
though trial-and error tuning may reduce the apparent 
overshoots, it is difficult to obtain by hand the performance 
achieved automatically and in less than 3 minutes by the 
SPSA approach. The comparison of the speed errors shown 
in Fig.6 evidences that the SPSACs reduce the speed 
oscillations using higher gains in the speed PI controllers 
together with a smoothing filter with a larger time constant. 

In this way also the disturbance rejection of the electric 
drive is improved. It must be underlined that this result is 
not easily obtainable using linear design techniques, even 
with very accurate models. The model-based current is 
clearly smoother, although the oscillations produced by the 
SPSA method remain admissible, and do not cause 
particular stress to the IM.  
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Fig.5 – Position tracking using the best set of controllers selected 
using SPSA method. 

 
V. CONCLUSIONS 

The experimental investigation described in this paper 
confirmed that the SPSA methods offer a striking tradeoff 
between ease of implementation, computational costs, and 
search efficiency, which make it possible to directly 
implement the optimization algorithm on the same 
microcontroller that runs the discrete time control law. Both 
considered SPSA variants permit to obtain a very effective 
closed loop scheme in less than three minutes, in a fairly 
repeatable and noise-tolerant way, and therefore can be 
considered fully compliant with the requirement of most 
embedded control devices. This research has many open 
aspects currently  under investigations, including the 
evaluation of more complex parametrized controller 
schemes (e.g., NNs), and more advanced versions of SPSA 
(e.g., adaptive SPSA [9]). 
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Fig.6. Comparison of position tracking errors under external load torque disturbance, (a) SPSAC, (b) MBC.  
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Fig.7. Comparison of speed errors (a) SPSAC, (b) MBC. 
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