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Abstract. A simultaneous perturbation algorithm for a Kiefer-Wolfowitz type problem that uses one-
sided randomized differences and truncations at randomly varying bounds is given in this paper. At each
iteration of the algorithm only two observations are required in contrast to 2¢ observations, where £ is
the dimension, in the classical algorithm. The algorithm given here is convergent under only some mild
conditions. A rate of convergence and an asymptotic normality of the algorithm are also described. While
only an algorithm with one-sided randomized differences is considered here, a corresponding algorithm
with two-sided randomized differences has similar results with the same assumptions.
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1. INTRODUCTION

A Kiefer-Wolfowitz (KW) (1952) algorithm is used to
find the extrema of an unknown function  : R® — R
which may be observed with some additive noise. If the
gradient of L, VL, can be observed then the problem
can be solved by a Robbins-Monro (RM) algorithm.

Let z, be the estimate of the unique extremum of L at
the nth iteration. One approach to a KW algorithm is
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to observe L at the following values.
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fori=1,2,...,¢ where ¢, € R\ {0}.
Consider noisy observations of I so that
y:.tl = L(=;*) + &

and
Yng1 = Lz ) + i1



where E:":_ 1 and E,';:_l are observation noises. The ratio

2¢c,,
can be used as an estimate for the ith component of
VL. With this approach a KW algorithm requires 2¢
measurements of L. If £ is large, for example, the opti-
mization of weights in a neural network, then this KW

algorithm can be rather slow.

To reduce the evaluations for a KW algorithm Spall
(1992) replaced the deterministic componentwise differ-
ences in (1) by a symmetric random difference. Using
the ordinary differential equation ( ODE) method (Kush-
ner and Clark, 1978) Spall showed the convergence and
the asymptotic normality of the modified KW algorithm
though the conditions required are restrictive.

Initially Spall’s KW algorithm and the conditions that
he uses are described. Let (AL, i = 1,...,¢, k =
1,2,...) be a sequence of mutually independent and
1dentically distributed random variables with Zero mean.
Let Aj be given by

Ay = [A,lc,...,Afc]T. (2)
At each iteration, two measurements are taken:
y;:-}-l = L("ck + ckAk) + fztf.l
Y1 = Lz — cklAg) + Ek_+1
Then the vector symmetric difference
(W1 — Yiy1)ge ®)
2cy.
where
J1 117 @
gk - Ai 1y Ai
is used as an estimate for Vi(z).
The KW algorithm is formed as follows
(W1 = Yoo

2Ck

In this form the algorithm seeks the maximum of L. The
minimum of L is found by replacing a; by

For the convergence of the algorithm (5) Spall (1992)
required the following conditions.

Al. The random variables & — &y £ € N) is
a martingale difference sequence (mds) with uni-
formly bounded second moments.

sup E(L?(z¢ + ckAr)) < oo.

reN
A3. The sequence (x, k € N) is assumed a priori to

be uniformly bounded, that is,

—ay.

A2

sup ||ze]l < n < 0 as.
keN
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where n € R,.

The third derivative of L is bounded.

2% € R® is an asymptotically stable point for the
differential equation %f = f(2(t)) where f = VL.
The sequence (zx, k € N) is infinitely often in
a compact set that is contained in the domain of
attraction of z° given in A5.

The sequences (ax, k € N) and (ck, k € N) satisfy
ak>0,ck>0forallk€N,ak—>Oandck—>0

oo 00 2
a.sk—»oo,Zak:ooa,ndE(%f-) < 00.
k=1 k=1

A4,
A5,

A6.

AT

Furthermore, some conditions are imposed on the se-
quence (Ag, k € N) in (Spall, 1992) but this sequence
can be arbitrarily chosen by the user of the algorithm
in (Spall, 1992).
In this paper, a one-sided randomized difference is used,
that is,

Whes = vhs1)oe

- ®)
and -
1 1 ]
gk = Al T (7)
&gy

is used to estimate f(z;) = VL(zi) where
y;:'-{-l = L(zi + crAy) + Elc++1 (8)
y2+1 = L(-'L'lc) + fl(c)+1- (9)

By the change in forming the differences and a mod-
ification of the algorithm (5) and the use of a direct
approach to verify convergence, the conditions A2-A6
are eliminated and A1 is weakened to one that provides
not only a sufficient but also a necessary condition for
convergence. This result is given in Theorem 1. In The-
orem 2 the observation noise is modified to one with
only bounded second moments that is independent of
(Ax, k €N). A convergence rate and an asymptotic
normality of the algorithm are given in Theorems 3 and
4 respectively. The proofs of these results are given in
(Chen, et. al., a)

2. THE ALGORITHM AND ITS CONVERGENCE

Initially the algorithm is precisely described. Let (AL,
i=1...,f, keN)bea sequence of independept and
identically distributed random variables where |AL] < q,

l%l < E(AL) =0forallie{l,....0} and k € N
k k

and a,b € R;. Furthermore let A be independent of
.7-‘,5 = o(¢F, i 1€{0,...,k}) for k € N. Define Ye+1
and €4, by the following equations

- (y:+1 - yl?-f-l)gk
Ck
0
Ekt1 = flj+1 - 5k+1-

Ye+1



It follows that

(L{zx + ckAr) — L(zx))gr
Y41 = cr

+ £k+19k. (10)
Ck

Choose z* € R’ and fix it. Define the following KW
algorithm with randomly varying truncations and ran-
domized differences:

Teyr = (2x + akyk+1)l{llrk+akyk+1|| S M.}

. (11)
+z 1{"zk+ak.'lk+1">M,k}
k-1
O = Z 1{"1:.+a.y.'+1ll>M,'.} (12)
=0
g =0

where (M, k € N) is a sequence of strictly positive,
strictly increasing real numbers that diverge to +o0o. It
is clear that oy is the number of truncations that have
occurred before time k. Clearly the random vector Tp
is measurable with respect to Fj := fﬁ \ .7-','?_1 where
Fe = o(A:, i € {0,.. .,k}). Thus the random vector
A is independent of o(z;, i < k).

The following conditions are imposed on the algorithm.

H1. The function VL = f is locally Lipschitz contin-
uous. There is a unique maximum of L at z°
so that f(z°) = 0 and f(z) # 0 for z # z°.
There is a ¢g € Ry such that lz*|] < ¢o and

sup L(z) < L(z*).

lizll=co

H2. The two sequences of strictly positive real numbers

(ax, k¥ € N) and (cx, k € N) satisfy ¢, — 0 as
oo
k— 00, 3~ ap = oo and thereisap e (1, 2] such
o k=1
that 3 af < oo.
k=1

Remark. If L is twice continuously differentiable then f
is locally Lipschitz continuous. Ifin H1 z° is the unique
minimum of L, then in (11,12) a; should be replaced by
~ag.

The following theorem gives necessary and sufficient
conditions for the convergence of the algorithm (11).

Theorem 1. Let H1 and H2 be satisfied and (zx, k €N)
be given by (11). The sequence (z;, k € N) satisfies

klim = z° as. (13)

if and only if the observation noise £ in (10) can be
decomposed into the sum of two parts for each j €
{1,...,£} as

&k =e{ +V,’; (14)
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such that - ;
Bk o s, (15)
CkA]
k=1 k
and .
v
lim ¥ = a5, (16)
k— o0 Cchi.
forj=1,...,¢

While Theorem 1 gives necessary and sufficient condi-
tions for the convergence of the KW algorithm (11) it
may not be apparent if there are useful noise processes
that satisfy (14-16). The following theorem gives a large
family of noise processes that satisfy (14-16).

(2]
Theorem 2. Let H1 and H2 be satisfied. If > %E- < 00

k=1 *
and the observation noise (£;, k € N) is independent
of (A, k € N) and satisfies one of the following two
conditions

1) sup|éx| <€ a.s. where € is a random variable;
k
ii) sup E¢Z < oo, then
k
lim z; = 2% as. (17)
k—co

where z, is given by (11).

It is important to note that the random variable £r may
have arbitrary dependence on the family of random vari-
ables (§;; 7 €N, j # k) and may not be zero mean. For
example, a sequence of bounded deterministic observa-
tion errors satisfies the conditions i) or ii).

Remark. Theorems 1 and 2 can be extended to the case
where f(z) = 0 for all z € J and J is not a singleton. In
this case H1 is replaced by some conditions on v where
v=-L and f is locally Lipschitz continuous {1, 2].

While necessary and sufficient conditions for the con-
vergence of the algorithm (11) are important, it is also
Important to have some information on the rate of con-
vergence of the algorithm. In the following theorem a
rate of convergence of the algorithm (11) is given.

Theorem 3. Assume the hypotheses of Theorem 2 and
that

(18)
(19)

. -1 —
dim (a7y, —ag) =a20

= o(a,‘z)
for some § € (0, 1) and
f(z) = F(z - o) + 6(z) (20)

where F' € L(R*,R"), §(z) = o(]|z — 2°|) and F + aéI
is stable. Then (z,,, n € N) given by (11) satisfies
lzn — 2% = o(a}) aus.

(21)
for é given in (19).



Remark. If a, = % and ¢, = —,;1;- for some v € (0, %)
and all n € N then the conditions on (a,, n € N) and
(¢n, n € N) in Theorem 3 are satisfied.

The following result is an asymptotic normality property
of (z,, n € N) given by the algorithm (11).

Theorem. 4. Assume that the conditions of Theorem 2
are satisfied and that

1) nl'gglo(a;il —a;') = @ > 0 and ¢, = a, for some
7€ (3 3)

it) ||f(z) — F(z — 2°)|| < b||]z — 2°)|*+# for some B > 0
and b > 0.

iii) F+ oul is stable for p = § — .

iv) € = Y bjw,_; where w; = 0 for¢ < 0, (b;, i €
i=0

N) is a sequence of real numbers, r € N is fixed and
(wi, F{, i € N) is a martingale difference sequence
that satisfies

Elw? | F¥i]1< o0

for all i € N where 09 € Ry,

lim Efu? | 7] = o

where ¢ € Ry and

. 2 _
Aim .-s;llgl Ewil{jy,1>m] = 0.
Then .
a;H(zn — 2°)—2Z
where Z is N(0, S),

. 2
S=oc%3 (Z b;)
i=0

02A=E[

[
/ et(F+apI)et(F+ayI)Tdt
0

L
(a))?
and r is given in iv).
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A classical Kiefer-Wolfowitz algorithm has been mod-
ified in two ways: i) the one-sided randomized differ-
ences are used instead of the two-sided deterministic
differences, ii) the estimates are truncated at randomly
varying bounds. For the convergence analysis, a direct
method is used rather than the classical probabilistic
method or the ordinary differential equation method.
By the algorithm modifications i) and ii) and a differ-
ent approach to algorithm analysis, the following algo-
rithm improvements have been made: i) some restrictive
conditions on the function L or some boundedness as-
sumptions on the estimates have been removed, ii) some
restrictive conditions on the noise process have been re-
moved, iii) the number of required observations at each
iteration has been reduced. The algorithm has been nu-
merically tested on a number of examples to verify the
convergence to the maximum. If the function L has
many extrema then the algorithm may become stuck
at a local extremum. To obtain the almost sure conver-
gence to the global extrema, some methods that combine
search and stochastic approximation are needed, but it
seems that there is a lack of a sufficient theory for this
approach.
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