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Abstract. Extracting a multivariate nonlinear physical model from a set
of satellite images is considered as a multivariate nonlinear regression
problem. Muitiple local solutions often prevent gradient type algorithms
from obtaining global optimal solutions. A method of solving this problem
is presented based on the simultaneous perturbation stochastic approxi-
mation (SPSA) algorithm. The method is applied to a problem of estimat-
ing the distribution of energetic ion populations in the magnetosphere
from global images of the magnetosphere. The approach uses multiple
objective functions: single image errors and the summation of square
image errors. The algorithm is demonstrated on simulated energetic-
neutral atom (ENA) images. Within a reasonable number of function
evaluations, the process converges and reconstructs the images with a
mean square error less than or equal to 0.1% of the original image. Also,
the SPSA method is compared with results obtained from simulated an-
nealing (SAN) in a single objective function setting. In the comparison
study, SPSA has a 3:1 advantage over SAN in both accuracy and effi-
ciency measures. © 1999 Society of Photo-Optical Instrumentation Engineers.
[S0091-3286(99)00304-9]
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1 Introduction

This paper presents an image-processing algorithm for ex-
tracting a physical model from a system that either has
multiple local solutions or whose structure is complicated,
such as when using the global magnetospheric images
formed by energetic-neutral atoms (ENA) to estimate mag-
netospheric energetic ion distributions. Roelof’ was the first
to demonstrate the ENA imaging technique. Chase and
Roelof? discussed the extraction of the hypothesized ion-
intensity model from the ENA sensor onboard a satellite.
The problems in using the ENA emission images are the
Poisson counting fluctuations in the image taking, the ex-
pensive time-consuming line-of-sight integration in the
measurement evaluations, and the variability of ion distri-
butions. This paper presents a modified simultaneous per-
turbation stochastic approximation (SPSA) algorithm for
the inversion process of the satellite data in a single global
image.

The inversion process using a finite amount of data in a
complicated system often runs into multiple solution prob-
lems. There are many optimization techniques available for
estimating the hypothesized model, such as Bayesian
estimation,3’4 maximum likelihood estimation,” and steep-
est descent and Newton-Raphson.® They all require detailed
information of the system, either for computing gradients
or for forming statistical distributions. These algorithms are
hard to use when their objective functions have multiple
local solutions. Other estimation techniques rely only on
observations, such as Kiefer/Wolfowitz stochastic
approximation’ (KWSA), simulated annealing®® (SAN),
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and other linear search type algorithins, as in Ref. 2. Only
KWSA and SAN have been proven to demonstrate conver-
gence using noisy measurements. Both KWSA and SAN
have been shown in general forms to work in finding the
global optimal solution.

The SPSA algorithmm is one of the KWSA types of
algorithms that has been shown to require less data to con-
verge than the other currently available KWSA
algorithms.!! Chin!? (and Styblinski and Tang'?) concluded
that SPSA requires fewer function evaluations than SAN.
This paper also compares SPSA with SAN directly. The
comparison study shows SPSA is about three times more
efficient than SAN; in an average of 10 runs, the level of
accuracy at 300 function evaluations for SAN is about the
level of accuracy at 100 function evaluations for SPSA.
Some other successful examples of SPSA applications are
in detecting faults in a power plant,'* learning rules for a
neurocontroller,15 and estimating an electric current con-
ductivity map to discriminate buried objects.'®

When applying SPSA to the inversion process in the
global magnetospheric image setting, the original algorithm
must be modified. The original algorithm was designed for
asymptotic convergence and required an open-ended se-
quential data set. Because of the time-varying ion intensity
in the magnetosphere, the field changes over time, so the
inversion process is forced to use a single global image.-
Some of the nice convergence properties are lost, such as
the strong convergence in the original theory, where the
SPSA iteration converges to the truth asymptotically; but in
the magnetospheric global image setting, the SPSA itera-

© 1999 Society of Photo-Optical Instrumentation Engineers



Chin: Simultaneous perturbation method . . .

tion will converge to a solution that is represented by the
single global image. The process used here estimates a
model of the system by matching a finite quantity of sensor
data with the values computed from an estimated model;
the process then iteratively modifies the model values in an
attempt to obtain a better fit. The data noise (including
sensor background noise and random fluctuations) tends to
average out for the original SPSA algorithm, but that is not
the case for the finite data stream of a single global image.

In dealing with the multiple-root problem, Chin'? shows
that SPSA with a certain stepped gain sequence (function
dependent) can be used to find a global solution. (There
may be more than one representation for a single global
image.) The simulation studies presented in this paper show
that the SPSA iteration converges to the solution within a
reasonable number of iterations; there are many local solu-
tions in the system (the final estimates are trapped in dif-
ferent solutions for other estimation methods).

This paper also discusses a new approach for SPSA that
uses multiple objective functions to find the common opti-
mal solution for all functions. The purpose here is to fuse
the magnetospheric image pixels (counts for each line of
sight direction) for a global fit and still to match each indi-
vidual count (pixel) locally. A single objective function
lumps all the components together in a single mathematical
formula that fits the counts (pixels) globally. In the single
objective function approach, the parameters to which the
objective function is most sensitive tend to dominate the
estimation process. A separation of the single objective
function into multiple functions or an addition type func-
tion may desensitize the domination and get a better overall
fit. The example given here shows that the multiple-
objective function algorithm achieves the lowest level of
the total of measurement residual errors.

2 The Global Magnetospheric Image Problem

The magnetosphere exists in a region of space that sur-
rounds the earth out to 100,000 km above the earth’s sur-
face. Its field lines, which pass through the earth’s surface,
fill the space. The global magnetospheric image process is
used to estimate the energetic ion-populations trapped
within the field. A global magnetospheric image is repre-
sented in pixel units, each of which is an accumulation of
ENA (weighted by the exoatmospheric hydrogen density)
along the line of sight extended from the ENA camera (ac-
tually a particle counter). The number of pixels needed to
represent a global image depends on the resolution of the
sensors; for a sensor equipped with a 4X4 deg pixel reso-
lution, it takes 4050 pixels over 47 sr (180 deg in latitude
and 360 deg in longitude) to represent a global image. The
actual numbers are slightly less because the top and bottom
latitude regions have smaller surface area and use fewer
pixels. If an ion-intensity model is known, the image value
can be obtained by integrating along the line of sight the
ion intensity times the product of the hydrogen atom inten-
sity and the cross section of the exchange process by which
an ion strips an electron from a hydrogen atom to become a
fast neutral atom detected at the ENA camera. Some highly
complex nonparametric simulations are available for the
global magnetospheric ion intensities (e.g., the Rice con-
vection model and the magnetosphere specification model'’
(MSM) and the 3-D ring current decay model'®). The ob-

Ject of this paper is to provide an estimation technique that
attempts to invert this process. That is, given the hydrogen
density and cross section and ENA counts over each 4X4
deg angular sector (or whatever the instrument’s resolution)
over a full 47 sr, one would like to estimate the ion density
of the magnetosphere.

2.1 Chase and Roelof Model

The field lines of the magnetosphere leave and enter the
earth at the magnetic north and south poles (offset by about
12 deg from the geodetic poles) and approximate a dipole
field. Due to dominance of the magnetic field over near
earth plasma, a simplified distribution of ring current ions
as a function of only two variables can be used. Quoting
from Chase and Roelof,? ‘‘the two variables are L (constant
along a dipole field line defined in spherical coordinates by
r=al cos’ A, where a=1R g and A is the geomagnetic
latitude) and the azimuthal angle ¢ measured anticlockwise
from the sunward direction.”” Here R is one earth radius.
To modulate the ion intensity as a function of ¢, a second-
order harmonic expansion is used: F s=ki[1—cos (¢
—¢D]+k[1—cos 2(¢p— ¢,)]. To modulate the intensity as
a function of L, Chase and Roelof define a piecewise func-
tion F,, which is parameterized on the five parameters
(LO ’Ll ,L2 s 5L1 R 5L2):

(L—Ly)*R26L%

(L—Ly)/Lo+ (172)( 8L, /Lg)?
(L=Ly)228L3+(L,—Ly)/L,
+(112)(8Ly /Lg)*~ (1/2)(S8L, /Lg)* L>Lo,,

LysL=L,
FL=

where L;=L;+6L}/Ly and Ly=L,+6L3/L;, and
(Lo,Ly,L;,8L,,8L5) are also functions of ¢ that are rep-
resented by five different harmonic expansions. Then, the
ion density jo,(¢,L) in the magnetosphere can be written
as

Jion=Jo €xp (—F4—F}),

where jg is a constant. An ENA image is an image each of
whose pixels represents the number of fast neutral atoms
detected over each angular sector defined by the resolution
of the ENA camera. The expected intensity of these counts
is a function of the ion intensity along the line of sight, but
the actual realized count in each angular sector (represented
by a single pixel) is a random sample from a Poisson dis-
tribution with intensity parameter given as a function of the
ion intensity. If N(j;o,) is the ENA intensity of the Poisson
distribution IT along a particular line of sight, then an ENA
image pixel represents ZIT[A(j;,,)] over all lines of sight
in the cone subtended at the camera by the spherical angle
determined by the resolution of the camera. But mathemati-
cally SI[AGion) I=II[EN(fion)], so that one can first
compute the expected intensity of counts for each particular
angular sector subtended by the camera with its resolution,
and then sample only once per angular sector from the
Poisson distribution. This is what is done in the simulations
of this paper. The simulations are inherently random in that
even with the same ion-intensity model, two simulations of
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an ENA image will differ due to the randomness of the
Poisson distribution that characterizes the ENA counts
along a given line of sight. For the purposes of the estima-
tion of the ion intensity from an ENA image, the random-
ness of the counts acts as a kind of measurement noise.
Figure 1 of Ref. 2 shows the degrading effect of Poisson
counting statistics on the ENA images. Chase and Roelof?
also show that the images from their ion-intensity model
match with the simulated images from the Rice model
within a very small variation when the Poisson counting
statistics are ignored.

3 Multiple-Objective Function SPSA

Let 4 represent the ion-intensity model parameters. For the
i’th pixel (i=1,...,n), let jgna,; be the magnetospheric
image sensor measurement for pixel i and let F;(6) be the
associated line-of-sight integration value predicted by the
ion-intensity model. If the background noise level of the
sensor is represented as ¢, the usnal SPSA algorithm opti-
mizes a single loss (objective) function P defined as:

£
P<o)=i=§31 [Fi(8)jenail?

where / is the total number of pixels in the global image
whose values are greater than the background noise level
o.

In contrast, the multiple-objective function SPSA algo-
rithm seeks to optimize each of the normalized functions

P(0)=k[F{(6) _jENA,i]Z,

where k;=1/jgna. i»jEna.i>> O, for each pixel i=1,...,/
whose measurement count is greater than ¢. For each itera-
tion of the usual SPSA algorithm, it substitutes a sequence
of / SPSA estimates, updating 6 based on the gradient
information of each function P;(6) in turn. The normaliz-
ing factor k;= 1/jgna;i »JENA,i=> O, is meant to keep the in-
formation from those pixels with the largest measurements
from dominating the updates, i.e., it is meant to enable the
algorithm to do its best to fit all the observations, not just
the large ones.

To simplify the discussion, the original SPSA algorithm
is discussed first, then the multiple-objective function
SPSA is explained from the original algorithm. Letting

g(*) denote the gradient of P(§) with respect to 6, b,
denote the estimate for @ at the k’th iteration, and g (&)

denote the SPSA approximated gradient at 6, , the SPSA
algorithm has the form

9k+1= 9k_akg'k( 91(),

where the gain sequence {a,} satisfies certain well-known
stochastic approximation conditions.!! Let A € R? be a vec-
tor of p mutually independent mean-zero random variables
{A},A, ... ,A,} satisfying conditions given in Section III
of Spall,'" where p is the number of estimated parameters.
Subject to the important conditions in Ref. 11, the user has
full control over A. The recommended choice for the dis-
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tribution of A; is Bernoulli (*1). (Gaussian and uniform
are not allowed.) Each iteration, SPSA uses two function

evaluations to approximate the gradient, 2:(*). In particu-
lar, at design levels 8, % c,A,, with ¢ a positive scalar, let

Y I=P(B+ i),
¥ = P(B—cil).
Then the SPSA estimate of g(*) at the k’th iteration is

[y =y,
2¢,A

g8 = ¢

The sequence {c}, for k=1,2, ..., should satisfy the con-
vergence conditions as they are stated in Ref. 11.

For the multiple-objective function SPSA algorithm,
A, ,c,.a; are selected for each &, as earlier, and an approxi-

mate gradient g x,i of each function P; is formed just as for
P in the preceding, using the same A,,c, for each P;.
Then, holding A;,cy,a; constant, one updates § sequen-
tially fori=1, ...,/ to yield at the k’th major iteration and
i’th minor iteration (for function P;)

Oks 1= ke 1,i-1~ Ak8k,i( Ok.)»

fori=1,... ,/ and 9k+1,0= ak'/.

4 Accelerated Procedure

This paper uses the SPSA iterative procedure in stages.
Each stage consists of a set of runs with identical condi-
tions except for the seed for the random number generator.
In the stochastic approximation algorithm, the final esti-
mates of a run are different from the other final estimates
according to the initial selection of the seed of the random
number generator. It is very difficult to determine whether
the iterative process approaches a global solution or a local
solution, especially if the initial values of model parameters
are very different from the solution. Also, it is a waste to let
a run proceed when the iteration has taken some wrong
turns, which is normal in optimization iterations. Therefore,
it is a good idea to restart a new stage with an averaged
estimate from the last estimates in the previous stage. Fur-
thermore, a selective average can be done between stages.
In the simulation study, the initial values for the model
parameters in the second stage are the average of four runs
from the first stage for which the errors of the measurement
residuals in the last iterations are less than 0.3 in value. (It
is just a natural separation among the runs, no particular
meaning.)

To avoid ambiguities, constraints have been put on the
scale and trigonometric parameters of the harmonic expres-
sion determining the functions F 4 and F,. The scale pa-




Chin: Simultaneous perturbation method . . .

Table 1 SPSA results.

Elements of
Objective Function

SPSA Initial
Values

Simulation
Values

Second Stage
Estimates

Final
Estimates

F, (2.30, 0.1, 43 deg)
Lo (0.20, 0.1, 43 deg)
L, (2.00, 0.1, 43 deg)
L, (4.50, 0.1, 43 deg)
8L, (0.20, 0.1, 43 deg)
5L, (0.10, 0.1, 43 deg)

(2.50, 0.5, 29 deg)
(0.22, 0.5, 19 deg)
(2.50, 0.4, 66 deg)
(5.00, 0.8, 29 deg)
(0.14, 0.2, 27 deg)
(0.11, 0.8, 46 deq)

(2.46, 0.5, 42 deg)
(0.21, 0.3, 44 deg)
(2.52, 0.3, 53 deg)
(5.07, 0.4, 41 deg)
(0.13, 0.3, 32 deg)
(0.12, 0.5, 40 deg)

(2.45, 0.5, 41 deg)
(0.21, 0.4, 43 deg)
(2.51, 0.3, 56 deg)
(5.05, 0.4, 41 deg)
(0.14, 0.3, 33 deg)
(0.11, 0.5, 41 deg)

rameters are limited to positive values; and the trigonomet-
ric parameters are restricted to the interval [ —ar,7]. If an
estimate for these constrained parameters exceeds its range,
the value of the estimate is reset to the initial value of that
stage. There are other choices for determining the reset
values depending on the purpose to which the procedure is
applied.

Because the Chase and Roelof model used for the simu-
lation has only piecewise continuous gradients, the per-

turbed values §,*c,A, used to compute the SPSA ap-

proximate gradient g,(8,) may lie on either side of a
gradient discontinuity. In this situation, the approximated
gradients are not representative of either piece and cause
the measurement residual error to jump. If the jump makes
the measurement residual error small, it is beneficial. If the
jump goes the other direction, it is not beneficial. The simu-
lation study here ignores such updates if the updated mea-
surement residual error is greater than 110% of the previ-
ous value.

5 Simulation Study

This study is performed using measurements simulated
from a simple Chase and Roelof model; first-order har-
monic expansions in ¢ being used for all elements
(Fg, Lo, Ly, Ly, 6L,, SL,). The first-order expan-
sions consist of three parameters, constants, scalers, and
phase angles. Let &, s, and ¢ represent these three param-
eters, respectively, and let E be an arbitrary element from
the six just listed. Then the harmonic expansion is E=k
—s cos (¢—¢). The entries in Table 1 show the three pa-
rameters for each of Fy, Ly, Ly, Ly, 8Ly, 6L, inside
parentheses separated with commas.

The values used to generate the images are listed in the
“‘simulation values’’ column in Table 1. The setting of the
study is based on an earlier mission with a 4X12 deg pixel
image and a maximum of 1000 counts per pixel. These
values were used to define the response function of the
ENA camera used in this study. The SPSA algorithm was
then applied to estimate the model parameters using a set of
initial values, as shown in the entries of Table 1 in the
SPSA initial values column, to start the multiple-objective
SPSA iterations. The initial values are inside the physically
expected ranges. For example, the constant part of L, is
expected to be between 4.00 and 6.00; thus, a value of 4.50
was given. The studies show the convergence of the esti-
mation is independent of initial values. Many local solu-
tions exist between the initial values and the final estimates.

There are three stages in the simulation study. The av-
erages of the final estimates of the runs from the second
and third stages are listed in the second stage estimates and
final estimates columns of Table 1. Each stage consists of a
total of 10 runs; each run is an SPSA process with identical
setting, except the seeds used for the pseudorandom num-
ber generator are different. Each run consists of 150 itera-
tions; each iteration uses four function evaluations (a total
of 600 function evaluations); a function evaluation is de-
fined by one round of computations of all pixels in the
image of the magnetosphere field. As mentioned, the initial
values of the SPSA runs in stage 1 are the values shown in
Table 1; the initial values for the runs in the subsequent
stages are the average of the final estimnates of the runs in
the previous stages.

The initial gain constants a and ¢ used in SPSA were set
to 0.005 and 0.001 at stage 1 for each run. Following the
practical guidelines from Spall,'? the reduction rate « for a
is 0.602 and vy for ¢ is 0.101. The reduction for a is applied
continuously as regular SPSA, but the reduction for ¢ is
applied once every 30 iterations. The gain constants for the
following runs in stages 2 and 3 are a continuation of stage
1 runs.

An obvious question is how well the multiple-objective
SPSA inversion process estimates its parameters. Table 1
shows differences in parameters between the simulation
values column and the estimates. These differences are sus-
pected to come primarily from the random fluctuations in
the image pixels, which act as a kind of measurement
noise; the multiple-objective SPSA iterations converge to a
solution that represents a model for the ion intensity that
would mimic the single global image without any addition
of random Poisson fluctuations. To verify this, another
simulated global image was generated under the same set-
ting without the Poisson statistics in the counts and a num-
ber of estimation runs were made using this data. The total
estimated parameter errors based on simulation values as
truth converged below the 10~ error level for all the runs.
The total estimated parameter error is the summation over
the 18 parameters of Table 1 of the difference squares be-
tween each individual estimate and its target value.

Theoretically the SPSA iterations asymptotically con-
verge under some conditions stated in Ref. 11 and the dif-
ferences between estimates of the SPSA algorithm and the
true values are asymptotically normal at each iteration.!! If
the conditions of the multiple-objective SPSA runs satisfy
the same convergence conditions of the SPSA algorithm,
the multiple-objective SPSA iterations here will asymptoti-
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cally converge, and the errors of the estimates will also be
asymptotically normal. There are variations among the es-
timates of the multiple-objective SPSA runs at each itera-
tion, the standard deviation of the variations is larger at the
beginning iterations; the standard deviation becomes
smaller when there are more iterations. Among three stages
of multiple-objective SPSA runs, stage 1 reduces the esti-
mated parameter error quickly, stage 2 finalizes the esti-
mates, and stage 3 is just for confirmation. In fact, the
values of the estimated model change very slightly between
stages 2 and 3. The deviations of the final estimates be-
tween runs within the stage have narrowed for stage 3 in
comparison with the deviation for stage 2. The maximum
deviation in stage 3 for a single parameter is less than 0.3%
of parameter value (0.003 in parameter units), which is
negligible in most applications of the model. In practical
applications, a single run can be used for stages 2 and 3.

The success in extracting the distribution from the ENA
images can be judged by deviations of the estimated param-
eters from the simulated parameters for the ion-intensity
model (the final estimates and simulation values columns in
Table 1) for the sensor resolution of 4X12 deg pixels. The
values in Table 1 show that the constants of the element
parameters can be recovered pretty well. The scale factors
and the phase angles of the element parameters are shifted.
The simulation studies show that the estimation errors due
to the estimation method are small in comparison with the
instrumentation errors after a sufficient number of estima-
tion iterations. To improve the accuracy, one must decrease
the measurement errors, for example, by increasing the sen-
sor resolution that reduces the random fluctuations, improv-
ing the model structure to reduce the sensitivities to the
random fluctuation in the data, or introducing replicated
data points to average the random fluctuations.

6 Comparison of SPSA with SAN

A well-known method for a global optimization problem is
SAN. The question of how well SPSA compares with SAN
is of interest given that SAN has been widely applied in
optimization. Because SAN appears not to have been ap-
plied to multiple objective function problems, the compari-
son is based only on the results from the single-objective
function—sum square measurement-residual error. For the
single objective function, neither SPSA nor SAN shows
any sign of convergence within 300 function evaluations if
the same initial values are used as in stage 1 of the
multiple-objective SPSA study. When the initial values are
close to the solutions (using the initial values of stage 2),
the single objective function SAN does show signs of con-
vergence after tuning. Therefore, this study compares these
two algorithms starting from a set of parameters close to
the simulation values, comparable to the initial values of
stage 2.

A total of 10 runs was studied. Figure 1 shows that at the
300th function evaluation, the level of mean sum square
error is about 3:1 in favor of SPSA. It also shows a 3:1 ratio
in the number of function evaluations required to achieve
the same level of accuracy. (The total error level at the
300th function evaluation for SAN is about equal to the
total error level at the 100th function evaluation for SPSA.)
Because the results are in favor of SPSA, there is no further
development for SAN using multiple objective functions.
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Fig. 1 Convergence of SPSA versus SAN.

Also, with SAN it is inherently difficult to determine the
acceptance of the updated parameter values at each SAN
step for multiple objective functions. The averaged absolute
mean total measurement-residual error for multiple-
objective SPSA is also much lower than for the single ob-
jective SPSA or SAN (compare with Fig. 1).

7 Conclusions

This paper applies the SPSA algorithm for two types of
objective functions, pixel-wide multiple objective functions
and a total summation function. The comparison of sensor
residuals for simulated annealing and for single- and
multiple-objective SPSA algorithms indicates that the
multiple-objective function SPSA algorithm gives the low-
est total measurement residual errors. Also, the data noise
level and resolution in the simulation study are adequate to
estimate the constant parameters in the Chase and Roelof
model%; some of the other parameters are not so well esti-
mated due primarily to the finite sample with random fluc-
tuations in the data counts.

When the multiple-objective SPSA algorithm is applied
to a real satellite mission for the global magnetospheric
image problem, there will be other error sources affecting
the final estimates. Reductions of those errors are not
within the scope of this paper. The paper shows that
multiple-objective SPSA could be used to reduce the esti-
mation errors and to isolate the other error sources. This
may help the satellite mission planning and data analysis
work for the global magnetospheric image problem.

This paper also compares the efficiency and accuracy
levels for SPSA and SAN. In a single objective function
setting, the results of the comparison were 3:1 in favor of
SPSA in both efficiency and accuracy at the given mea-
sures. An additional advantage in using SPSA is that it can
be extended to an infinite data setting. Instead of reiterating
on a fixed global image, SPSA could iterate on consecutive
sets of image counts. This changes the objective functions
into noisy functions, which work well for SPSA. The ion
intensity in the magnetosphere changes over time; the un-
derlying model of the consecutive image counts also
changes from image to image. SPSA with gain-sequence
manipulation, as demonstrated in Ref. 20, could adapt to
the changes in the model. (This is different from restarting
the iteration from the final estimates in the previous data
images.)

A second-order version of SPSA presented in Ref. 21
can be used to speed up the convergence after the estimates
of the parameters are isolated within the region containing
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the global optimization solution. When second-order SPSA
is used, the constraints of the estimates for regular SPSA
should also apply for the second order. This paper uses
only the *‘standard’’ (first-order) SPSA approach and there-
fore omits the details of the second-order SPSA.
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