
Solving Discrete Resource Allocation Problems using the
Simultaneous Perturbation Stochastic Approximation (SPSA) Algorithm

Otis Brooks

Sr. Professional Staff, Aviation Systems Engineering Group
The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA

otis.brooks@jhuapl.edu

Keywords: Resource Allocation, Discrete Stochastic
Optimization, Simultaneous Perturbation Stochastic
Approximation

Abstract
 We investigate optimization techniques for solving a
class of discrete resource allocation problems, including
several discrete forms of Simultaneous Perturbation
Stochastic Optimization (SPSA). We explore the rate-of-
convergence for discrete SPSA in a stochastic setting.
Finally, we consider some of the difficulties that can arise
when discrete resource allocation problems include a
stochastic component.

1. INTRODUCTION
 The aim of this paper is to add to the literature in the
area of discrete stochastic optimization by comparing and
analyzing the performance of two stochastic optimization
algorithms when applied to discrete resource allocation
problems. The notion of feasible allocations at every
iteration becomes important in this setting and so a
projection algorithm is also introduced to ensure feasibility
for discrete SPSA.
 The rest of the paper is organized as follows: In Section
2, we introduce the facility location and size problem as the
example resource allocation problem that we examine.
Section 3 introduces the optimization algorithms that we
will analyze, Ordinal Optimization and discrete SPSA.
Section 4 describes the numerical study undertaken in this
project. Section 5 discusses the results of the numerical
study. Finally, Section 6 presents the conclusions of the
study.

2. THE GENERAL RESOURCE ALLOCATION

PROBLEM

2.1. Background
 The general resource allocation problem involves the
distribution of a finite quantity of resources to users in order
to accomplish some task. We wish to distribute the
resources in such a way that some measure of performance
is optimized. The problems of scheduling the transmission
of messages in a radio network, weapon assignment and
facility location typify this class of problems.

 From [1], we get the data for this study. The resources
turn out to be a total of T students requiring an education in
a metropolitan area where the students are distributed over
K districts. The N user classes turn out to be N schools. It
goes without saying that resources are allocated in discrete
amounts.
 We will use this data to fashion an interesting resource
allocation problem involving stochasticity.

2.2. Stochasticity
 Suppose the students chose schools according to some
distribution unknown to school system planners. In this
study, we used data from [1] which involves a high school
location problem in Turin, Italy (the city is divided into 23
school districts with one school for each district) to deduce a
probability matrix, essentially a state transition matrix,
which describes the stochastic nature of this problem.
 Suppose

jx is the planned size of the school at school
location j, then the actual number of students,

jτ , attracted
to school j may not be equal to .jx We can cast an
interesting stochastic optimization problem around the
determination of the optimal size of the schools 1 .j N= …
 From [1], consider the following cost function which
quantifies a cost associated with the building being too large
()jα+ for incremental size

jx greater than the (stochastic)

demand
jτ and a cost associated with the building being too

small ()jα− for incremental size
jx less than the (stochastic)

demand
jτ :

()
()
()

, if ,
,

, if ,

j j j j j

j j j

j j j j j

x x
f x

x x

α τ τ
τ

α τ τ

+

−

⎧ − ≥⎪= ⎨
− <⎪⎩

in which
jx represents a guess at an optimal facility size at

location j and
jτ represents a Monte Carlo determined

instance of demand on the facility at location j. So a penalty
is assessed based on whether the resulting school capacity is
too large or too small.
 The direct determination of the distribution of

jτ is
practically quite difficult in this case. Instead, random
realizations can be generated by simulating individual

mailto:otis.brooks@jhuapl.edu

choices of students according to the probabilities
ijP which

are the probabilities that students in district i will choose the
facility at location j, defined as:

1

ij

ij

c

ij N c

j

eP
e

λ

λ

−

−

=

=
∑

where λ is a constant and are empirical coefficients that
depend on the distance between i and j (in this case: travel
times in minutes).

ijc

 By applying inverse-transform methodology, random
samples of integers behaving according to

ijP can be
generated from the uniform distribution, U, using the
following rules:

Suppose a student from district i can choose to go to a
school at school location j with probability,

ijP . Then the
student has 23 possibilities governed by the with

 for all i’s. Then for each instance of a student from

district i:

'ijP s

1
1

N

ij
j

P
=

=∑

1 1

1 1 1

1 1

School if 0

School if
School of choice will be

School if 1

i

i i i

N i iN

U P

P U P P

P P U−

≤ ≤

< ≤ +
=

+ + < ≤

⎧
⎪⎪
⎨
⎪
⎪⎩

#
"

2

The resulting stochastic programming problem is then as
follows: determine the sizes

jx of the facilities 1j N= …
that minimizes the expected cost:

() ()1
1

,
N

N j j
j

F x x Ef x jτ
=

=∑…

subject to constraints:

1

1

0 1 , an integer

1

j j

N

ij i
j

K

i
i

x T j N x

s a i K

a T

=

=

≥ ≥ =

= =

=

∑

∑

…

…

where
ijs is the expected flow of students from district i to

school location j per unit time and
is the total demand (in terms of students to be taught per
unit time) at each district i. We can reformulate the above
into the stochastic minmax problem with the new objective
function:

()1 , 1i K j N= =… … ia

() () ()
1

max ,
N

j j j j j j
j

F X E x xα τ α τ+ −

=

⎡= −⎣∑ ⎤− ⎦

We have an N-dimensional vector representing an allocation
instance of incremental facility size for all districts:

[]1 2, , T
NX x x x= …

We have an N-dimensional vector representing an instance
(stochastic) of demand on the facility for all districts:

[]1 2, , T
Nτ τ ττ = …

Thus, this optimization problem is discrete because the set
of options from which to choose is finite in number. It is
stochastic because there is some uncertainty in the
approximation of the value of the objective function.
 There are no destination constraints (maximum school
size) in this problem.

3. OPTIMIZATION ALGORITHMS
 Two optimization schemes will be employed to solve
the above stochastic integer programming problem,
specifically:

◊ Ordinal Optimization
◊ Discrete SPSA

3.1. Ordinal Optimization
 Ordinal Optimization comes to us from [2]. A key
feature of this algorithm is that it utilizes ordinal estimates
which Cassandras et al. states is particularly robust with
respect to estimation noise compared to cardinal estimates.
Gerencser et al. asserts in [5] that Ordinal Optimization is a
“relaxation-type algorithm in which at any time the
allocation is rebalanced between exactly two tasks,” or, in
our case, users.

 Ordinal Optimization requires that the objective
function be separable and convex. It can be shown that our
stochastic minmax objective function is both separable and
convex.

3.2. Discrete Simultaneous Perturbation Stochastic

Approximation (SPSA)
 SPSA was originally developed to solve continuous
parameter optimizations (Spall [7]). It is essentially a
Kiefer-Wolfowitz stochastic approximation scheme that
relies on an efficient “simultaneous perturbation”
approximation of the objective function
gradient () ()g Lθ θ θ≡ ∂ ∂ .
 The SPSA procedure is based on simultaneous random
perturbations to estimate the gradient of a loss function by
computing differences. At each iteration of the algorithm,
we generate a random perturbation vector

1, ,
T

k k kp⎡ ⎤Δ = Δ Δ⎣ ⎦… , where the ’s form an i.i.d sequence

of Bernoulli random variables taking the values
kiΔ

1± . The
perturbations are assumed to be independent of the

measurement noise process. For cost functions defined on
p\ , the difference estimates at iteration k is obtained by

evaluating ()ky ⋅ at the two values:

() () ()2 1,k k ky c L c cθ θ ε θ+
−= + Δ + + Δk

() () ()2,k k ky c L c cθ θ ε θ− = − Δ + − Δk

with the i-th component of the difference estimate being:

()
() ()(), ,

ˆ ,
2

k k
ki

ki

y c y c
g c

c
θ θ

θ
+ −−

=
Δ

Resulting in the recursion:

()1
ˆ ˆ ˆˆ ,k k k k k ka g cθ θ θ+ = −

From [3] and [4], we are presented with discrete forms of
SPSA. These discrete forms of SPSA can be characterized
by how the algorithm updates the iterate vector ˆ ,kθ how it
employs the iterate vector in its determination of ()ˆˆk kg θ

and what is the nature of and Essentially, either kc .ka ˆ ,kθ

()ˆˆk kg θ , ()ˆˆk k ka g θ or ()ˆ ˆk k k ka g ˆθ θ− are constrained to lie in

the set p] , the grid of points in p\ with integer
components. We will restrict ourselves to the following
instantiations of discrete SPSA:

()()1
ˆ ˆ ˆˆ Proj ,k k k k k ka g cθ θ θ+ = −

()()()1
ˆ ˆ ˆProj ProbMove ,k k ka g cθ θ+ = − ˆ

k k kθ

where ()Proj ⋅ is a mapping of the iterate
k̂θ to a hypercube

of feasible allocations about
k̂θ (more below) and

()ProbMove ⋅ is a “probabilistic movement” scheme devised

to get an iterate
k̂θ not necessarily an integer to “move” to a

point in p] according to the following:

If , then the ith component of
1

ˆ ˆ ˆ, , p
k k kpθ θ θ⎡ ⎤= ⎣ ⎦… ∈\

()ˆProbMove kθ equals
k̂iθ⎢ ⎥

⎣ ⎦
 with probability

() ()ˆ ˆ ˆ ˆ
i ki ki k kiπ θ θ θ θ⎢ ⎥ ⎡ ⎤ ⎢ ⎥= − −⎣ ⎦ ⎢ ⎥ ⎣ ⎦

 and
k̂iθ⎡ ⎤

⎢ ⎥
 with

probability 1 , 1i i pπ− ≤ ≤ .

In the first discrete SPSA scheme, iterates are, in general,
not integers. Therefore, we must employ the ()Proj ⋅
mapping when considering the output of the recursion at any
index k to ensure ourselves of a feasible allocation. In the
second scheme, iterates are always integers and the
allocation is always feasible.

3.2.1. Fixed Versus Variable Gains
 Gerencser et al. suggests the use of fixed gains
()and ka ck

 to handle discrete SPSA in [5]. Indeed, much of
the literature suggests that constant gain Stochastic
Approximation techniques yield reasonable results in
discrete optimization problem classes such as our resource
allocation problem. We consider this approach but we also
consider the customary variable gain process defined in
Spall [7], which involve a certain sequence of gains ak and
ck that approach zero according to the requirements:

2

20 0
 and 0; and 0; and k

k k k k kk k
k

aa c a c a
c

∞ ∞

= =
> → = ∞ < ∞∑ ∑

These requirements are met via ()1ka a k A α= + + and

()1 ; , , , , and kc c k a A cγ α γ= + are chosen in accordance
with Spall [7]. We even consider combinations of the two
such as a fixed and a kc 0.ka →

3.2.2. Feasible Allocations at Every Iteration
 For this study, feasibility must be maintained with each
iteration due to the goal to optimize some resource
allocation when the cost function is not available in closed
form. Hence, no a priori loss and change in loss information
is available “offline.” We intend these algorithms to be
“online.” So, we use estimates of loss and change in loss
information over some observation period and we iterate
over each observation period by adjusting the allocation,
which requires the allocation to remain feasible with each
period. Ordinal Optimization maintains feasibility as an
inherent feature of the algorithm through this notion of a
“relaxation-type algorithm in which at any time the
allocation is rebalanced between exactly two tasks.”

3.2.3. ()Proj ⋅ →Projections Over Multiple
Dimensions

 Given candidate allocations derived through an iterative
process such as SPSA, feasibility is not assured (unlike the
Ordinal Optimization algorithm in which allocations are
rebalanced between exactly two tasks). Hence, some
measures must be taken to maintain feasibility throughout
the iterations. We can employ the process of mathematical
projection to accomplish this. We are given a

() () ()
1

ˆ ˆ ˆ, ,k k k
Nn nθ ⎡ ⎤= ⎣ ⎦… in which there is a non-zero probability

that ()

1

ˆ
N

k
i

i
n

=

K≠∑ for some iteration k. In such a case, we

project ()ˆ kθ to the plane represented by ()

1

ˆ .
N

k
i

i
n K

=

=∑ Linear

algebra provides us with the notion of an orthogonal
spanning set { }1 2v , v , , vqS = … of nonzero vectors which

generates a subspace (say) of a vector space
0v p\ (or, in

our case p]). If the vector space includes an inner product,
then an orthogonal projection onto the subspace is
defined as:

0P 0v

()
()0 0 1 1

,
, where .

,
i

q q i
i i

P v α α α= + + =
v v

v v
v v

"

For the case in which for we do not

have a subspace and the above process is not applicable.
Therefore, we translate from to

()

1

ˆ ,
N

k
i

i
n K

=

=∑ 0,K ≠

()

1

ˆ
N

k
i

i
n K

=

=∑ ()

1

ˆ 0,
N

k
i

i
n

=

=∑

perform our projection to the subspace ()

1

ˆ 0
N

k
i

i
n

=

=∑ and

translate back to Linearity of the translation

allows us to be able to utilize this technique. The challenge
here is in generating the orthogonal spanning set S for the
subset we seek to generate is the subspace of of all
solutions to . One trivial spanning set that would

generate a subspace of of all solutions to

()

1

ˆ .
N

k
i

i
n K

=

=∑

23]

1

ˆ 0
N

i
i

n
=

=∑
23]

1

ˆ 0
N

i
i

n
=

=∑ is the

set of 22 vectors of the form:

[]
[]
[]

[]

1 0 0 1

1 0 0 1 0

1 0 1 0 0 23 Columns for each vector

1 1 0 0

T

T

T

T

⎫−
⎪
⎪−
⎪⎪− ⎬
⎪
⎪
⎪− ⎪⎭

"

"

"
#

"

Though technically a basis, this spanning set does not suit
our needs. However, Matlab provides us with a function that
creates an orthogonal basis given another basis as an input.
This function was used in this study with great effect.

4. NUMERICAL STUDY

4.1. Purpose & Goals
 We will compare Discrete SPSA with Ordinal
Optimization noting the accuracy of optimal allocations
with respect to optimal solutions identified in [1] which are
based on the mean and median of the probability
distributions of the 23 school districts. Additionally, we
will investigate the asymptotic behavior and distribution of
the discrete SPSA iterates and arrive at a rate of
convergence figure. In order to do this, we characterize
Discrete SPSA with respect to the continuous version of

SPSA, for which there is a wealth of knowledge on
asymptotic behavior and convergence.

4.2. Ordinal Optimization
 The Ordinal Optimization algorithm of [2] was
implemented in Matlab code and executed repeatedly to
check out implementation. One hundred runs were
accomplished to develop a statistically relevant dataset.
 The observed sample path length ()f k (number of

observations of ()()kL nΔ � � at each step k) was set to 4. This

resulted in the best overall performance of the Ordinal
Optimization algorithm for the cost function in question.

4.3. Continuous SPSA
 Matlab code implemented the basic SPSA algorithm of
[7] with relative ease. Again 100 runs were accomplished.

4.3.1. Version #1

()1
ˆ ˆ ˆˆ , , and 0k k k k k k k ka g c a cθ θ θ+ = − →

 As this is a traditional implementation of SPSA, tuning
is accomplished according to Spall [7], namely,

0.602, 0.101, 4.22, 500a Aα γ= = = = and 3.07.c = Such a
tune results in iterates

k̂θ which move by a magnitude of 0.1
in the early iterations. Based on a statistical analysis of the
PDFs governing the stochastic demand on schools in the 23
districts, c is chosen to be 3.07 which is the mean of the
standard deviations of the “noise” functions of each PDF.

4.3.2. Version #2

()1
ˆ ˆ ˆˆ , , 0 and 1k k k k k k k ka g c a cθ θ θ+ = − → =

 Since this implementation of SPSA is accomplished
with a constant 1,kc = the relevant tune becomes

0.602, 4.22, 500.a Aα = = = Again, this tune results in
iterates

k̂θ which move by a magnitude of 0.1 in the early
iterations. It should be noted that discrete SPSA versions 1
thru 4 utilize this same tune, therefore facilitating a
reasonable comparison between them.

4.4. Discrete SPSA
 The two methods of Discrete SPSA alluded to in
Section 3.2 were implemented in Matlab. Matlab code
implemented the projection to feasible hyperplane algorithm
discussed in Section 3.2.3. Good use was made of the
Matlab function ORTH which is an Orthogonalization
algorithm. ORTH, returns an orthonormal basis which spans
the same space as the columns of the matrix argument given
it. It was this orthonormal basis that “fueled” the projection
algorithm.

4.4.1. Version #1

()()1
ˆ ˆ ˆˆ Proj , , and 0k k k k k k k ka g c a cθ θ θ

+
= − →

4.4.5. Version #5
()()

1
ˆ ˆ ˆˆ Proj , , 0.25 and 1

k k k k k k k k
a g c a cθ θ θ

+
= − = =

 For versions #5 and 6 of DSPSA, we move to a
constant gain of 0.25ka = in addition to the 1.kc =

 For both Version #1 and 2 of discrete SPSA, we use the
same tune as in Section 4.3.1, Version #1 above.

4.4.2. Version #2
()()()

1
ˆ ˆ ˆˆProj ProbMove , , and 0

k k k k k k k
a g c a cθ θ θ

+
= −

k
→

4.4.6. Version #6
()()()

1
ˆ ˆ ˆˆProj ProbMove , , 0.25 and 1

k k k k k k k
a g c a cθ θ θ

+ k
= − = =

4.4.3. Version #3

()()
1

ˆ ˆ ˆˆ Proj , , 0 and 1
k k k k k k k k

a g c a cθ θ θ
+
= − → =

5. RESULTS AND DISCUSSION

 For both Version #3 and 4 of discrete SPSA, we use the
same tune as in Section 4.3.2, Version #2 above.

4.4.4. Version #4
()()()

1
ˆ ˆ ˆˆProj ProbMove , , 0 and 1

k k k k k k k
a g c a cθ θ θ

+
= − →

k
=

 Discrete SPSA versions #1 and #3 are in general more
accurate than Ordinal Optimization. Discrete SPSA version
#5 accuracy is on par with Ordinal Optimization. Discrete
SPSA versions #2, 4 and 6 are in general less accurate than
Ordinal Optimization. Ordinal Optimization and Discrete
SPSA version #5 converges to an optimal solution faster
than the other form of Discrete SPSA, typically in a little
more than 100 iterations.

Discrete SPSA versions #1 and #3 behave more like
continuous SPSA in terms of algorithm performance,
including asymptotic behavior of the iterates projected onto
the feasible hyperplane. The rate of convergence analysis

for versions #1 and #3 indicates a clear convergence in
distribution according to:

() ()dist.2 *ˆ μ,kk Nβ θ θ− ⎯⎯→ Σ

()()1
ˆ ˆ ˆˆ Proj , , and 0k k k k k k k ka g c a cθ θ θ+ = − →

One can choose a β such that the magnitude of the norms
are essentially flat for large k, consistent with the above
asymptotic normality result. Similarly (and importantly),
one can also choose a β that will result in the magnitude of
the norms decaying to zero. This fact lends some credibility
to the empirical estimates of rate of convergence offered in
this paper. For instance in Discrete SPSA versions #5 and to
a certain extent #6 there could be found no β that would
cause the magnitude of the norms to decay to zero. Flatness
was indicated whether one chose β to be 0.01, 0.0001 or
0.000001. So which β is the correct apparent speed of
convergence? It would seem that the magnitudes of the
norms are not really bounded, at least not in the same way
as continuous SPSA. And yet Discrete SPSA version #5
performed quite well, as well as Ordinal Optimization. On

the average, it converged as quickly as Ordinal
Optimization.
 The probabilistic movement algorithm of discrete SPSA
versions #2, 4 and 6 seems to help keep the SPSA algorithm
relatively “well behaved” with excessive noise generally
less out at large k than in one other implementation. By way
of explanation, the author considered yet another
instantiation of discrete SPSA that used a “truncate towards
minus infinity” function to get the SPSA algorithm to move.
The amount of “noise” that was introduced into the
algorithm through the “truncate towards minus infinity”
function prevented the algorithm from being well behaved
asymptotically. In general, the probabilistic movement
algorithm performed more reasonably than the “truncate
towards minus infinity,” hence the reason it was dropped.

6. CONCLUSIONS
 All algorithms converged into a neighborhood of the
optimal solution *θ with varying degrees of success.
 Performance was bounded in this study by the various
implementations of Discrete SPSA. One implementation of
Discrete SPSA was the most accurate while another
implementation of Discrete SPSA was the least accurate.
Ordinal Optimization performance figures were right in the
middle with one version of Discrete SPSA (one of the
constant gain versions) tracking very nicely with the Ordinal
Optimization algorithm. This was something of a surprise.
Clearly, this version of Discrete SPSA can compete with
Ordinal Optimization in terms of speed of convergence
versus accuracy.
 Through 50 runs of the various DSPSA algorithms, all
algorithms converge towards stationary points of the
objective function, some quicker and more accurately than
others. To the extent that noise seemed minimally invasive,
performance was better. One Discrete SPSA algorithm
implementation was dropped because the noise evident in
the later iterations of k rendered the algorithm ill behaved
and non-convergent.
 Discrete SPSA versions #3 and #4 appeared to
converge somewhat faster than versions #1 and #2 in an
asymptotic sense, as evidenced by their empirically
determined “apparent” stochastic rates of convergence.
Version #3 was only marginally better than #1. Despite the
fact that versions #5 and #6 employed constant and

convergence seemed dubious. Yet version #5 performed
as well as Ordinal Optimization and all the discrete SPSA
algorithms seemed to converge in some sense.

kc
,ka

7. REFERENCES

[1] Y Ermoliev, “Facility Location Problem,” in Numerical

Techniques for Stochastic Optimization, Yuri Ermoliev
and Roger J-B Wets, eds., Springer, New York, 1988,
pp. 413-434.

[2] C. G. Cassandras, L. Dai, and C. G. Panayiotou.
“Ordinal Optimization for a Class of Deterministic and
Stochastic Discrete Resource Allocation problems,”
IEEE Trans. Auto. Contr., vol. 43(7): pp. 881 – 900,
1998.

[3] S. D. Hill, L. Gerencser and Z. Vago, “Stochastic
Approximation on Discrete Sets Using Simultaneous
Perturbation Difference Approximations,” Proc. Of the
2003 Conf. On Information Science and Systems, The
Johns Hopkins University, March 12-14, 2003.

[4] S. D. Hill, L. Gerencser and Z. Vago, “Stochastic
Approximation on Discrete Sets Using Simultaneous

Difference Approximations,” Proceedings of the 2004
American Control Conference, Boston, Massachusetts,
June 30 – July 2, pp. 2795 – 2798.

[5] L. Gerencser, S. D. Hill and Z. Vago, “Optimization
Over Discrete Sets via SPSA,” Proceedings of the
Conference Decision and Control, CDC 38, 1999.

[6] J. C. Spall, S. D. Hill and D. R. Stark, “Theoretical
Framework for Comparing Several Stochastic
Optimization Approaches,” Probabilistic and
Randomized Methods for Design under Uncertainty (F.
Dabbene and G. Calafiore, eds.), Springer, 2005.

[7] J. C. Spall, Introduction to Stochastic Search and
Optimization, Wiley, New Jersey, 2003.

[8] V. Dupac and U. Herkenrath, “Stochastic
Approximation on a Discrete Set and the Multi-Armed
Bandit Problem,” Communications in Statistic –
Sequential Analysis, vol. 1, pp. 1-25, 1982.

[9] H. Neuburger, “User Benefit in the Evaluation of
Transport and Land Use Plans,” in the Journal of
Transport Economics and Policy, January, 1971.

[10] S. D. Hill, “Discrete Stochastic Approximation with
Application to Resource Allocaton,” in the Johns
Hopkins APL Technical Digest, January – March,
2005, Volume 26, Number 1, pp. 15 – 21.

Biography

Otis Brooks, a Mission Analyst in the Johns Hopkins
University Applied Physics Laboratory (APL) Precision
Engagement Business Area, is a member of the Senior
Professional Staff, specializing in Modeling & Simulation.
He received a BS in Electrical Engineering and a BA in
Computer Science from the University of Texas in 1981 and
a MS in Applied and Computational Mathematics from The
Johns Hopkins University in 2005. Since joining APL in
2000, he has been involved as a Systems Engineer and
Analysis with a number of programs, including the F-35
Lightning II (Joint Strike Fighter) Air System and the
Tomahawk Weapon System.

	1. INTRODUCTION
	2. THE GENERAL RESOURCE ALLOCATION PROBLEM
	2.1. Background
	2.2. Stochasticity

	3. OPTIMIZATION ALGORITHMS
	3.1. Ordinal Optimization
	3.2. Discrete Simultaneous Perturbation Stochastic Approximation (SPSA)
	3.2.1. Fixed Versus Variable Gains
	3.2.2. Feasible Allocations at Every Iteration
	3.2.3. Projections Over Multiple Dimensions

	4. NUMERICAL STUDY
	4.1. Purpose & Goals
	4.2. Ordinal Optimization
	4.3. Continuous SPSA
	4.3.1. Version #1
	4.3.2. Version #2

	4.4. Discrete SPSA
	4.4.1. Version #1
	4.4.2. Version #2
	4.4.3. Version #3
	4.4.4. Version #4
	4.4.5. Version #5
	4.4.6. Version #6

	5. RESULTS AND DISCUSSION
	6. CONCLUSIONS
	7. REFERENCES

