
A comparison of SPSA method and compact genetic algorithm for the 
optimization of induction motor position control 

F. Cupertino, E. Mininno, D. Naso, L. Salvatore 
POLITECNICO DI BARI 
Via Re David 200 - 70125 

Bari, Italy 
Tel.: +39 / 080 – 5963769.  
Fax: +39 / 080 – 5963410. 

E-Mail: {cupertino,naso,mininno,salvatore}@deemail.poliba.it 
URL: http://dee.poliba.it/cemd 

 

Keywords 
Asynchronous motor, Adjustable speed drive, Highly dynamic drive, Variable speed drive, Vector 
control. 

Abstract 
This paper describes the implementation of self-optimizing embedded control schemes for induction 
motor drives. The online design problem is formulated as a search problem and solved with stochastic 
optimization algorithms. The objective function takes into account the tracking error, and is directly 
measured on the hardware bench. In particular, we compare two efficient optimization algorithms, a 
Simultaneous Perturbation Stochastic Approximation method, and a Compact Genetic Algorithm. 
Both search strategies have very small computational requirements, and therefore can be directly 
implemented on the same processor running the control algorithm.  

Introduction 
Embedded control systems are becoming increasingly widespread in industrial automation. In these 
systems, the actuators are equipped with relatively-low-cost microcontrollers that can also perform 
self-tuning and adaptation functions. The authors of this paper are engaged with the development of 
computationally efficient and reliable self-tuning strategies for such embedded controllers. In the case 
of position control of induction motors (IMs), the problem is made particularly challenging by the 
typical cascaded structure of the control loops (see Fig.4), which are often tuned consecutively. 
Clearly, this approach neglects the possible interactions between the cascaded loops, and may lead, in 
principle, to suboptimal solutions. The idea investigated in this paper is to optimize the parameters of 
position and speed controllers of the IM simultaneously and online, using efficient and 
“computationally-light” optimization algorithms. In particular, two classes of effective algorithms are 
considered in order to investigate and compare their performances: the Simultaneous Perturbation 
Stochastic Approximation (SPSA) method and the Compact Genetic Algorithm (CGA). 
 
SPSA is based on a highly efficient approximation of the gradient based on loss function 
measurements. In particular, on each iteration the SPSA only needs two loss measurements to estimate 
the gradient, regardless of the dimensionality of the problem. Moreover, the SPSA is grounded on a 
solid mathematical framework that permits to assess its stochastic properties also for optimization 
problems affected by noise or uncertainties. Due to these striking advantages, SPSA has been recently 
used as optimization engine for many adaptive control problems (see e.g., [1-3], or the extensive 
survey in [4]). 
 
CGAs [5, 6] are evolutionary algorithms that mimic the behavior of conventional Genetic Algorithms 
(GAs) by evolving a probability vector (PV) that describes the hypothetic distribution of a population 
of solutions in the search space. A CGA iteratively processes the PV with updating mechanisms that 



mimic the typical selection and recombination operations performed in a standard GA until a stopping 
criterion is met. [5] showed that the CGA is almost equivalent to a standard GA with binary 
tournament selection and uniform crossover on a number of test problems, and also suggested some 
mechanisms to alter the selection pressure in the CGA. The main strength of the CGA is the 
significant reduction of memory requirements, as it needs to store only the PV instead of an entire 
population of solutions. 
 
With respect to the rich literature about online optimization of control systems, the main contribution 
of our work is the application of particularly “light” and effective algorithms, and their effective 
implementation on the same microcontroller used for the digital feedback control, thus overcoming the 
typical need of an external computer to carry out the controller optimization task. Moreover, since our 
research aims at finding an adequate compromise between noise rejection, speed of convergence and 
quality of the final solution, we evaluate and discuss the relative performance of the two families of 
algorithms on an extensive experimental campaign on a IM bench. 

SPSA Algorithm 
This section provides a short overview of the basic concepts related to SPSA methods. As technical 
details are thoroughly described in related literature [4], here we only overview the essential concepts. 
Consider the problem of finding the minimum of a differentiable loss function  ( ) : p

noL R Rϑ →  (The 
subscript no here is used to indicate that the loss measurements are affected by noise, whose 
distribution must satisfy some important conditions [4]). There is a large variety of stochastic 
algorithms that could be used to find the value of ϑ  (say *ϑ ) that minimizes ( )noL ϑ  [12]. The SPSA 

method computes the estimated value ϑ̂  at the (k+1)th iteration as 
 
  1

ˆ ˆ ˆˆ ( )k k k k ka gϑ ϑ ϑ+ = −  (1) 
 
where ˆ ( )kg i  is the estimated gradient at the kth iteration, and ak is a gain scheduled to decrease over 
iterations with the law ( )ka a k A α= + , where a, A, and α are positive configuration coefficients. SPSA 
estimates ˆ ( )kg i  using the following “simultaneous perturbation” method. Let 

1 2 1[ ... ] p
k k k k RΔ = Δ Δ Δ ∈  be a vector of p mutually independent zero-mean random variables 

(satisfying the conditions described in [4]), and let the sequence of vectors { }kΔ  be a mutually 
independent sequence with kΔ  independent of ˆ ,  0,1,...,j j kϑ = . The basic SPSA method computes two 
new points in the solution space, and evaluates the corresponding loss as follows 
 
 ˆ( )nok k k ky L cϑ+ = + Δ  (2) 
 
 ˆ( )nok k k ky L cϑ− = − Δ  (3) 

where ck is a gain sequence ( 1)kc c k γ= + , and c and γ  are nonnegative configuration coefficients. 
Then, the estimation of the gradient at the kth iteration is computed as 

1 1 1
1 2

ˆˆ ( ) ...
2

Tk k
k k k k kp

k

y yg
c

ϑ
+ −

− − −⎡ ⎤
⎣ ⎦

−
= Δ Δ Δ . It can be noted that all the elements of the vector ϑ̂  are 

perturbed simultaneously, and that only two measures of the loss are needed to estimate the gradient 
independently of the size of ϑ̂ . Moreover, as the sequence { }kΔ  is usually obtained with a Bernoulli 
±1 distribution with equal probability for each value, the perturbations have the same amplitude for all 
the components of ϑ̂ . It has been proven [4] that under certain conditions the bias in ˆ ( )kg i  as an 
estimate of ( )g i tends to zero as k→∞, and k̂ϑ  converges “almost surely” to *ϑ . Literature also 
provides effective and theoretically valid values for most configuration coefficients [4, 7] 



Compact Genetic Algorithm 
This paper focuses on a CGA selected from recent literature that adopts a non-persistent form of 
elitism. In order to introduce the non-persistent elitist version of the CGA, in this section we provide a 
quick overview of three different CGAs, referring interested readers to [8] for further details. The 
pseudocodes of the three CGAs are summarized in Figg. 1-3. The basic CGA (Fig.1) mimics the 
order-one behavior of a standard binary-coded GA using a PV as a statistical descriptor of the 
population. Each element of the PV is a real value between 0 and 1. One gene of the PV represents the 
relative frequency of “1” and “0” in the i-th gene of the hypothetical population. During the 
initialization of the algorithm, each element of the PV is set equal to 0.5, so as to represent a uniform 
randomly distributed population. At each iteration of the algorithm, as shown in Fig.1, two new 
individuals are generated on the basis of the current PV, they compete with each other in a binary 
tournament, and then the PV is updated with a mechanism rewarding the winner of the tournament. 
For example, if i-th gene of the winner is “0” (“1”) and the i-th gene of the loser is “1” (“0”) then the i-
th gene of PV is decreased (increased) of a factor 1/n, where n is the size of the population. The 
termination condition of the algorithm is reached when all the probabilities converge to zero or one, 
and the PV becomes a binary vector describing the final solution. 
 
The two variants proposed in [8] are called “persistent elitist CGA” (peCGA) and “non persistent 
elitist CGA” (neCGA). With respect to the standard CGA described in Fig.1, the main peculiarity of 
the peCGA is that the “winner” of the tournament is always kept in memory, and replaced only if a 
new individual with better fitness is discovered by the CGA. This can be practically obtained 
modifying the CGA as described in the pseudocode of Fig.2. 
 
It is known that strong elitism may lead to premature convergence and to sub-optimal solutions. For 
this reason, the neCGA introduces a control parameter  η  limiting the “persistence” of the elitist 
solution. As in the peCGA, the loser is always replaced by a new individual generated from the PV. 
But, the winner of the competition between the elitist and the newly generated solution is passed to the 
next generation only if the so-called “length of inheritance” θ does not exceed the predefined threshold 
 η . In other words, if a possible solution wins η consecutive competitions, it is replaced by a 
randomly generated one. This behavior can be obtained with the pseudocode in Fig. 3. This strategy 
can be very useful not only to maintain the necessary genetic diversity in the simulated population, but 
also to overcome the effects of the noise on fitness function measurements. 
 
 
Parameters n: population size,  
 
Step 1. Initialize iteration index and probability vector 
 k=1, for j=1 to m  do (1) : 0jx = .5  
Step 2. Generate two chromosomes from the PV 
 a:=generate(x(k));  b:=generate(x(k)); 
Step 3. Competition 
 winner, loser=compete(a,b) 
Step 4. Update (mean and variance of) PV  
 for j=1 to m do  
  if winner[j] ≠loser[j] 
   if winner[j] == 1 xj

(k+1)= xj
(k)+1/n; 

   else xj
(k+1)= xj

(k)-1/n; 
   endif 
  endif 
 
Step 5. Update iteration index and go to step 2 if the stopping criterion is not satisfied. 
Fig. 1. Generic cGA pseudocode 



 
Parameters Echrom: elite chromosome 
 
Step 2*. Generate one chromosome from the PV 
 if the first generation 
  Echrom:=generate(x(1)); 

endif 
 a:=generate(PV(k)); 
 
Step 3. Competition 
 winner, loser=compete(Echrom,a) 
 Echrom:= winner 
  

Fig. 2. persistent elitist CGA (peCGA) 
 
Parameters Echrom: elite chromosome 
θ: the present length of inheritance,  
η: the allowable length of inheritance 
Step 2. Generate one chromosome from the PV 
 if the first generation 
  θ:=0;  Echrom:=generate(x(1)); 

endif 
 a:=generate(PV(k)); 
 
Step 3. Competition 
 winner, loser=compete(Echrom,a) 
 if θ < η 
  Echrom:= winner 
  θ++; 
 else 
  Echrom:=generate(x(k)); 
  θ=0; 

endif 
Fig. 3. non-persistent elitist CGA (neCGA) 

 
 

IM 

+ - 

sa sbi ,i   
 
 
 
 
 

Rotor 
flux 

estimator 

PI isq 
Controller 

PI isd 
Controller 

sdv∗

sqv∗
- 

- 

isq
* PI Speed 

Controller - 

ωr
** 

ωr 

isd
* 

isq 

isd 

d-axis decoupling 
term 

 

dt

d
 

θr 

θλr 

 
sav∗  

 
sbv∗  

 
scv∗  

 
q-axis decoupling 
term 

PI λr 
Controller 

- 

λr* 

λr 

isq isd 

λr 

encoder 

Axis 
 

Transform 

PWM 
& 

INVERTER Position 
Controller 

- θr 

θr
* Trajectory 

Calculator 

ωr
max,ar

max,
 θr

final 
fi l

θr 

Smooting 
Filter 

ωr
*, ar

* 

ωr
*+ar

*τeq 

Feedforward 
Compensation 

 
Fig.4.  Induction motor drive block diagram 
 



0 0.5 1 1.5 2 2.5
-50

0

50

ac
c.

, r
ad

/s2

0 0.5 1 1.5 2 2.5
-20

0

20

sp
ee

d,
 ra

d/
s

0 0.5 1 1.5 2 2.5
-2

0

2

po
sit

io
n,

 ra
d

0 0.5 1 1.5 2 2.5
-2

0

2

lo
ad

 to
rq

ue
, N

m

time, [s]  
Fig.5. Desired trajectories and load torque applied during the test (two consecutive cost function 
evaluations are shown). 

The loss function  
 
The design of the experiment for loss measurement plays a fundamental role in the success of the 
online design. In this paper, the position reference signal corresponds to the minimum time trajectory 
for a rotation of π radians (see Fig.5). After 0.7 s from every change of the reference signal, a step 
change of load torque (from 0 to 70% of motor rated torque) is applied, in order to evaluate also the 
overall disturbance rejection. At the end of the loss evaluation experiment (after 1.125 s) the load 
torque is suddenly removed (see Fig.5). 
 
The profiles of motor position, speed, and control action of the PI speed controller (the current ( )*

sqi t ) 
are acquired during the experiment, and used to compute the loss, which essentially takes into account 
three criteria, i.e. the tracking performance, the disturbance rejection, and the smoothness of the 
control action. Namely, we define the following loss function (to be minimized): 
 
 ( ) ( )( ) ( )( )( )*

1 1 1 2 1 3( )
EXP

sq
T

L f f t f i t dtϑ α θ α ω α= + +∫   (4) 

 
where TEXP is the duration of the loss evaluation experiment, αj represent positive weights, and fj are 
three performance indices defined as follows:  
 

 
( )*

max

*

1
0.99( ( ))

0

sqi t

isq
if

f t
otherwise

θ θ
θ

⎧ − <⎪= ⎨
⎪⎩

 (5)  

 

 
( )*

max

*

2
0.99( ( ))

0

sqi t

isq
if

f t
otherwise

ω ω
ω

⎧
⎪
⎨
⎪⎩

− <=  (6)  

 

 
( )*

max

* *
*

3
( ) ( )    0.99( ( ))

0   

sqi tF
sq sq isqsq

i t i t iff i t
otherwise

⎧
⎪
⎨
⎪⎩

− <=  (7)  

The first two functions f1 and f2 take into account the tracking performance and disturbance rejection. 



More specifically, the position θ and speed ω tracking errors are considered only in the time intervals 
in which the current feed * ( )sqi t  is lower than a predefined threshold isqmax (the tracking error due to 
controller saturation cannot be further reduced). The third function f3 compares the control action 

* ( )F
sqi t  filtered by a first-order linear filter with time constant τ=0.02 s, with the unfiltered actual action 

( )*
sqi t  itself. As smoother control actions give lower values of the integral of f3, this index is intended 

to penalize controllers with an excessively oscillatory control action, which may cause stresses for the 
IM producing vibrations, acoustic noise, and extra losses. The hardware scheme computes each index 
contributing to the total loss online, i.e. updating its value at each time sample of the experiment. The 
online value of each loss term is constantly monitored, and whenever it exceeds a predefined threshold 
the current experiment is immediately stopped. This allows the system to detect unstable (or highly 
unsatisfactory) solutions well before the involved signals reach potentially dangerous values. If a 
monitored index exceeds the prescribed threshold, the value of the loss is multiplied by a penalty 
factor and assigned to the individual, and the algorithm proceeds with another experiment. In this way, 
the stochastic search is never interrupted until the terminating condition occurs. On average, less than 
1% of the experiments are prematurely interrupted due to bad performance, while the remaining 
iterations always generate stable solutions.  
 
The weights αj used in loss aggregation permit to emphasize or reduce the contribution of each single 
performance index in the final value of the loss. In this paper, the αj are set heuristically, i.e. 
performing preliminary experiments with changed weights until the desired trade-off between indices 
is achieved. 
 
Finally, the vector of parameters optimized by SPSA is defined as: 
 T

pw iw pos sm eqk k kϑ τ τ⎡ ⎤= ⎣ ⎦   (8)  

in which kpw and kiw  are the proportional and integral gain of the anti-windup discrete-time PI speed 
controller (see Fig.1), kpos is the gain of the proportional position controller, smτ  is the time constant of 
the first order smoothing filter and eqτ  is the equivalent time constant of the position control loop 
(generally estimated offline with system identification procedures [9-11]). The stopping criterion is the 
maximum number of loss function calls chosen equal to 200 (i.e. the whole experiment lasts 225 
seconds, although the entire algorithm converges in about one third of this interval). 

The main advantage of the proposed embedded optimization scheme is the reliability of final results. 
While all the model-based techniques expressly rely on the accuracy of the model (generally used in 
simulations), in the online tuning case the effects of the actual and unknown high-order phenomena 
and nonlinearities are fully accounted in the loss measurement, and the final controller (the one 
generating the smallest loss) is ready-for-use with known performance. This permits to obtain 
automatic design tools that do not require skilled expertise for system modelling, or trial-and-error 
controller optimization.  

Summary of experimental results  
The overall scheme of the control system is illustrated in Fig.4. The whole control scheme is 
implemented in discrete-time on the dSPACE 1104 real-time control board, equipped with a 250 MHz 
Motorola PPC working as microcontroller. The microcontroller runs the control scheme and a stability 
supervision algorithm that interrupts the experimentation of badly performing solutions. The various 
modules have different sampling times. In particular, controller and stability supervisor run with a 200 
μs sampling time, while the optimization algorithms have a 1.125 s sampling time.  
 
The IM nameplate parameters are as follows: voltage 220 V, current 3.1 A, power 750 W, speed 2860 
rpm. The IM is loaded using a torque controlled brushless generator, mounted on the same shaft (see 
Fig.6).  
 



The execution time of a complete iteration of the control scheme is about 100 μs, while one iteration 
of the SPSA requires about 180 μs, and one iteration of the neCGA requires about 600 μs in the 
considered case of five parameters to be optimized each represented with 16 bits. Although SPSA is 
less demanding, both algorithms could be implemented with any microcontroller capable to implement 
vector control. For both SPSA and neCGA, one cycle of the optimization algorithm is executed once 
every 5625 iterations of controller difference equation, and the increase of computer cost due to the 
introduction of the optimization algorithms is negligible, as it amounts to 
( ) ( )100 180 100 5625 0.032%× × =  of the cycle time for the SPSA and 0.11% for the neCGA (see 
fig. 7).  
 
For the SPSA method there are several configuration parameters that must be selected appropriately, 
which include c and γ, used to define the perturbed points for gradient estimation (2-4), and a, A, and 
α used to find the new solutions in (1). For this task, we have performed an extensive preliminary 
configuration study using a simulation model of the IM, also basing the investigation on the general 
suggestions provided by literature [2, 4, 7]. For our specific problem, the SPSA algorithms can find a 
reasonable solution in about 200 iterations, with A=20 (10% of the expected iterations to find 
optimum), and γ and α  both equal to 0.3. These values make ck and ak reach small and almost constant 
values after about 150 iterations, letting the SPSA spend the final 50 iterations in local refinements the 
of controller. For the values of a and c, a grid of possible value was investigated, and they were set as 
follows a=0.0183 and c=0.03. 
 
For the neCGA only two parameters have to be chosen: the population size n and the allowable length 
of inheritance η, under the condition η <n [6, 8]. The reduced number of parameters greatly simplifies 
the initial commissioning of the neCGA. After a preliminary configuration study we chose n=25 and η 
=12. In the tests we performed, the choice 2nη ≅  always gave satisfactory results. After proper 
tuning, the performances of both algorithms were comparable. They permit to obtain a very effective 
closed loop scheme in less than three minutes, in a fairly repeatable and noise-tolerant way, and 
therefore can be considered fully compliant with the requirement of most embedded control devices 
(see fig.8). In order to investigate how much a proper tuning affects the performances of both 
algorithms, several test have been repeated using different configuration parameters and the average 
results reported in tables I-III. In the case of SPSA for the values of a and c, and in the case of neCGA 
for the value of n, a grid of possible values was investigated around the best known configuration 
parameters. In particular, each configuration was tested 100 times (considering different starting points 
in the search space in the case of SPSA) and calculating the average final loss function value (table I)  
and the percentage of satisfactory runs (i.e., with the final loss function below a predetermined 
threshold of satisfaction – see table II).   
 
The performances of both algorithms during these tests were comparable. The neCGA reached an 
average loss function lower than SPSA and its performances were less influenced by configuration 
parameters (see table II). Even if the cost function improvement is not much appreciable in terms of 
performances of the IM, the results suggest that neCGA can be profitably used in our online problem. 
On average, the neCGA resulted a little faster than SPSA, as demonstrated by the average number of 
iterations needed to reach a satisfactory loss function value reported in table III. Fig. 9 shows the loss 
function and one of the five optimized parameters during typical runs of both algorithms. The outputs 
of SPSA method exhibits a “path-following” behaviour typical of gradient based algorithms while 
neCGA is more exploratory (it emulates a population-based search) and its outputs have less regular 
changes.  
 
 



 
Fig. 6 – Equipment used during the experiments. 

 
TABLE I – average final loss function value 

SPSA 
 c=0.03/5 c=0.03 c=0.03*5

a=0.0183/5 0.91 0.99 0.99 
a=0.0183 0.83 0.81 0.88 

a=0.0183*5 0.97 0.84 0.83 
neCGA 

 n=25/5 n=25 n=25*5 
η=n/2 0.85 0.70 0.72 

 
Table II: percentage of satisfactory runs 

SPSA 
 c=0.03/5 c=0.03 c=0.03*5

a=0.0183/5 92 % 64 % 54 % 
a=0.0183 86 % 90 % 84 % 

a=0.0183*5 44 % 90 % 78 % 
neCGA 

 n=25/5 n=25 n=25*5 
η=n/2 90 % 92 % 85 % 

 
 

TABLE III – average iterations needed to 
reach a satisfactory loss function level 

SPSA 
 c=0.03/5 c=0.03 c=0.03*5

a=0.0183/5 92 82 93 
a=0.0183 46 47 64 

a=0.0183*5 46 23 25 
neCGA 

 n=25/5 n=25 n=25*5 
η=n/2 36 25 28 

 
 
 

 

time 

Calculations of the motor control algorithm (~100μs)

200μs 200μs 200μs 

 
200μs 

 

time 

1.125 s 

Interrupt signals for the optimization algorithm

Calculations of the optimization algorithm 
SPSA needs ~180μs and neCGA ~600μs for a 5 variables problem

1.125 s

Interrupt signals for the motor control algorithm Tc=200μs 

Time available for 
communication, signal 

processing for diagnostic 
procedures time

200μs 

100μs 

SPSA 
0.03 μs 
neCGA  
0.11 μs 

Motor control algorithm 

(a) 

(b) 

(c) 

 
Fig. 7 – Distribution over time of the microcontroller calculations to perform (a) vector control and (b) optimization of the cascaded 
controllers. Figure (c) shows the average increase of computer cost due to the introduction of the optimization algorithms. For ease of 
representation the three figures do not use the same time scale. 



0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

time, [s]

ro
to

r p
os

iti
on

 e
rro

r, 
ra

d

0 0.5 1 1.5 2

-20

-10

0

10

20

time, [s]

ro
to

r s
pe

ed
 e

rro
r, 

ra
d/

s

0 0.5 1 1.5 2
-4

-3

-2

-1

0

1

2

3

4

time, [s]

q-
ax

is 
cu

rre
nt

 re
fe

re
nc

e,
 A

 
 (a) (b) (c) 

Fig.8. Position tracking error (a), speed error (b), and current reference (c) under external load torque 
disturbance (the shown figures are obtained with SPSA algorithm, those obtained with neCGA are similar and 
omitted for brevity) 

0 20 40 60 80 100 120 140 160 180
0.5

1

1.5

2

2.5

3

3.5

4

time, [s]

lo
ss

 fu
nc

tio
n

0 20 40 60 80 100 120 140 160 180
0.5

1

1.5

2

2.5

3

3.5

4

time, [s]

lo
ss

 fu
nc

tio
n

 
 (a) (b) 

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time, [s]

sp
ee

d 
co

nt
ro

lle
r p

ro
po

rti
on

al
 g

ai
n

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time, [s]

sp
ee

d 
co

nt
ro

lle
r p

ro
po

rti
on

al
 g

ai
n

 
 (c) (d) 
Fig. 9 –Loss function (a) and (b) and speed controller: proportional gain (c) and (d) during a typical run of 
neCGA (a) and (c) and SPSA algorithm (b) and (d) (the other optimized parameters are similar and omitted for 
brevity). 
 

Conclusion 
This paper described the implementation of self-optimizing embedded control schemes for position 
controlled induction motor drives. In particular, we have extensively compared two efficient 
optimization algorithms, a SPSA method, and an elitist CGA. Both search strategies have very small 
computational requirements and can be directly implemented on the same processor running the 
control algorithm. Both considered algorithms permit to obtain a very effective closed loop scheme in 
less than three minutes, in a fairly repeatable and noise-tolerant way, and therefore can be considered 
fully compliant with the requirement of most embedded control devices. The experiments 
demonstrated that the SPSA is about three times less demanding in the considered optimization 



problem (five parameters to be optimized, each represented with 16 bits). On average the neCGA 
permitted to reach better solutions to the search problem using a reduced number of iterations and its 
performances resulted less sensitive to the configuration parameters. Concluding the comparison, it 
could be stated that the SPSA may be preferable for the reduced stress caused to the hardware during 
the search process. On the other hand, it is also necessary to remark that SPSA is sensitive to the 
choice of the initial individual. To obtain the same repeatability of the neCGA, it is necessary to retune 
the SPSA setting to make the SPSA more exploratory. In such a case, the behaviors of the two 
algorithms become almost indistinguishable. This research has many open aspects currently under 
investigations, including the evaluation of more complex parameterized controller schemes (e.g., 
NNs). 
 

References 
[1]  Alessandri A., Parisini T.: Nonlinear Modeling of Complex Large-Scale Plants Using Neural Networks and 

Stochastic Approximation, IEEE Transactions on Systems, Man and Cybernetics, vol.27, pp.750-757, 1997. 
[2]  Ji X.D., Familoni B.O.: A Diagonal Recurrent Neural Network-Based Hybrid Direct Adaptive SPSA 

Control System, IEEE Transactions on Automatic Control, vol.44, pp.1469-1473, 1999. 
[3]  J.C. Spall, J.A.Cristion: A Neural Network Controller for Systems with Unmodeled Dynamics with 

Applications to Wastewater Treatment, IEEE Transactions on Systems, Man. And Cybernetics- Part B: 
Cybernetics 27 no.3, pp. 369-375, 1997. 

[4]  J. C. Spall, Introduction to stochastic search and optimization: estimation, simulation, and control, John 
Wiley and Sons, Hoboken, NJ, 2003. 

[5]  G. Harik, F.G. Lobo, and D. E. Goldberg, The compact genetic algorithm, Trans. Evolutionary 
Computation, vol.3,pp. 287-297, Nov. 1999. 

[6]  F. Cupertino, E. Mininno, D. Naso: Real-valued compact genetic algorithms for embedded microcontroller 
optimization, accepted for publication on IEEE Trans. on Evolutionary Computation. 

[7]  F. Cupertino, E. Mininno, D. Naso, A comparative analysis of SPSA algorithms for induction motor 
adaptive control, Proc of IEMDC 07, IEEE International Electrical Machines and Drives Conference, 
Antalya, Turkey, 3-5 May 2007. 

[8] C. W. Ahn and R. S. Ramakrishna, Elitism based Compact Genetic Algorithms, IEEE Trans. Evolutionary 
Computation, vol.7, No.4, August 2003. 

[9]  F. Cupertino, E. Mininno, D. Naso, B. Turchiano, L. Salvatore, On-line genetic design of anti-windup 
unstructured controllers for electric drives with variable load, IEEE Transactions on Evolutionary 
Computation, Vol.8,. n.4, pp. 347-364, 2004. 

[10] H. Grob, J. Hamann, G. Wiegartner, Electrical feed drives in automation, Siemens, 2001. 
[11] R. Krishnan, Electric Motor Drives, Modeling, Analysis and Control, Prentice Hall, 2001. 
[12] K. Passino, “Biomimicry for Optimization, Control, and Automation”, Springer, US, 2005. 
 


