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Abstract 
 We investigate optimization techniques for solving a 
class of discrete resource allocation problems, including 
several discrete forms of Simultaneous Perturbation 
Stochastic Optimization (SPSA). We explore the rate-of-
convergence for discrete SPSA in a stochastic setting. 
Finally, we consider some of the difficulties that can arise 
when discrete resource allocation problems include a 
stochastic component. 
 
1. INTRODUCTION 
 The aim of this paper is to add to the literature in the 
area of discrete stochastic optimization by comparing and 
analyzing the performance of two stochastic optimization 
algorithms when applied to discrete resource allocation 
problems. The notion of feasible allocations at every 
iteration becomes important in this setting and so a 
projection algorithm is also introduced to ensure feasibility 
for discrete SPSA. 
 The rest of the paper is organized as follows: In Section 
2, we introduce the facility location and size problem as the 
example resource allocation problem that we examine. 
Section 3 introduces the optimization algorithms that we 
will analyze, Ordinal Optimization and discrete SPSA. 
Section 4 describes the numerical study undertaken in this 
project. Section 5 discusses the results of the numerical 
study. Finally, Section 6 presents the conclusions of the 
study. 
 
2. THE GENERAL RESOURCE ALLOCATION 

PROBLEM 
  
2.1. Background 
 The general resource allocation problem involves the 
distribution of a finite quantity of resources to users in order 
to accomplish some task. We wish to distribute the 
resources in such a way that some measure of performance 
is optimized. The problems of scheduling the transmission 
of messages in a radio network, weapon assignment and 
facility location typify this class of problems. 

 From [1], we get the data for this study. The resources 
turn out to be a total of T students requiring an education in 
a metropolitan area where the students are distributed over 
K districts. The N user classes turn out to be N schools. It 
goes without saying that resources are allocated in discrete 
amounts. 
 We will use this data to fashion an interesting resource 
allocation problem involving stochasticity. 
 
2.2. Stochasticity 
 Suppose the students chose schools according to some 
distribution unknown to school system planners. In this 
study, we used data from [1] which involves a high school 
location problem in Turin, Italy (the city is divided into 23 
school districts with one school for each district) to deduce a 
probability matrix, essentially a state transition matrix, 
which describes the stochastic nature of this problem. 
 Suppose 

jx  is the planned size of the school at school 
location j, then the actual number of students, 

jτ , attracted 
to school j may not be equal to .jx  We can cast an 
interesting stochastic optimization problem around the 
determination of the optimal size of the schools 1 .j N= …  
 From [1], consider the following cost function which 
quantifies a cost associated with the building being too large 
( )jα+  for incremental size 

jx  greater than the (stochastic) 

demand 
jτ and a cost associated with the building being too 

small ( )jα−  for incremental size 
jx  less than the (stochastic) 

demand 
jτ : 
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in which 
jx  represents a guess at an optimal facility size at 

location j and 
jτ  represents a Monte Carlo determined 

instance of demand on the facility at location j. So a penalty 
is assessed based on whether the resulting school capacity is 
too large or too small. 
 The direct determination of the distribution of 

jτ  is 
practically quite difficult in this case. Instead, random 
realizations can be generated by simulating individual 
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choices of students according to the probabilities 
ijP  which 

are the probabilities that students in district i will choose the 
facility at location j, defined as: 
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where λ  is a constant and  are empirical coefficients that 
depend on the distance between i and j (in this case: travel 
times in minutes).  

ijc

 By applying inverse-transform methodology, random 
samples of integers behaving according to 

ijP  can be 
generated from the uniform distribution, U, using the 
following rules: 
 

Suppose a student from district i can choose to go to a 
school at school location j with probability, 

ijP . Then the 
student has 23 possibilities governed by the  with 

 for all i’s. Then for each instance of a student from 

district i: 
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The resulting stochastic programming problem is then as 
follows: determine the sizes 

jx  of the facilities 1j N= …  
that minimizes the expected cost: 
 
 

( ) ( )1
1
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N j j
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subject to constraints: 
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where 
ijs  is the expected flow of students from district i to 

school location j  per unit time and  
is the total demand (in terms of students to be taught per 
unit time) at each district i. We can reformulate the above 
into the stochastic minmax problem with the new objective 
function: 

( )1 , 1i K j N= =… … ia
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We have an N-dimensional vector representing an allocation 
instance of incremental facility size for all districts: 
 

[ ]1 2, , T
NX x x x= …  

 

We have an N-dimensional vector representing an instance 
(stochastic) of demand on the facility for all districts: 
 

[ ]1 2, , T
Nτ τ ττ = …  

 

Thus, this optimization problem is discrete because the set 
of options from which to choose is finite in number. It is 
stochastic because there is some uncertainty in the 
approximation of the value of the objective function. 
 There are no destination constraints (maximum school 
size) in this problem.  
 
3. OPTIMIZATION ALGORITHMS 
 Two optimization schemes will be employed to solve 
the above stochastic integer programming problem, 
specifically: 
 

◊ Ordinal Optimization 
◊ Discrete SPSA 

 
3.1. Ordinal Optimization 
 Ordinal Optimization comes to us from [2]. A key 
feature of this algorithm is that it utilizes ordinal estimates 
which Cassandras et al. states is particularly robust with 
respect to estimation noise compared to cardinal estimates. 
Gerencser et al. asserts in [5] that Ordinal Optimization is a 
“relaxation-type algorithm in which at any time the 
allocation is rebalanced between exactly two tasks,” or, in 
our case, users. 

 Ordinal Optimization requires that the objective 
function be separable and convex. It can be shown that our 
stochastic minmax objective function is both separable and 
convex. 
 
3.2. Discrete Simultaneous Perturbation Stochastic 

Approximation (SPSA) 
 SPSA was originally developed to solve continuous 
parameter optimizations (Spall [7]). It is essentially a 
Kiefer-Wolfowitz stochastic approximation scheme that 
relies on an efficient “simultaneous perturbation” 
approximation of the objective function 
gradient ( ) ( )g Lθ θ θ≡ ∂ ∂ . 
 The SPSA procedure is based on simultaneous random 
perturbations to estimate the gradient of a loss function by 
computing differences. At each iteration of the algorithm, 
we generate a random perturbation vector 

1, ,
T

k k kp⎡ ⎤Δ = Δ Δ⎣ ⎦… , where the ’s form an i.i.d sequence 

of Bernoulli random variables taking the values 
kiΔ

1± . The 
perturbations are assumed to be independent of the 



measurement noise process. For cost functions defined on 
p\ , the difference estimates at iteration k is obtained by 

evaluating ( )ky ⋅  at the two values: 
 

( ) ( ) ( )2 1,k k ky c L c cθ θ ε θ+
−= + Δ + + Δk

 
 

( ) ( ) ( )2,k k ky c L c cθ θ ε θ− = − Δ + − Δk
 

 

with the i-th component of the difference estimate being: 
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Resulting in the recursion: 
 

( )1
ˆ ˆ ˆˆ ,k k k k k ka g cθ θ θ+ = −  

 

From [3] and [4], we are presented with discrete forms of 
SPSA. These discrete forms of SPSA can be characterized 
by how the algorithm updates the iterate vector ˆ ,kθ  how it 
employs the iterate vector in its determination of ( )ˆˆk kg θ  

and what is the nature of  and  Essentially, either  kc .ka ˆ ,kθ  

( )ˆˆk kg θ , ( )ˆˆk k ka g θ  or ( )ˆ ˆk k k ka g ˆθ θ−  are constrained to lie in 

the set p] , the grid of points in p\  with integer 
components. We will restrict ourselves to the following 
instantiations of discrete SPSA: 
 

( )( )1
ˆ ˆ ˆˆ Proj ,k k k k k ka g cθ θ θ+ = −  

 

( )( )( )1
ˆ ˆ ˆProj ProbMove ,k k ka g cθ θ+ = − ˆ

k k kθ  
 

where ( )Proj ⋅  is a mapping of the iterate 
k̂θ  to a hypercube 

of feasible allocations about 
k̂θ  (more below) and 

( )ProbMove ⋅  is a “probabilistic movement” scheme devised 

to get an iterate 
k̂θ  not necessarily an integer  to “move” to a 

point in p]  according to the following: 
 

If , then the ith component of 
1

ˆ ˆ ˆ, , p
k k kpθ θ θ⎡ ⎤= ⎣ ⎦… ∈\

( )ˆProbMove kθ  equals 
k̂iθ⎢ ⎥

⎣ ⎦
 with probability 

( ) ( )ˆ ˆ ˆ ˆ
i ki ki k kiπ θ θ θ θ⎢ ⎥ ⎡ ⎤ ⎢ ⎥= − −⎣ ⎦ ⎢ ⎥ ⎣ ⎦

 and 
k̂iθ⎡ ⎤

⎢ ⎥
 with 

probability 1 , 1i i pπ− ≤ ≤ . 
  

In the first discrete SPSA scheme, iterates are, in general, 
not integers. Therefore, we must employ the ( )Proj ⋅  
mapping when considering the output of the recursion at any 
index k to ensure ourselves of a feasible allocation. In the 
second scheme, iterates are always integers and the 
allocation is always feasible. 
 

3.2.1. Fixed Versus Variable Gains 
 Gerencser et al. suggests the use of fixed gains 
( )and ka ck

 to handle discrete SPSA in [5]. Indeed, much of 
the literature suggests that constant gain Stochastic 
Approximation techniques yield reasonable results in 
discrete optimization problem classes such as our resource 
allocation problem. We consider this approach but we also 
consider the customary variable gain process defined in 
Spall [7], which involve a certain sequence of gains ak and 
ck that approach zero according to the requirements: 
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These requirements are met via ( )1ka a k A α= + +  and 

( )1 ; , , , ,  and kc c k a A cγ α γ= +  are chosen in accordance 
with Spall [7]. We even consider combinations of the two 
such as a fixed  and a  kc 0.ka →
 

3.2.2. Feasible Allocations at Every Iteration 
 For this study, feasibility must be maintained with each 
iteration due to the goal to optimize some resource 
allocation when the cost function is not available in closed 
form. Hence, no a priori loss and change in loss information 
is available “offline.” We intend these algorithms to be 
“online.” So, we use estimates of loss and change in loss 
information over some observation period and we iterate 
over each observation period by adjusting the allocation, 
which requires the allocation to remain feasible with each 
period. Ordinal Optimization maintains feasibility as an 
inherent feature of the algorithm through this notion of a 
“relaxation-type algorithm in which at any time the 
allocation is rebalanced between exactly two tasks.” 
 

3.2.3. ( )Proj ⋅ →Projections Over Multiple 
Dimensions 

 Given candidate allocations derived through an iterative 
process such as SPSA, feasibility is not assured (unlike the 
Ordinal Optimization algorithm in which allocations are 
rebalanced between exactly two tasks). Hence, some 
measures must be taken to maintain feasibility throughout 
the iterations. We can employ the process of mathematical 
projection to accomplish this. We are given a 

( ) ( ) ( )
1

ˆ ˆ ˆ, ,k k k
Nn nθ ⎡ ⎤= ⎣ ⎦…  in which there is a non-zero probability 

that ( )

1

ˆ
N

k
i

i
n

=

K≠∑  for some iteration k. In such a case, we 

project ( )ˆ kθ  to the plane represented by ( )

1

ˆ .
N

k
i

i
n K

=

=∑  Linear 

algebra provides us with the notion of an orthogonal 
spanning set { }1 2v , v , , vqS = …  of nonzero vectors which 



generates a subspace (say ) of a vector space 
0v p\  (or, in 

our case p] ). If the vector space includes an inner product, 
then an orthogonal projection  onto the subspace  is 
defined as: 

0P 0v

( )
( )0 0 1 1

,
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For the case in which  for  we do not 

have a subspace and the above process is not applicable. 
Therefore, we translate from  to 
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perform our projection to the subspace ( )

1

ˆ 0
N

k
i

i
n

=

=∑  and 

translate back to  Linearity of the translation 

allows us to be able to utilize this technique. The challenge 
here is in generating the orthogonal spanning set S for the 
subset we seek to generate is the subspace of  of all 
solutions to . One trivial spanning set that would 

generate a subspace of  of all solutions to 
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Though technically a basis, this spanning set does not suit 
our needs. However, Matlab provides us with a function that 
creates an orthogonal basis given another basis as an input. 
This function was used in this study with great effect. 
 
4. NUMERICAL STUDY 
 
4.1. Purpose & Goals 
 We will compare Discrete SPSA with Ordinal 
Optimization noting the accuracy of optimal allocations 
with respect to optimal solutions identified in [1] which are 
based on the mean and median of the probability 
distributions of the 23 school districts.  Additionally, we 
will investigate the asymptotic behavior and distribution of 
the discrete SPSA iterates and arrive at a rate of 
convergence figure. In order to do this, we characterize 
Discrete SPSA with respect to the continuous version of 

SPSA, for which there is a wealth of knowledge on 
asymptotic behavior and convergence. 
 
4.2. Ordinal Optimization 
 The Ordinal Optimization algorithm of [2] was 
implemented in Matlab code and executed repeatedly to 
check out implementation. One hundred runs were 
accomplished to develop a statistically relevant dataset. 
 The observed sample path length ( )f k  (number of 

observations of ( )( )kL nΔ � �  at each step k) was set to 4. This 

resulted in the best overall performance of the Ordinal 
Optimization algorithm for the cost function in question. 
 
4.3. Continuous SPSA 
 Matlab code implemented the basic SPSA algorithm of 
[7] with relative ease. Again 100 runs were accomplished. 
 

4.3.1. Version #1 

( )1
ˆ ˆ ˆˆ , ,  and 0k k k k k k k ka g c a cθ θ θ+ = − →  

 As this is a traditional implementation of SPSA, tuning 
is accomplished according to Spall [7], namely, 

0.602, 0.101, 4.22, 500a Aα γ= = = =  and 3.07.c =  Such a 
tune results in iterates 

k̂θ  which move by a magnitude of 0.1 
in the early iterations. Based on a statistical analysis of the 
PDFs governing the stochastic demand on schools in the 23 
districts, c is chosen to be 3.07 which is the mean of the 
standard deviations of the “noise” functions of each PDF. 
 

4.3.2. Version #2 

( )1
ˆ ˆ ˆˆ , , 0 and 1k k k k k k k ka g c a cθ θ θ+ = − → =  

 Since this implementation of SPSA is accomplished 
with a constant 1,kc =  the relevant tune becomes 

0.602, 4.22, 500.a Aα = = =  Again, this tune results in 
iterates 

k̂θ  which move by a magnitude of 0.1 in the early 
iterations. It should be noted that discrete SPSA versions 1 
thru 4 utilize this same tune, therefore facilitating a 
reasonable comparison between them. 
 
4.4. Discrete SPSA 
 The two methods of Discrete SPSA alluded to in 
Section 3.2 were implemented in Matlab. Matlab code 
implemented the projection to feasible hyperplane algorithm 
discussed in Section 3.2.3. Good use was made of the 
Matlab function ORTH which is an Orthogonalization 
algorithm. ORTH, returns an orthonormal basis which spans 
the same space as the columns of the matrix argument given 
it. It was this orthonormal basis that “fueled” the projection 
algorithm. 
 



4.4.1. Version #1 

( )( )1
ˆ ˆ ˆˆ Proj , ,  and 0k k k k k k k ka g c a cθ θ θ

+
= − →  

4.4.5. Version #5 
( )( )

1
ˆ ˆ ˆˆ Proj , , 0.25 and 1

k k k k k k k k
a g c a cθ θ θ

+
= − = =  

 For versions #5 and 6 of DSPSA, we move to a 
constant gain of 0.25ka =  in addition to the 1.kc =  

 For both Version #1 and 2 of discrete SPSA, we use the 
same tune as in Section 4.3.1, Version #1 above. 
 

4.4.2. Version #2 
( )( )( )

1
ˆ ˆ ˆˆProj ProbMove , ,  and 0

k k k k k k k
a g c a cθ θ θ

+
= −

 

k
→  

4.4.6. Version #6 
( )( )( )

1
ˆ ˆ ˆˆProj ProbMove , , 0.25 and 1

k k k k k k k
a g c a cθ θ θ

+ k
= − = =  

  
4.4.3. Version #3 

( )( )
1

ˆ ˆ ˆˆ Proj , , 0 and 1
k k k k k k k k

a g c a cθ θ θ
+
= − → =  

5. RESULTS AND DISCUSSION 

 For both Version #3 and 4 of discrete SPSA, we use the 
same tune as in Section 4.3.2, Version #2 above. 
 

4.4.4. Version #4 
( )( )( )

1
ˆ ˆ ˆˆProj ProbMove , , 0 and 1

k k k k k k k
a g c a cθ θ θ

+
= − →

k
=  

 Discrete SPSA versions #1 and #3 are in general more 
accurate than Ordinal Optimization. Discrete SPSA version 
#5 accuracy is on par with Ordinal Optimization. Discrete 
SPSA versions #2, 4 and 6 are in general less accurate than 
Ordinal Optimization. Ordinal Optimization and Discrete 
SPSA version #5 converges to an optimal solution faster 
than the other form of Discrete SPSA, typically in a little 
more than 100 iterations. 

 

 
 

 
 



 
 
Discrete SPSA versions #1 and #3 behave more like 
continuous SPSA in terms of algorithm performance, 
including asymptotic behavior of the iterates projected onto 
the feasible hyperplane. The rate of convergence analysis 

for versions #1 and #3 indicates a clear convergence in 
distribution according to: 
 

( ) ( )dist.2 *ˆ μ,kk Nβ θ θ− ⎯⎯→ Σ  

 



 

( )( )1
ˆ ˆ ˆˆ Proj , ,  and 0k k k k k k k ka g c a cθ θ θ+ = − →

 
One can choose a β  such that the magnitude of the norms 
are essentially flat for large k, consistent with the above 
asymptotic normality result. Similarly (and importantly), 
one can also choose a β  that will result in the magnitude of 
the norms decaying to zero. This fact lends some credibility 
to the empirical estimates of rate of convergence offered in 
this paper. For instance in Discrete SPSA versions #5 and to 
a certain extent #6 there could be found no β  that would 
cause the magnitude of the norms to decay to zero. Flatness 
was indicated whether one chose β  to be 0.01, 0.0001 or 
0.000001. So which β  is the correct apparent speed of 
convergence? It would seem that the magnitudes of the 
norms are not really bounded, at least not in the same way 
as continuous SPSA. And yet Discrete SPSA version #5 
performed quite well, as well as Ordinal Optimization. On 

the average, it converged as quickly as Ordinal 
Optimization.  
 The probabilistic movement algorithm of discrete SPSA 
versions #2, 4 and 6 seems to help keep the SPSA algorithm 
relatively “well behaved” with excessive noise generally 
less out at large k than in one other implementation. By way 
of explanation, the author considered yet another 
instantiation of discrete SPSA that used a “truncate towards 
minus infinity” function to get the SPSA algorithm to move. 
The amount of “noise” that was introduced into the 
algorithm through the “truncate towards minus infinity” 
function prevented the algorithm from being well behaved 
asymptotically. In general, the probabilistic movement 
algorithm performed more reasonably than the “truncate 
towards minus infinity,” hence the reason it was dropped. 
 

 

 



 

6. CONCLUSIONS 
 All algorithms converged into a neighborhood of the 
optimal solution *θ  with varying degrees of success. 
 Performance was bounded in this study by the various 
implementations of Discrete SPSA. One implementation of 
Discrete SPSA was the most accurate while another 
implementation of Discrete SPSA was the least accurate. 
Ordinal Optimization performance figures were right in the 
middle with one version of Discrete SPSA (one of the 
constant gain versions) tracking very nicely with the Ordinal 
Optimization algorithm. This was something of a surprise. 
Clearly, this version of Discrete SPSA can compete with 
Ordinal Optimization in terms of speed of convergence 
versus accuracy. 
 Through 50 runs of the various DSPSA algorithms, all 
algorithms converge towards stationary points of the 
objective function, some quicker and more accurately than 
others. To the extent that noise seemed minimally invasive, 
performance was better. One Discrete SPSA algorithm 
implementation was dropped because the noise evident in 
the later iterations of k rendered the algorithm ill behaved 
and non-convergent. 
 Discrete SPSA versions #3 and #4 appeared to 
converge somewhat faster than versions #1 and #2 in an 
asymptotic sense, as evidenced by their empirically 
determined “apparent” stochastic rates of convergence. 
Version #3 was only marginally better than #1. Despite the 
fact that versions #5 and #6 employed constant  and 

convergence seemed dubious. Yet version #5 performed 
as well as Ordinal Optimization and all the discrete SPSA 
algorithms seemed to converge in some sense. 

kc
,ka
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