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Abstract

A simultaneous perturbation stochastic approximation (SPSA) method has been developed in this paper, using the
operators of perturbation with the Lipschitz density function. This model enables us to use the approximation of the objec-
tive function by twice differentiable functions and to present their gradients by volume integrals. The calculus of the sto-
chastic gradient by means of this presentation and likelihood ratios method is proposed, that can be applied to create
SPSA algorithms for a wide class of perturbation densities. The convergence of the SPSA algorithms is proved for Lips-
chitz objective functions under quite general conditions. The rate of convergence O 1

kc

� �
; 1 < c < 2 of the developed algo-

rithms has been established for functions with a sharp minimum, as well as the dependence of the rate of convergence is
explored theoretically as well as by computer simulation. The applicability of the presented algorithm is demonstrated by
applying it to minimization of the mean absolute pricing error for the calibration of the Heston stochastic volatility model.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Application of stochastic approximation (SA) to nonsmooth optimization is both a theoretical and prac-
tical problem. Computational properties of SA algorithms are mainly determined by the approximation
approach to the stochastic gradient (Robins and Monro, 1951; Kiefer and Wolfowitz, 1952; Blum, 1954; Dvo-
retzky, 1956; Yudin, 1965; Wasan, 1969; Ermoliev, 1976; Michalevitch et al., 1987; Ermoliev et al., 1995;
Kushner and Yin, 2003, etc.). Thus, it is of interest to consider simultaneous perturbation stochastic approx-
imation (SPSA) methods, in which values of the function for estimating the stochastic gradient are required
only at one or several points. The SPSA algorithms were considered by several authors who used various
smoothing operators. SPSA methods, uniformly smoothing the function in an n-dimensional hypercube,
are described in Michalevitch et al. (1987). Spall (1992) proposed the SPSA algorithm with the Bernoulli
perturbation model and indicated the computational efficiency of SPSA as compared with the standard finite
0377-2217/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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difference approximation. The convergence and asymptotic behaviour of this algorithm were established in the
class of differentiable functions.

Application of the SPSA algorithms to nondifferentiable functions is of particular theoretical and practical
interest. In this paper, we confine ourselves to objective functions from the Lipschitz class. The class of these
functions is broad enough involving many cases of continuous functions, considered in mathematical pro-
gramming. In addition, Lipschitz functions have many essential properties allowing us to define a stochastic
gradient and create converging numerical procedures. We consider the SPSA algorithms that introduce per-
turbation models described in terms of density functions, which are also Lipschitzian. This model enables us to
extend a set of perturbation operators involving a lot of practical cases, for instance, perturbation densities of
a piecewise linear shape, presented by polygons, etc. Besides, this assumption makes it possible to approximate
the objective function by twice differentiable smoothed functions, as well as applying the sampling and like-
lihood ratios method (Rubinstein and Shapiro, 1993).

The paper is arranged in the following way: Section 2 presents general assumptions and definitions neces-
sary for the convergence of the SPSA algorithms. The convergence proof for the algorithm is given in Section
3, while the convergence rate is estimated in Section 4. Section 5 provides computer modelling results with test
functions, while Section 6 presents an example of volatility estimation by the SPSA algorithm.

2. General assumptions and definitions

We consider the multidimensional continuous optimization problem:
f ðxÞ ! min; ð1Þ

where the objective function f : Rn ! R is Lipschitzian. Let of(x) be the generalized gradient (GG), i.e., the
Clarke subdifferential (Clarke, 1983) of this function.

Assume X* to be the set of stationary points:
X � ¼ fxj0 2 of ðxÞg

and F* the set of stationary function values:
F � ¼ fzjz ¼ f ðxÞ; x 2 X �g.

Denote the gradient of function f at the point x 2 Rn by of ðxÞ

ox , if it is differentiable in the usual sense at this
point.

Let the objective function be satisfying the following assumptions:

(A) it is Lipschitzian with constant K,
(B) it is bounded from below,
(C) lim

x!1
inf

g2of ðxÞ
kgk > 0, i.e., the generalized gradient cannot be zero at infinity,

(D) for all e > 0 we can find d > 0 such that for all y, ky � xk 6 2d, where the function f(x) is differentiable

in the usual sense, the inequality min
z2of ðxÞ

of ðyÞ
oy � z

��� ��� 6 e
2

holds uniformly in x,

(E) the set of stationary function values F* does not contain inner points.
Remark 1. One can see that the sets X* (and F*, respectively) are bounded according to the assumption on the
gradient behaviour at infinity.

It follows by virtue of the Lipschitz condition that sup
g2of ðxÞ

x2Rn

kgk 6 K.

Regularization concept is a well-known technique for constructing optimization algorithms which is
considered by many authors (see Yudin, 1965; Donoghue, 1969; Spall, 1992; Rubinstein and Shapiro, 1993;
Ermoliev et al., 1995; Kushner and Yin, 2003, etc.). In this case, we succeed in approximating gradients of
smoothed functions by stochastic estimators and creating the methods where the calculation of gradients
is not required. Sometimes, regularized gradients are called mollifier subgradients (Ermoliev et al., 1995).
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In general, this idea may be expressed as follows: a sequence of smooth functions f(x,r) is introduced which
converges to f(x), as r! 0. Then, the solution of (1) is obtained by minimizing this sequence, if the smoothing
parameter r is changed in an appropriate way.

The sequence of smoothed functions may usually be introduced using the expectation:
�f ðx; rÞ ¼ Ef ðxþ rnÞ;

where n 2 X is a random vector from the probability space (X,R,P), while r P 0 is the value of the smoothing
parameter. The properties of regularized gradients of Lipschitz functions obtained in this way are exhaustively
described in Michalevitch et al. (1987), while the mollifier subgradients of semicontinuous functions are ex-
plored by Ermoliev et al. (1995). We assume the measure P to be absolutely continuous, i.e., it can be defined
by a certain density function, which is also Lipschitzian. Thus, assume n 2 X to be a random vector from the
probability space (X,R,P), where the measure P is defined by the density function p : X! Rþ, which satisfies
the Lipschitz condition with a certain constant. We consider that X is actually identical to Rn and R to the
Borel r-algebra in this space. Let us denote the support of measure P as follows: dom(P) = {yjp(y) > 0}.
Let op(y) be a generalized gradient of p.

Let us express the smoothed function through multivariate integrals (see also Rubinstein and Shapiro,
1993; Ermoliev et al., 1995; Sakalauskas, 2002):
�f ðx; rÞ ¼
Z

X
f ðxþ ryÞ � pðyÞdy ¼ 1

rn

Z
X

f ðyÞ � p y � x
r

� �
dy. ð2Þ
It can be easily shown that �f ðx; rÞ is also a Lipschitz function in r:
j�f ðx; r1Þ � �f ðx; r2Þj 6 Ejf ðxþ r1nÞ � f ðxþ r2nÞj 6 C � K � jr1 � r2j; ð3Þ

where C = Eknk.

Remark 2. Generalized gradients op and of are set-valued mappings, defined in the whole space Rn, whose
values, in general, are uniformly bounded convex closed sets. It is well known from the Rademacher theorem
that Lipschitz functions are differentiable in the usual sense almost everywhere, and the Borel measure of the
set is zero, where the generalized gradients are set-valued (see references in Michalevitch et al., 1987). Thus, the
integrals over the absolutely continuous measure, where GG is included, can be defined unambiguously as a.s.
point valued expressions.

Thus, formal differentiation of the first integral in (2) gives us the expression
�gðx; rÞ ¼ o�f ðx; rÞ
ox

¼ Eof ðxþ rnÞ; ð4Þ
where some value of the GG of of is taken when it is set-valued.
Let us consider a gradient approximation by the likelihood ratios (LR) method (Rubinstein and Shapiro,

1993; Ermoliev et al., 1995) that allows us to introduce twice differentiable smoothed functions.

Lemma 1. Assume that W is an absolutely continuous measure with the bounded density function w : X! Rþ,

the support of which is identical to that of P: dom(W) = {yjw(y) > 0} � dom(P). Assume that
R

domðP Þ kyk
2�

kopðyÞk
wðyÞ

2
dy ¼ A <1;

R
domðPÞ kopðyÞk � dy ¼ L <1. Then, the gradient of the smoothed function (2) is a.s. point

valued mapping which can be expressed as the expectation:
�gðx; rÞ ¼ Eðgðx; r; nÞÞ; ð5Þ

g(x,r,n) is the stochastic gradient expressed by
gðx; r; nÞ ¼ ðf ðxþ rnÞ � f ðxÞÞ
r

� opðnÞ
wðnÞ ; ð6Þ
where some value of the generalized gradient op(n) is taken when it is set-valued (according to Remark 2),
Eðkgðx; r; nÞkÞ2 6 K2 � A. ð7Þ
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Hessian of the smoothed function (2) is
V ðx; rÞ ¼ o2�f ðx; rÞ
ox2

¼ 1

r
� E of ðxþ rnÞ � ðopðnÞÞT

wðnÞ

 !
; ð8Þ
where kV ðx; rÞk 6 K�L
r .

The proof is given in Appendix A.
Thus, the smoothed function (2) is an a.s. point valued differentiable in the usual sense in general. In the

case where W = P, we have
�gðx; rÞ ¼ E
ðf ðxþ rnÞ � f ðxÞÞ

r
� o lnðpðnÞÞ

� �
; ð9Þ
where the GG of ln(p(y)) is defined as follows:
o lnðpðyÞÞ ¼
opðyÞ
pðyÞ ; if y 2 domðPÞ;
0; if y 62 domðPÞ:

(

Example 1. If the perturbation operator is expressed in terms of the Gaussian density:
pðyÞ ¼ 1

2p

� �n
2

exp �kyk
2

2

 !
;

then, according to (9), we have the stochastic gradient as follows:
gðx; r; nÞ ¼ ðf ðxþ rnÞ � f ðxÞÞ � n
r

.

Example 2. Let a perturbation operator be defined as density distributed in the unit ball:
pðyÞ ¼
W � ð1� kykÞ; if kyk 6 1;

0; if kyk > 1;

	

where W ¼ 1R
kyk61

ð1�kykÞ dy
¼ n�ðnþ1Þ�C n

2ð Þ
ð2pÞ

n
2

. Undoubtedly, this function is Lipschitzian. It is easy to see that the sto-

chastic gradient can be expressed as
gðx; r; nÞ ¼ ðf ðxþ rnÞ � f ðxÞÞ � n
r � knk ;
when the likelihood ratios density of n is uniformly distributed in the unit ball:
wðyÞ ¼
1

V n
; if kyk 6 1;

0; if kyk > 1;

	

where Vn is the volume of the n-dimensional ball.

The next lemma considers the approximation of the function f(x) by the smoothed functions �f ðx; rÞ, as
r! 0.

Lemma 2. Let f(x) be Lipschitzian with constant K, and, besides, for all e > 0 we can find d > 0 such that for all

y, ky � xk 6 2d, where the function f(x) is differentiable, the inequality min
z2of ðxÞ

of ðyÞ
oy � z

��� ��� 6 e
2 holds uniformly with

respect to x. Let ri! 0 and assume Eknk2 <1. Then for any e > 0 we can find k such that for all i P k and for
all y, ky � xk 6 d, the inequality holds uniformly with respect to x: min

z2of ðxÞ
k�gðy; riÞ � zk 6 e.

Corollary. If {xk}! x, �gðxk; rkÞ ! g, rk! 0, k!1, then g 2 of(x).

The proof is given in Appendix A.
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Lemmas 1 and 2 make it possible to express smoothed gradients by volume integrals which can be numer-
ically implemented by the Monte-Carlo method. Note that, as it follows from (7), formula (6) requires only
two function values to be computed for the estimation of the gradient with bounded variance that does not
depend on r.

3. Convergence of the method

Let us introduce a sequence
xkþ1 ¼ xk � qk � gk; k ¼ 1; 2; . . . ; ð10Þ
where gk = g(xk,rk,nk+1) is the value of the stochastic gradient estimated by (6) at the point xk,n1,n2, . . . are
independent copies of n, qk is a scalar multiplier, rk is the value of the perturbation parameter in the iteration
k, and x0 is the initial point. As we see from the following theorem, the sequence (10) converges almost surely
(a.s.) to the set X* under certain conditions.

Theorem 1. If the function f : Rn ! R satisfies conditions (A)–(E) and
Z
domðWÞ

kyk4 � kopðyÞk4

ðwðyÞÞ3
dy <1;Z

domðPÞ
kopðyÞk � dy <1; Eknk2

<1;
{qk}, {rk} are sets of non-negative numbers, such that
X1
k¼1

qk ¼ 1;
X1
k¼1

q2
k <1; rk ! 0; jrk � rk�1j=qk ! 0;

qk

rk
! 0;
then lim
k!1

xk 2 X � a.s.

The proof of the theorem is based on the facts of SA convergence (see Wasan, 1969; Ermoliev, 1976; Gupal
and Norkin, 1977; Nurminski, 1979; Michalevitch et al., 1987; Dupac, 1988; Kushner and Yin, 2003, etc.).
Since it contains the peculiarities related with the considered SPSA model, we present it in detail in Appendix
A. Examples of sequences {qk}, {rk} satisfying the condition G of Theorem 1, are worth mentioning:
qk ¼ min c;
a
k

� �
; rk ¼ min d;

b

kb

� �
;

where a,b,c,d > 0 are certain constants (see Sections 4 and 5 and Wasan, 1969; Michalevitch et al., 1987).

4. Study of the rate of convergence

The rate of convergence of stochastic approximation for differentiable objective functions has been consid-
ered by many authors (see Wasan, 1969; Nurminski, 1979; Michalevitch et al., 1987; Kushner and Yin, 2003,
etc.). The rate of convergence O 1

k

� �
has been established for twice continuously differentiable functions com-

puted without noise (see e.g., Dupac, 1988). In the case where the objective function is differentiable and com-
puted with a stochastically distributed error, the rate of convergence decreases: O 1

kc

� �
; 0 < c < 1 (see Poliak,

1987; Granichin and Poliak, 2003; Kushner and Yin, 2003, etc.). On the other hand, it is known that, in certain
cases, the rate of convergence for functions with a sharp minimum can be higher than that for smoothed func-
tions (Poliak, 1987). Similarly, we show further that the upper bound of the convergence rate with 1 6 c < 2
can be achieved in SPSA algorithms. Our consideration of the rate of convergence of the SPSA methods is
based on the study of two processes: first, on the convergence to the minimum of a smoothed function (2)
of the optimizing sequence (10), second, on tending of the smoothed function minimum to the minimum of
the objective function, as rk! 0.
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Let us consider the Lipschitz function f(x) having a sharp minimum at the point x* with a certain constant
l > 0 (see e.g., Poliak, 1987):
f ðxÞ � f ðx�ÞP lkx� x�k for each x 2 Rn. ð11Þ
Denote by h : Rn ! R the Clarke generalized directional derivative at the point x� 2 Rn, i.e., the mapping
such that (Clarke, 1983; Rockafellar, 1979)
hðyÞ ¼ max
z2of ðx�Þ

ðz � yÞ; y 2 Rn. ð12Þ
The next function is introduced to describe properties of the objective function in the neighbourhood of the
sharp minimum:
�hðxÞ ¼ Eðhðxþ nÞÞ. ð13Þ
Remark 3. Since h(Æ) is a convex Lipschitz function (see Lemma 4 in Appendix A), the function �hðxÞ, being an
expectation of the latter, is twice differentiable and, thus, its derivatives can be evaluated, using the results
from the previous sections.

Denote the functions hðx; rÞ ¼ f ðx�þr�ðx�x�ÞÞ�f ðx�Þ
r and �hðx; rÞ ¼ Eðhðxþ n; rÞÞ.

In general, the minimum point x* of the objective function f(x) differs from the minimum point y* of the
function �hðxÞ. The relation between the minimum point x�r of the smoothed function and x* of the objective
function can be established: x�r ¼ x� þ rðy� � x�Þ þOðrÞ (Lemmas 5 and 6 in Appendix A).

The rate of convergence of the SPSA methods for functions with a sharp minimum is studied in the next
theorem.

Theorem 2. Let the conditions of Theorem 1 be valid and, besides, the function f(x) is semismooth and has a sin-

gle sharp minimum with the constant l > 0 at the point x*. Assume the condition lim
r!0

o2�hðy;rÞ
oy2 ¼ o2�hðyÞ

oy2 > 0 be valid for

all y taken from the certain small neighbourhood of the point y*. If
qk ¼
a
k
; a > 0; rk ¼

b

kb ; b > 0; 0 < b < 1;
a
b
>

1þ b
2 � H ;
then
E kxkþ1 � x�rkþ1
k2

� �
6

A � K2 � a � b
H

� 1

k1þb þO
1

k
2aH

b

� �
; ð14Þ
as k!1, where xk is defined according to (10), y* is the minimum point of �hðxÞ,
H ¼ o
2�hðyÞ
oy2






y¼y�

 !�1
������

������
�1

; A ¼
Z

domðPÞ
kyk2 � kopðyÞk

wðyÞ

2

dy.
The proof is given in Appendix A.

Let us compare the latter constants for different perturbation operators in the next examples.
Assume f(x) = l Æ kxk.

Example 3. If the smoothing operator is Gaussian, then the constant is
A � K2

H
¼ K2

l2
�

R
Rn kyk2 � ko lnðpðyÞÞk2 � pðyÞdyR

Rn kyk � o2pðyÞ
oy2 � opðyÞ

oy

� �
� opðyÞ

oy

� �T
� �

1;1

� pðyÞdy
¼ K2 � Eknk4

l2 � Eðknk � ðn2
1 � 1ÞÞ

¼
K2 � C n

2

� �
l2 � C nþ1

2

� � � n2 � ðnþ 2Þffiffiffi
2
p ¼ K2 � n5

2

l2
þOð1Þ. ð15Þ
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For the smoothing operator with the density from Example 2 the constant is
A � K2

H
¼ K2

l2
�
R
kyk61 kyk

2 dyR
kyk61

y2
1

kyk2 dy
¼ K2 � n2

l2 � ðnþ 2Þ ¼
K2 � n

l2
þOð1Þ. ð16Þ
Indeed, the rate of convergence of the SPSA method largely depends on the smoothing operator. The ques-
tion about the Lipschitzian smoothing operator with optimal properties has not been studied yet and, thus, it
may be a subject of the future research. Note that the convergence rate in (14) follows from the stochastic gra-
dient expression (6), when there are no noises in computation of the objective function. If the function is com-
puted with stochastically distributed errors, then the rate of convergence should essentially decrease (see
Poliak, 1987; Granichin and Poliak, 2003, etc.).
5. Computer modelling

The proposed method was studied by computer modelling. We considered a class of test functions
f ¼

Pn
k¼1akjxkj þM , where ak were randomly and uniformly generated in the interval [l,K], K > l > 0. The

samples of T = 500 test functions were generated. The test functions were minimized by the SPSA algorithm,
using the stochastic gradient (6), which requires only two function values to be computed at each iteration,
and comparing it with that obtained by applying the standard difference method to formula (4), which, in
its turn, requires that n + 1 function values be computed (Michalevitch et al., 1987; Granichin and Poliak,
2003, etc.). The multipliers were chosen in SPSA algorithm according to the condition G of Theorem 1 as fol-

lows: qk ¼ min c; a
k

� �
, rk ¼ min d; b

kb

� �
, where a = 0.25, b = 1, c = n Æ 0.005, d = d0 Æ 0.01, d0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ2Þ�ðnþ3Þ

n�ðnþ1Þ

q
are

certain empirically chosen constants. These constants were chosen for the difference method as follows:
a = 0.25, b = 1, c = 0.005, d = d0 Æ 0.01. The parameters of the simulated function class were as follows:
l = 2, K = 5. In Fig. 1 we can see sampling dependences in the logarithmic scale of the Monte-Carlo estimate
of Dk = Ekxk � x*k2 on the number of computation of function values. The SPSA algorithm presented here
appeared to be more efficient for small n than the standard finite difference approach. When the dimensionality
of the task increases, the issue of the efficiency of SPSA compared to the finite difference approach requires
some additional investigation. Besides, the theoretical and empirical least squares estimates of the rate of con-
vergence by the Monte-Carlo method are presented in Table 1.
Fig. 1. The rate of convergence for SPSA and the standard difference approximation methods, n = 2.



Table 1
Empirical and theoretical rates of convergence

b = 0.5 b = 0.75 b = 0.9

Theoretical 1.5 1.75 1.9
Empirical

n = 2 1.45509 1.72013 1.892668
n = 4 1.41801 1.74426 1.958998
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As we can see from the figure and the table, computer simulation corroborates the theoretically defined
convergence rates.

6. Volatility estimation by the SPSA algorithm

Financial data analysis, as well as risk analysis in the market research and management is often related to
the implied and realized volatility. Let us consider the application of SPSA to the minimization of the mean
absolute pricing error for the parameter estimation in the Heston stochastic volatility model. The Heston sto-
chastic volatility model is a direct expansion of the classical Black–Scholes case and provides a natural frame-
work for theoretical option pricing because a closed-form solution can be derived by means of Fourier
inversion techniques for a wide class of models (Heston, 1993). In this model option pricing biases can be com-
pared to the observed market prices, based on the latter solution and pricing error. We consider the mean
absolute pricing error (MAE) defined as
MAEðj; r; q; r; q; hÞ ¼ 1

N

XN

i¼1

CH
i ðj; r; q; r; q; hÞ � Ci



 

; ð17Þ
where N is the total number of options, Ci and CH
i represent the realized market price and the implied theo-

retical model price, respectively, while j, r, q, r, q, h (n = 6) are the parameters of the Heston model to be
estimated (j-mean denotes the reverting speed, r is ‘‘volatility of volatility’’, q is the correlation coefficient
between the asset return and its volatility, r, q are the interest rate and dividend yield, respectively, and h is
the long run mean level).

To compute option prices by the Heston model, one needs input parameters that can hardly be found from
the market data. We need to estimate the above parameters by an appropriate calibration procedure. The esti-
mates of the Heston model parameters are obtained by minimizing MAE:
MAEðj; r; q; r; q; hÞ ! min. ð18Þ
Fig. 2. Minimization of MAE by SPSA and difference approximation methods.
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The implied theoretical model price CH
i can be described as follows:
CH
i ¼ S � e�q�sP 1 � K � e�r�s � P 2;
where, Pj, j = 1,2, are two probability functions. The details of this formula’s derivation can be found in
Heston (1993) and S is the assets price, while K is a given strike price.

The Heston model was implemented for the Call option on SPX (29 May 2002). Heston’s stochastic vola-
tility model explains many effects in financial stock markets; however, the implementation of this model is asso-
ciated with the model calibration, which needs a more sophisticated optimization algorithm. The SPSA
algorithm with perturbation Example 2 was applied to the calibration of the Heston model. Usually, SPSA
requires that MAE be computed several hundred times that is reasonable for interactive Heston model calibra-
tion. In Fig. 2, we can see the dependence of MAE on the number of computations of function values, where the
same dependence obtained by the difference approximation method is given for comparison. Fig. 2 illustrates
the applicability of the SPSA algorithm in practice. The multipliers were chosen in the same way as in the pre-

vious Section with the following constants: a = 0.5, b = 0.002, c = n Æ 0.0005, d = d0 Æ 0.0002, d0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ2Þ�ðnþ3Þ

n�ðnþ1Þ

q
for SPSA method and a = 0.5, b = 0.1, c = 0.0005, d = d0 Æ 0.0005 for the finite difference method.
7. Conclusions and future research

The method for SPSA has been developed, using the operators of perturbation with the Lipschitz density
function. This SA model enables us to use the approximation of the objective function by twice differentiable
functions and to present their gradients by volume integrals. Using this presentation and the likelihood
ratios method, we have proposed the calculus of the stochastic gradient which is applied to create SPSA
algorithms for various perturbation densities. The convergence of the created SPSA algorithms was estab-
lished for Lipschitz functions under general conditions. However, the problem relating to the Lipschitzian
smoothing operator with optimal properties has not been studied and, thus, it is a subject for further
investigation.

The rate of convergence of the developed approach was explored for the functions with a sharp minimum.
The rate of convergence was studied by analysing two processes: the convergence of the optimizing sequence
to the minimum of the smoothed function, and the convergence of the smoothed function to the objective
function. We have proved that the rate of convergence Eðkxkþ1 � x�rkþ1

k2Þ ¼ O 1
kc

� �
; 1 < c < 2. Note that this

convergence rate follows from the stochastic gradient expression (6), when there are no noises in computation
of the objective function. The results obtained prove that the rate of convergence for the functions with a
sharp minimum can be higher than that for the smoothed functions. Theoretical results were validated by
computer simulation. During the Monte-Carlo simulation the empirical values of the estimated rate of con-
vergence corroborated the theoretical estimation of the convergence order 1 < c < 2. The SPSA algorithm pre-
sented here has appeared to be more efficient for small n than the standard finite difference approach. When
the dimensionality of the task increases, the issue of efficiency of SPSA in comparison with the finite difference
approach should be investigated more thoroughly. Finally, the developed algorithm was applied to the min-
imization of the mean absolute pricing error for parameter estimation in the Heston stochastic volatility model
to demonstrate its applicability for practical purposes.

Appendix A

Proof of Lemma 1. The formal differentiation of the second integral in (2) gives us an expression of the
smoothed function gradient:
o�f ðx; rÞ
ox

¼ 1

r
�
Z

X
f ðxþ ryÞ � opðyÞdy ¼ 1

r
�
Z

domðPÞ
f ðxþ ryÞ � opðyÞ

wðyÞ � wðyÞdy

¼ 1

r
� E f ðxþ rnÞ � opðnÞ

wðnÞ

� �
; ð1AÞ
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where some value of the generalized gradient is taken when it is set-valued as well as the appropriated impor-
tance density w introduced. Since the measure of the set is zero, where GG’s are set-valued (see Remark 2),
besides these GG’s are bounded and the corresponding measure is absolutely continuous, expression (1A)
is defined unambiguously as a.s. expectation.

On the other hand, by differentiating the identity
R

X pðyÞdy �
R

X pðy þ xÞdy ¼ 1 with respect to x, the next
identity
Z

X
opðy þ xÞdy �

Z
X

opðyÞdy ¼ 0
follows, and, thus, we have
Z
X

opðyÞdy ¼
Z

domðPÞ

opðyÞ
wðyÞ � wðyÞdy ¼ E

opðnÞ
wðnÞ

� �
¼ 0. ð2AÞ
Then, (5) follows from (1A) and (2A).
Note that the gradient of smoothed function is bounded k�gðx; rÞk 6 K. Next,
Eðgðx; r; nÞÞ2 ¼ E
ðf ðxþ rnÞ � f ðxÞÞ

r
� opðnÞ
wðnÞ

� �2

¼
Z

domðWÞ

ðf ðxþ ryÞ � f ðxÞÞ2

r2
� kopðyÞk2

wðyÞ dy

6 K2 �
Z

domðWÞ
kyk2 � kopðyÞk

wðyÞ

2

dy 6 K2 � A.
The Hessian (8) of the smoothed function is obtained by differentiating with respect to x the last expression
in (1A) and the estimate is presented as follows:
kV ðx; rÞk ¼ 1

r
� E

of ðxþ rnÞ � ðopðnÞÞT

wðnÞ

 !�����
�����

6
1

r
� E kof ðxþ rnÞ � ðopðnÞÞTk

wðnÞ
1

r
� E kof ðxþ rnÞk � koðpðnÞÞk

wðnÞ 6
K � L

r
: � ð3AÞ
Proof of Lemma 2. Denote the indicator of the set A by I(A). Let z1 2 of(x) be such that, for some y:
E ðof ðy þ rinÞ � z1Þ � I knk 6
d
ri

� �� �����
���� ¼ min

z2of ðxÞ
E of ðy þ rinÞ � zð Þ � I knk 6 d

ri

� �� �����
����
and k be such that ri 6
d
2
�
ffiffiffiffiffiffiffiffiffiffiffiffi

e
K�Eknk2

q
for all i P k. Hence, we have by virtue of Remark 2 and the Chebyshev

inequality:
E kof ðy þ rinÞ � z1k � I knk >
d
ri

� �� �
6 2K � P knk > d

ri

� �
6

2 � K � r2
i � Eknk

2

d2
6

e
2

. ð4AÞ
Let H : Rn ! of ðxÞ be a selector, i.e., a measurable function such that of ðyÞ
oy � HðyÞ

��� ��� ¼ min
z2of ðxÞ

of ðyÞ
oy � z

��� ��� (see

the theorem on selectors in Kuratowski, 2003), when f(y) is differentiable in the usual sense at the point y, and
otherwise, H(y) obtains any finite value, if the gradient of the f(y) is multivalued. Then, taking into account
Remark 2, if ky � xk 6 d, we have
min
z2of ðxÞ

�gðy; riÞ � zk k 6 kEðof ðy þ rinÞ � z1Þk

¼ E ðof ðy þ rinÞ � z1Þ � I knk 6
d
ri

� �� �
þ E ðof ðy þ rinÞ � z1Þ � I knk >

d
ri

� �� �����
����

6 min
z2of ðxÞ

E ðof ðy þ rinÞ � zÞ � I knk 6 d
ri

� �� �����
����

þ E ðof ðy þ rinÞ � z1Þ � I knk >
d
ri

� �� �����
���� 6 e
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by virtue of (4A) and
e
2

P E min
z2of ðxÞ

kðof ðy þ rinÞ � zÞk
� �

� I knk 6 d
ri

� �� �
¼ E ðof ðy þ rinÞ � Hðy þ rinÞÞ � I knk 6

d
ri

� �����
����

P E of ðy þ rinÞ � E Hðy þ rinÞ knk 6
d
ri






� �� �

� I knk 6 d
ri

� �� �����
����

P min
z2of ðxÞ

E ðof ðy þ rinÞ � zÞ � I knk 6 d
ri

� �� �����
����

� �
because E Hðy þ rinÞ knk 6 d
ri




� �
2 of ðxÞ due to convexity of the GG mapping. h

We need several lemmas for proving the theorems.
Denote by fHkg1k¼0 a sequence of r-algebras generated by the sequence fxkg1k¼0.

Lemma 3. If {uk} is a sequence of random variables measurable with respect to fHkg1k¼0,
P1

k¼0Eu2
k <1, thenP1

k¼0uk � EðukjHk�1Þ converges a.s.

The proof of this lemma can be found in Wasan (1969, Lemma 1, Appendix 2, Chapter 4).
Note, the function v(x) is conical at the point x� 2 Rn if v(k Æ (x � x*) + x*) = k Æ v(x) for any k P 0.

Lemma 4. Let f(x) be Lipschitzian. Then the function h : Rn ! R, defined in (12), is convex, conical and
Lipschitzian. If the function f(x) has a sharp minimum with constant l, then
hðyÞP l � kyk; y 2 Rn. ð5AÞ
Proof. The convexity and cone property of the generalized directional derivative mapping h are proved by
Clarke (1983). By definition (12) we have hðy1Þ � hðy2Þ ¼ max

z2of ðx�Þ
ðz � y1Þ � max

z2of ðx�Þ
ðz � y2Þ ¼ ðz1 � y1Þ � ðz2 � y2Þ 6

ðz1 � ðy1 � y2ÞÞ 6 K � ky2 � y1k; where ðz1 � y1Þ ¼ max
z2of ðx�Þ

ðz � y1Þ and ðz2 � y2Þ ¼ max
z2of ðx�Þ

ðz � y2Þ. In the same way

we prove h(y2) � h(y1) 6 K Æ ky2 � y1k. Thus, the Lipschitz property follows with constant K:
jhðy2Þ � hðy1Þj 6 K � ky2 � y1k.
The proof of (5A) easily follows from definition of generalized directional derivative (see Clarke, 1983; Micha-
levitch et al., 1987) and sharp property (11):
hðyÞ ¼ lim
d!0þ

sup
kvk6d
0<r6d

f ðx� þ vþ r � yÞ � f ðx� þ mÞ
r

P lim
r!0þ

f ðx� þ r � yÞ � f ðx�Þ
r

P l � kyk: �
Lemma 5. Let f(x) be the semismooth function. Then lim
r!0

�hðx; rÞ ¼ �hðxÞ.

The proof follows from the definition of generalized directional derivative, definition of �hðx; rÞ and the
Lebesgue Convergency Theorem:
lim
r!0

�hðx; rÞ ¼ lim
r!0

E
f ðx� þ r � ðx� x�Þ þ r � nÞ � f ðx�Þ

r

� �
¼ E lim

r!0

f ðx� þ r � ðx� x�Þ þ r � nÞ � f ðx�Þ
r

� �� �
¼ Eðhðxþ nÞÞ ¼ �hðxÞ: �
Lemma 6. Let x�r be a minimum point of the smoothed function (2), where f is semismooth. Then
lim
r!0

x�r � x�

r
¼ y� � x�;
where y* is a minimum point of the function �hðxÞ.
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Proof. It is easy to see that the minimum points y�r and x�r of the functions �hðx; rÞ and �f ðx; rÞ, respectively, are
related as follows: x�r ¼ x� þ rðy�r � x�Þ. Note that, the function �hðx; rÞ is continuous, bounded from below,
and infinitely increasing, as x!1. It means that this function has its minimum at the finite point y�r.

The Lemma is proved, because y� ¼ lim
r!0

y�r according to Lemma 5. h

Lemma 7. Assume that fukg11 is the sequence of non-negative numbers such that for certain k P k0 we have
u2
kþ1 6 uk � 1� ck

kp

� �
þ lk

ks

� �2

þ d
kt ;
where ck > 0, lk > 0, ck! c, lk! l, d, l > 0, c > t�p
2
> 0; s > tþp

2
. Then
u2
k 6

d
2c
� 1

kt�p þO
1

k2c

� �
.

Proof. Assume, ck P c0 ¼ c� e
2
, lk 6 l0 ¼ lþ e

2
for a certain k P k0 and a certain small e > 0. We have due to

(Wasan, 1969, Appendix 3, Lemma 6) that
d
kt 6

d
2 � ðc� eÞ

1

ðk þ 1Þt�p � 1� 2 � ðc� eÞ
kp

� �
1

kt�p

� �
. ð6AÞ
Let k0 is such that u2
k 6

d
2�ðc�eÞ � 1

kt�p for k P k0.
Then, by virtue of (6A), lemma and the latter assumption:
u2
kþ1 �

d
2ðc� eÞ �

1

ðk þ 1Þt�p 6 u2
k 1�

c� e
2

kp

� �2

þ 2 � uk 1�
c� e

2

kp

� �
�
lþ e

2

ks þ
lþ e

2

� �2

k2s

� d
2ðc� eÞ � 1� 2ðc� eÞ

kp

� �
1

kt�p

6 1�
c� e

2

kp

� �2

u2
k �

d
2ðc� eÞ �

1

kt�p

� �
� d

2 � ðc� eÞ �
e
kt þO

1

kt

� �
6 0.
Hence, u2
k 6

d
2ðc�eÞ � 1

kt�p would be true for k P k0, if this is true for some sufficiently large k0. Next, let, on the
contrary, for all sufficiently large k:
u2
k P

d
2ðc� eÞ �

1

kt�p þO
1

k2ðc�eÞ

� �
.

Then, using (6A) after simple manipulations, for sufficiently large k we get
u2
kþ1 �

d
2ðc� eÞ �

1

ðk þ 1Þt�p 6 1� c� e
kp

� �2

u2
k �

d
2ðc� eÞ �

1

kt�p

� �

� uk

kp uk � e � 1�
c� 3e

4

kp

� �
� 2 1� c

kp

� �
�
lþ e

2

ks�p

� �
þ

lþ e
2

� �2

k2s þ dðc� eÞ
2 � ktþp

6 1� c� e
kp

� �2

u2
k �

d
2ðc� eÞ �

1

kt�p

� �
� e � d

2ðc� eÞ �
1

kt þO
1

kt

� �

6 1� c� e
kp

� �2

u2
k �

d
2ðc� eÞ �

1

kt�p

� �
.

We denote as u 0k+1 the left side of the last inequality and the right side as u0k 1� c�e
kp

� �2
. Then

0 6 u0kþ1 6 u0k 1� c�e
kp

� �2
. This sequence is lower bounded and monotonous, and therefore convergent. Thus,

u0kþ1 6 u0m �
Qk

i¼m 1� c�e
i

� �2
6 u0m � e

�2ðc�eÞ�
Pk

i¼m
1
i ¼ O 1

k2ðc�eÞ

� �
, m > c. Consequently, in both cases
u2
k 6 inf

e>0

d
2ðc� eÞ �

1

kt�p þO
1

k2ðc�eÞ

� �� �
6

d
2c
� 1

kt�p þO
1

k2c

� �
: �
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Proof of Theorem 1. According to (3), we have
�f ðxkþ1; rkþ1Þ 6 �f ðxkþ1; rkÞ þ C � K � jrkþ1 � rkj. ð7AÞ

From the Lagrange formula (Dieudonné, 1960), (7), (8), (10) and Lemma 1 we obtain that
�f xkþ1; rk

� �
¼ �f ðxk; rkÞ þ ð�gðxk þ sðxkþ1 � xkÞ; rkÞ � �gðxk; rkÞÞT � ðxkþ1 � xkÞ þ �gðxk; rkÞT � ðxkþ1 � xkÞ

6 �f ðxk; rkÞ þ �gðxk; rkÞT � ðxkþ1 � xkÞ þ K � L
rk
� kxkþ1 � xkk2

¼ �f ðxk; rkÞ � qkgðxk; rk; nkþ1ÞT�gðxk; rkÞ þ
K � L � q2

k

rk
kgðxk; rk; nkþ1Þk2

¼ �f ðxk; rkÞ þ
K � L
rk

q2
kkgkk2 � qkk�gkk2 þ qkð�gkÞTð�gk � gkÞ

6 �f ðxk; rkÞ þ
K3 � L � A

rk
q2

k � qkk�gkk2 þ K � L
rk

q2
k � kgkk2 � Ekgkk2
� �

þ qkð�gkÞTð�gk � gkÞ; ð8AÞ
where 0 6 s 6 1, and, for simplicity, we denote �gk ¼ �gðxk; rkÞ, gk = g(xk,rk,nk+1).
First of all, we show that there exists an infinite subsequence that converges to X*, which is bounded with

respect to Remark 1. In the opposite case, we see that we can find �s and �d, such that a sequence of sets
fxjkxs � xk 6 2�dg has no intersection with X*, as s P �s. By virtue of condition C and Lemma 2 we can find
e > 0 such that k�gskP e > 0, if s P �s, and if �s is large enough. Let �s be such that, for i P �s, the inequality
C � K � riþ1 � rij j
qi

þ qi � K3 � L � A
ri

6
e2

2

is true. Then, according to (7A) and (8A), we get
�f ðxkþ1; rkþ1Þ 6 �f ðxs; rsÞ �
e2

2

Xk

i¼s

qi �
Xk

i¼s

qi
e2

2
� C � K � riþ1 � rij j

qi
� qi � K3 � L � A

ri

� �

þ
Xk

i¼s

q2
i �

K � L
ri
� kgik2 � E kgik2 Hij

� �� �
þ
Xk

i¼s

qið�giÞTð�gi � giÞ

6 �f ðxs; rsÞ �
e2

2

Xk

i¼s

qi þ
Xk

i¼s

qið�giÞTð�gi � giÞ þ
Xk

i¼s

q2
i �

K � L
ri
� gik k2 � E kgik2 Hij

� �� �
. ð9AÞ
Since
Pk

i¼0q
2
i EððgiÞT Hij Þ � �gi
� �2

6
Pk

i¼0q
2
i E gik k2 Hij

� �� �2

6 K4 � A2 �
Pk

i¼0q
2
i and

P1
k¼1q

2
k <1, Lemma 3 im-

plies that
P1

i¼0qið�giÞT � ð�gi � giÞ is converging a.s. Similarly we can show that
P1

i¼0q
2
i � K�L

ri
�

kgik2 � E kgik2jHi

� �� �
is converging a.s., because Ekgkk4 ¼ E f ðxkþrknÞ�f ðxkÞ

rk
� o ln pðnÞ

wðnÞ

��� ���4
� �

6 K4 �
R

domðPÞ kyk
4�

ko ln pðyÞk4

ðwðyÞÞ3 dy <1.

So the two last components in (9A) are bounded a.s. Hence, we get a contradiction in (9A), becauseP1
i¼sqi ¼ 1 and �f ðx; rÞ > �1. Consequently, there must exist an infinite subsequence converging to X*. Say

that such a subsequence does exist in sequence (10), which either converges to x 0 62 X* or to infinity.
Now we will show that if in the sequence fxkg1k¼0, there exists such a bounded subsequence convergent to

the finite point x 0, where inf
g2of ðx0Þ

kgk > 0, then there exists d0 such that, for all d 2 (0,d0], we can find such

sequences of indices flsg1s¼0, fksg1s¼0, ls < ks, so that kxi � x 0k 6 2d for all i 2 [ls,ks � 1] and
lim
s!1

f ðxksÞ < lim
s!1

f ðxlsÞ. ð10AÞ
According to our assumptions on subsequences that converge to x 0 62 X* and x 2 X*, there exist sequences of
indices ls, ks, ls < ks such that, for sufficiently small d we have kxls � x0k < d, kxks � x0k > 2d and
kxi � x 0k 6 2d, as i 2 [ls,ks � 1]. Now we show that (10A) follows from the existence of the sequences. We
see that
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xks ¼ xls �
Xks�1

i¼ls

qig
i ¼ xls �

Xks�1

i¼ls

qi�g
i �
Xks�1

i¼ls

qiðgi � �giÞ.
According to Lemma 3,
P1

i¼0qi � ðgi � �giÞ converges a.s. It means that
Pks�1

i¼ls
qiðgi � �giÞ

��� ��� < d
2
, when s P �s, if �s

is large enough. Therefore
d 6 kxks � xlsk 6
Xks�1

i¼ls

qi�g
i

�����
�����þ

Xks�1

i¼ls

qiðgi � �giÞ
�����

����� 6
Xks�1

i¼ls

qi�g
i

�����
�����þ d

2
.

Thus,
Pks�1

i¼ls
qi�g

i
��� ��� P d

2
and

Pks�1
i¼s qi P d

2�
ffiffiffi
K
p , because k�gik2

< K. Then an estimate follows from (9A):
�f ðxks ; rksÞ 6 �f ðxls ; rlsÞ �
e2 � d

8 �
ffiffiffiffi
K
p .
According to the uniform convergence with respect to x �f ðx; rÞ ! f ðxÞ, as r! 0, we have that (10A) is true. It

means that for all numbers f 0 and f00, such that lim
s!1

f ðxksÞ < f 0 < f 00 < lim
s!1

f ðxlsÞ, the sequence f(xk) crosses the

interval (f 0, f00) many times. Then we can find two subsequences fxrig and fxpig, for which
f ðxriÞ 6 f 0; f ðxriþ1Þ > f 0; ð11AÞ
f ðxpiÞ > f 00; f ðxkÞ > f 0; rs < k < ps. ð12AÞ
Without loss of generality, assume the sequence fxrig to be convergent; in the opposite case, instead of this
sequence, let us take its converging subsequence. It follows from the convergence of the sequence fxrig, the
continuity of f, (11A) and qi! 0 that lim

i!1
f ðxriÞ ¼ f 0. Further, by virtue of (11A) and (12A), we obtain
lim
i!1

f ðxpiÞP lim
i!1

f ðxriÞ. ð13AÞ
Since F* does not contain inner points, f 0 can be chosen so that f 0 62 F*. So (10A) can be derived when {rs}
corresponds to {ls}. But in this way, (13A) contradicts to (10A).

If such a subsequence converging to infinity exists in the sequence fxkg1k¼0, analogously it is shown, that
there exists d0 such that, as d 2 (0,d0], we can find such a sequence of indices flsg1s¼0, fksg1s¼0, that

inf
x2X �
kxls � xk > 2 � d, inf

x2X �
kxks � xk < d, and inf

x2X �
kxi � xkP d for all i 2 [ls,ks � 1], and lim

s!1
f ðxksÞ < lim

s!1
f ðxlsÞ

are derived. Further, the existence of the corresponding indices rs,ps is established leading to a
contradiction. h

Proof of Theorem 2. Since the objective function is assumed having only one sharp minimum, the sequence
(10) converges a.s. to the point of this minimum. According to (10) and the optimality condition �gðx�rk

; rkÞ ¼ 0,
we have that
xkþ1 � x�rkþ1

��� ���2

¼ xk � x�rkþ1
� qk � ð�gðxk; rkÞ � �gðx�rk

; rkÞÞ � qk � ðgðxk; rk; nkþ1Þ � �gðxk; rkÞÞ
��� ���2

¼ xk � x�rkþ1
� qk � ð�gðxk; rkÞ � �gðx�rk

; rkÞÞ
��� ���2

� 2qk � ðgðxk; rk; nkþ1Þ

� �gðxk; rkÞÞT � ðxk � x�rkþ1
� qk � ð�gðxk; rkÞ � �gðx�rk

; rkÞÞÞ

þ q2
k � gðxk; rk; nkþ1Þ � �gðxk; rkÞ
�� ��2

.

By averaging both sides of this equality, we obtain by virtue of (7)
E xkþ1 � x�rkþ1

��� ���2

jHk

� �
¼ xk � x�rkþ1

� qkð�gðxk; rkÞ � �gðx�rk
;rkÞÞ

��� ���2

þ q2
kE gðxk; rk; nkþ1Þ � �gðxk; rkÞ

�� ��2
Hkj

� �
6 xk � x�rkþ1

� qkð�gðxk; rkÞ � �gðx�rk
; rkÞÞ

��� ���2

þ q2
k � K2 � A.
Note that, o2 �f ðx;rÞ
ox2 ¼ 1

r �
o2�h ðx�x�Þ

r þx�;r
� �

ox2 .
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Further, from the Lagrange formula and the latter expression the estimate follows: �gðxk; rkÞ�
��

�gðx�rk
; rkÞk2 P H 2

k

r2
k
� xk � x�rk

�� ��2
, where H k ¼ min

06s61

o2�hðy;rÞ
oy2





y¼

xk�x�þs�ðxk�x�rk
Þ

rk
þx�

 !�1
������

������
�1

. By the latter estimates

and Lemma 6, we get
E kxkþ1 � x�rkþ1
k2jHk

� �
6 kxk � x�rk

k � 1� qk

rk
� Hk

� �
þ ðrk � rkþ1Þ � ky� � x�k þOðrkÞð Þ

� �2

þ q2
k � K2 � A;

ð14AÞ
� ��1
�� ���1
where Hk ! H ¼ o2�hðyÞ
oy2




y¼y�

��� ��� ; k !1, according to theorem condition.

After simple manipulations averaging both sides of (14A), the inequality follows:
E xkþ1 � x�rkþ1

��� ���2
� �

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ekxk � x�rk

k2
q

� 1� qk

rk
�Hk

� �
þ ðrk � rkþ1Þ � y� � x�k k þOðrkÞð Þ

� �2

þ q2
k � K2 � A.
Finally by virtue of Lemma 7, we obtain the estimate:
E xkþ1 � x�rkþ1

��� ���2
� �

6
A � K2 � a � b

H
� 1

k1þb þO
1

k
2aH

b

� �
: �
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Dieudonné, J., 1960. Foundations of Modern Analysis. Academic Press, NY, London.
Donoghue, W.F., 1969. Distributions and Fourier Transforms. Academic Press, NY, London.
Dupac, V., 1988. Stochastic approximation. In: Krishnaiah, P.R., Sen, P.K. (Eds.), Handbook of Statistics. Nonparametric Methods.

Nord Holand, NY.
Dvoretzky, A., 1956. On stochastic approximation. In: Neumann, J. (Ed.), Proceedings of the 3rd Berkeley Symposium of Mathematical

Statistics and Probability, vol. I. University of California Press, Berkeley, pp. 39–55.
Ermoliev, Yu.M., 1976. Methods of Stochastic Programming. Nauka, Moscow (in Russian).
Ermoliev, Yu.M., Norkin, V.I., Wets, R.J.-B., 1995. The minimization of semicontinuous functions: Mollifier subgradients. Control and

optimization 3 (1), 149–167.
Granichin, O.N., Poliak, B.T., 2003. Randomized Algorithms for Estimation and Optimization with Almost Arbitrary Errors. Nauka,

Moskow (in Russian).
Gupal, A.M., Norkin, V.I., 1977. An algorithm for minimization of discontinuous functions. Kibernetika, 73–75.
Heston, S.L., 1993. A closed-form solution for options with stochastic volatility with applications to bond and currency options. The

Review of Financial Studies 6 (2), 327–343.
Kiefer, J., Wolfowitz, J., 1952. A stochastic estimation of the maximum of a regression function. Annals of Mathematical Statistics 23 (3),

462–466.
Kushner, H.J., Yin, G.G., 2003. Stochastic Approximation and Recursive Algorithms and Applications. Springer, NY, Heidelberg, Berlin.
Kuratowski, K., 2003. Topology, vol. II. Academic Press, NY.
Michalevitch, V.S., Gupal, A.M., Norkin, V.I., 1987. Methods of Nonconvex Optimization. Nauka, Moscow (in Russian).
Nurminski, E.A., 1979. Numerical Methods for Solving Deterministic and Stochastic Minimax Problems. Naukova Dumka, Kiev (in

Russian).
Poliak, B.T., 1987. Introduction to Optimization. Translations Series in Mathematics and Engineering. Optimization Software, Inc.,

Publications Division, New York.
Robins, H., Monro, S., 1951. A stochastic approximation method. Annals of Mathematical Statistics 22 (3), 400–407.
Rockafellar, R.T., 1979. Directionally Lipschitzian functions and subdifferential calculus. Proceedings of the London Mathematical

Society 39, 331–355.
Rubinstein, R., Shapiro, A., 1993. Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization by the Score Function

Method. Wiley, New York, NY.
Sakalauskas, L., 2002. Nonlinear stochastic programming by Monte-Carlo estimators. Informatica 137, 558–573.
Spall, J.C., 1992. Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Transactions

on Automatic Control 37, 332–341.
Wasan, M.T., 1969. Stochastic approximation. Transactions in Mathematics and Mathematical Physics. Cambridge University Press,

Cambridge.
Yudin, D.B., 1965. Qualitative methods for analysis of complex systems. Izv. AN SSSR, Ser. ‘‘Technicheskaya. Kibernetika’’, No. 1, pp.

3–13 (in Russian).


	Simultaneous perturbation stochastic approximation of nonsmooth functions
	Introduction
	General assumptions and definitions
	Convergence of the method
	Study of the rate of convergence
	Computer modelling
	Volatility estimation by the SPSA algorithm
	Conclusions and future research
	Appendix A
	References


