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Abstract. The adequate location of wells in oil and environmental applications has a significant economic impact on reservoir management.
However, the determination of optimal well locations is both challenging and computationally expensive. The overall goal of this research is
to use the emerging Grid infrastructure to realize an autonomic self-optimizing reservoir framework. In this paper, we present a policy-driven
peer-to-peer Grid middleware substrate to enable the use of the Simultaneous Perturbation Stochastic Approximation (SPSA) optimization
algorithm, coupled with the Integrated Parallel Accurate Reservoir Simulator (IPARS) and an economic model to find the optimal solution
for the well placement problem.
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1. Introduction

The locations of wells in oil and environmental applica-
tions significantly affect the productivity and environmen-
tal/economic benefits of a subsurface reservoir. However, the
determination of optimal well locations is a challenging prob-
lem since it depends on geological and fluid properties as well
as on economic parameters. This leads to a very large number
of potential scenarios that must be evaluated using numeri-
cal reservoir simulations. Reservoir simulators are based on
the numerical solution of a complex set of coupled nonlinear
partial differential equations over hundreds of thousands to
millions of gridblocks. The high costs of simulation make an
exhaustive evaluation of all these scenarios infeasible. As a
result, the well locations are traditionally determined by an-
alyzing only a few scenarios. However, this ad hoc approach
may often lead to incorrect decisions with a high economic
impact.

Optimization algorithms offer the potential for a systematic
exploration of a broader set of scenarios to identify optimum
locations under given conditions. These algorithms together
with the experienced judgment of specialists, allow a better
assessment of uncertainty and significantly reduce the risk
in decision-making. Consequently, there is an increasing in-
terest in the use of optimization algorithms for finding the
optimum well location in oil industry [4,8,17,32]. However,
the selection of appropriate optimization algorithms, the run-
time configuration and invocation of these algorithms, and the
dynamic optimization of the reservoir remain a challenging
problem.

The overall goal of this research is to use the emerging Grid
infrastructure [7] and its support for seamless aggregations,
compositions and interactions, to realize an autonomic self-
optimizing reservoir application. The application consists of:
(1) sophisticated reservoir simulation components that encap-
sulate complex mathematical models of the physical interac-
tion in the subsurface, and execute on distributed computing
systems on the Grid; (2) Grid services that provide secure and
coordinated access to the resources required by the simula-
tions; (3) distributed data archives that store historical, ex-
perimental and observed data; (4) sensors embedded in the
instrumented oilfield providing real-time data about the cur-
rent state of the oil field; (5) external services that provide data
relevant to optimization of oil production or of the economic
profit such as current weather information or current prices;
and (6) the actions of scientists, engineers and other experts,
in the field, the laboratory, and in management offices.

These components need to dynamically discover one an-
other and interact as peers to achieve the overall applica-
tion objectives. First, the simulation components interact with
Grid services to dynamically obtain necessary resources, de-
tect current resource state, and negotiate required quality of
service. Next, we recall that the data necessary for reservoir
simulation is usually sparse and incomplete; in particular, this
concerns the data on the geology of the subsurface and on
the resident fluids which are very difficult to obtain. There-
fore, the simulation components interact with one another
and with data archives and real-time sensor data to enable
better characterization of the reservoir through processes of
dynamic data injection, and data driven adaptations. Then,
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the reservoir simulation components interact with other ser-
vices on the Grid, for example, with optimization services
to optimize well placement, with weather services to control
production, and with economic modeling services to detect
current and predicted future oil prices so as to maximize the
revenue from the production. Finally, the experts (scientists,
engineers, and managers) collaboratively access, monitor, in-
teract with, and steer the simulations and data at runtime to
drive the discovery process.

The overall oil production process described above is au-
tonomic in that the peers involved automatically detect sub-
optimal oil production behaviors at runtime and orchestrate
interactions among themselves to correct this behavior. Fur-
ther, the detection and optimization process is achieved using
policies and constraints that minimize human intervention.
The interactions between instances of peer services are op-
portunistic, based on runtime discovery and specified policies,
and are not predefined.

In this paper we use our prototype autonomic reservoir
framework [15] to investigate the policy-driven runtime selec-
tion and invocation of optimization services to determine opti-
mal well placement and configuration. The specific objectives
of this paper include: (1) characterization of the behavior and
applicability of optimization techniques for oil reservoir opti-
mization; (2) formulation of policies for the runtime selection
and invocation of optimization services for well placement;
and (3) the design of a prototype policy-driven framework
for autonomic reservoir optimization in Grid environments.
In our earlier work [15], we studied the use of the Very Fast
Simulated Annealing (VFSA) [24] optimization technique.
In this paper we use the Simultaneous Perturbation Stochastic
Approximation (SPSA) [25,27] algorithm for optimizing well
placement.

The reservoir framework consists of (i) instances of dis-
tributed multi-model, multi-block reservoir simulation com-
ponents provided by the IPARS reservoir simulator frame-
work, (ii) optimization services based on the SPSA algorithm,
(iii) economic modeling services, (iv) real-time services pro-
viding current economic data (e.g. oil prices), (v) archives of
data that has already been computed, and (vi) experts (sci-
entists, engineers) connected via pervasive collaborative por-
tals. It is built on the Pawn P2P substrate, which provides
JXTA-based [22] peer-to-peer messaging services, and the
Discover computational collaboratory, which combines Grid
infrastructure services provided by Globus [6] and interaction
and collaboration services.

The rest of this paper is organized as follows. Section 2
describes the well placement problem and introduces the
underlying models and components. It also presents the
SPSA optimization algorithm. Section 3 describes the de-
sign and implementation of the autonomic reservoir frame-
work. Sections 4 describes the well location optimization
process using SPSA. Section 5 derives policies for the se-
lection and invocation of optimization services for auto-
nomic well placement. Section 6 presents a summary and
conclusions.

2. Autonomic oil well placement optimization

In this section, we specify the mathematical models under-
lying the reservoir simulation (forward model), the revenue
function (objective function), and the stochastic optimization
algorithm. We end the section with a description of the case
study based on a real application problem.

2.1. Problem description

Let us assume that there exists an oil reservoir whose proper-
ties are known, at least at a given scale, and in which a few
wells are already operating. The problem is to find the opti-
mum geographical location for drilling a new well in order to
maximize production, oil sweep efficiency or a given revenue
value. In practice, the question of finding optimal operating
schedules of new and existing wells, i.e. for example pump-
ing rates as a function of future time, is also important, but is
a much more complicated problem that we will not consider
here. We will also only look at the placement of one well at a
time.

The well placement problem is an optimization problem
for the well location p = (x, y), which has to lie in a set P
of possible parameter values. In order to describe what we
mean by “optimal well location”, we need to define a scalar
objective function f (p) that measures the economic cost of
drilling and operating at position p minus the revenue we
get from the produced oil. The goal is then to minimize this
function, or equivalently to maximize the revenue minus the
cost. We will describe this objective function in Section 2.3.

With this function defined, the optimization problem con-
sists of finding that position popt ∈ P such that the cost f (popt)
is less than or equal to the cost f (p) for all other possible
source locations p ∈ P . The task of finding this optimum is
complicated by three facts:

� First, the set P does not necessarily have to be continuous;
rather, it can, and in fact it will in the example shown below,
consist of single points because our numerical model only
allows us to place wells at a discrete set of positions (the
only viable locations are the centers of cells of our finite
element scheme). This discreteness of the set P of course
precludes the computation of derivatives.

� Secondly, even if P is a continuous set, derivatives of f (p)
are usually unavailable analytically because of the com-
plexity of computing them; in addition, f (p) may not
be differentiable at all, rendering the question of com-
puting derivatives moot. Therefore we focus on a class
of gradient-free optimization methods which require only
the evaluation of the objective function f (p) at certain
points. This task is accomplished by running a reservoir
simulator for a number of trial positions p and evaluating
the economic objective function f (p) for the predicted
production of a model with a well at position p.

� Thirdly, computing function values for models as the ones
considered here is expensive: for realistic simulations,
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evaluating the objective function for a given well loca-
tion can easily take many hours even on fast computers.
This forces us to make use of efficient optimization meth-
ods, as well as novel approaches to distributed computing.
In the model application considered here, we use a simpli-
fied model that reduces the computing time for one eval-
uation of f (p) to about 25 minutes on an AMD Athlon
2 GHz Linux-based desktop computer. This reduction in
complexity enables us to completely map the objective
function for all possible well locations in order to verify
the path the optimizer is describing. However, this is nei-
ther possible nor economic in realistic applications and it
is only used in this paper to illustrate the effectiveness of
the method.

In the following, we provide a brief overview of the mathe-
matical models and optimization methods. We note that these
two parts are essentially independent of one another: the sim-
ulator just computes f (p) for a given p ∈ P , without knowl-
edge of what will be done with this value; on the other hand,
the optimizer just asks for f (p) for a given p, without caring
how it is computed. This independence is reflected in the im-
plementation by making the reservoir simulation model and
the optimizer two independent components that interact only
by using the Pawn interaction middleware.

2.2. Mathematical model for the flow in an oil reservoir

We consider a heterogeneous 3D oil reservoir, denoted by
�, surrounded by impermeable rocks (i.e., no flow boundary
conditions). The set of partial differential equations describing
the conservation of mass of each component m = o, w (oil and
water) are

∂(φNm)

∂t
+ ∇ · Um = qm . (1)

Here, φ is the porosity of the porous medium, Nm the
concentration of a component m, and qm the sources (pro-
duction and injection rates). The fluxes Um are defined us-
ing Darcy’s law [9] which, with gravity ignored, reads as
Um = −ρm Kλm∇ Pm , where ρm denotes the density of a com-
ponent, K the permeability tensor, λm the mobility of a com-
ponent, and Pm the pressure of a phase. Additional equations
specifying volume, capillary, and state constraints are added,
and boundary and initial conditions complement the system,
see [2,9]. Finally, Nm = Smρm with Sm denoting saturation
of a phase. The resulting system (omitting gravity terms for
simplicity) is

∂(φρm Sm)

∂t
− ∇ · (ρm Kλm∇ Pm) = qm . (2)

In this paper we consider wells that either produce (a mix-
ture of) oil and water, or at which water is injected. At an
injection well, the source term qw is nonnegative (we will use
the notation q+

w := qw to make this explicit). At a production
well, both qo and qw may be non-positive and we will denote
this by q−

m := −qm . In practice, both injection and production

rates are subject to control, and thus to optimization; however,
in this paper we assume that rates are user predefined and are
not decision parameters in our problem.

This model is discretized in space using the expanded
mixed finite element method which, in the case considered
in this paper, is numerically equivalent to the cell-centered
finite difference approach [1,23]. Time discretization can be
either fully implicit, semi-implicit or sequential; here we only
consider the sequential method in which two linear systems of
equations, the pressure equation and the concentration equa-
tion, are solved at each time step.

This discrete model is solved by the IPARS (Integrated Par-
allel Accurate Reservoir Simulator) software developed at the
Center for Subsurface Modeling at The University of Texas
at Austin [10,13,19,21,28–31]. IPARS is a parallel reservoir
simulation framework for modeling multiphase, multiphysics
flow in porous media. It offers sophisticated simulation com-
ponents that encapsulate complex mathematical models of the
physical interaction in the subsurface, and which execute on
parallel and distributed systems. Solvers employ state-of-the-
art techniques for nonlinear and linear problems including
multigrid and other preconditioners [11]. It can handle an ar-
bitrary number of wells each with one or more completion
intervals. Although not used here, IPARS supports multiple
physical models and their multiphysics couplings.

2.3. The economic model

In general, the economic value of production is a function of
the time of production and of injection and production rates in
the reservoir. It takes into account fixed costs such as drilling
a well, prices of oil, costs of injection, extraction, and disposal
of water, as well as associated operating costs. We assume here
that operation and drilling costs are fixed, i.e. independent of
the well location.

We therefore define our objective function by summing
the revenues from produced oil over all production wells, and
subtracting the costs of disposing produced water and the cost
of injecting water. We then obtain

f (p) = −
∫ T

0

{ ∑
prod. wells

{(coq−
o (s) − cw,disp q−

w (s))}

−
∑

inj. wells

cw,inj q+
w (s)

}
(1 + r )−t dt, (3)

where q−
o and q−

w are production rates for oil and water, re-
spectively, and q+

w are injection rates, each in barrel per day.
The coefficients co = 24, cw,disp = 1.5 and cw,inj = 2 are the
prices of oil and the costs of disposing and injecting water,
in dollars per barrel each. The exponential factor takes into
account that the drilling costs have to be paid up front and
have to be paid off with interest. We choose an interest rate
of r = 10% = 0.1 per year. T is the time horizon up to which
we perform our simulations, and up to which we integrate
the revenue. Finally, we define f (p) to be the negative total
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revenue, since we want to minimize f (p), which then amounts
to maximizing the revenue.

Note that f (p) depends on the location p of the additional
well in two ways. First, the injection rates of the additional
well, and thus its associated costs, depend on its location if
the bottom hole pressure (BHP) is prescribed. Secondly, the
production rates of the other wells as well as their water-oil
ratio depend on where water is injected.

We remark that other objective functions would also be
possible. For example, one may want to minimize the amount
of bypassed oil, i.e. oil that is not going to be produced from
the reservoir by the given set of wells. Or, one may wish
to minimize the amount of produced water. This last case is
somewhat akin to preventing the water coning and water fin-
gering phenomena [5, 20]. Note, however, that the (negative)
cost of water production already appears as one term in the
objective function defined above.

2.4. Optimization

As mentioned above, viable methods for finding the maxi-
mum or minimum of our objective function f (p), p ∈ P,

must be content with evaluating f (·) directly since gradients
are not available. In addition, we are only interested in meth-
ods that are efficient, i.e. need only a small number of func-
tion evaluations, in order to keep computing times within a
manageable range. In a previous study [15], we have used
the Very Fast Simulated Annealing (VFSA) algorithm to find
the minimum of f (p). Here, we focus on the use of the Si-
multaneous Perturbation Stochastic Approximation (SPSA)
algorithm, see [25, 27].

Stochastic approximation (SA) methods represent an
important class of stochastic search algorithms. Many
well-known techniques are special cases of SA, including
neural-network backpropagation, perturbation analysis for
discrete-event systems, recursive least squares and least mean
squares, genetic algorithms and simulated annealing. SPSA
works by starting from an initial guess p0 ∈ P and then in
each iteration k performing the following steps:

Algorithm 2.1 (SPSA).

1 Set k = 1, γ = 0.101, α = 0.602.

2 While k < Kmax or convergence has not been reached do

2.1 Compute a random search direction �k in {−1, +1}.
2.2 Compute ck = c

kγ , ak = a
kα .

2.3 Evaluate f + = f (pk + ck�k) and f − = f (pk −
ck�k).

2.4 Compute an approximation to the magnitude of the
gradient by gk = ( f + − f −)/2ck .

2.5 Set pk+1 = pk − ak gk�k .
2.6 Set k = k + 1.

end while

Some comments are in order. Step 2.1 selects each vec-
tor component of �k to be independent and satisfy certain
statistical properties. The simplest choice that satisfies these

requirements is to choose them from a Bernoulli distribution,
i.e., �k in {−1, +1}. The gain parameters ck, ak are decreas-
ing sequences with respect to k. Although they may change
according to the problem, we have found it suitable to define
them as suggested in [26]. For the present problem, we use
c = 5 and a = 2 · 10−5. Step 2.3 and 2.4 are used to compute
an approximation gk to the magnitude of the gradient. The
reader may realize that the update of the solution in Step 2.5
is basically a stochastic version of a steepest descent method
(see [27]).

In other words, in each step the algorithm chooses a random
direction and looks ahead and back a certain distance ck in this
direction for the value of the objective function f (·). Depend-
ing on whether the function value is smaller in the forward
or backward direction, it moves the next iteration forward or
backward by ak gk . In practice, we stop the iteration if it did
not make any significant progress in the last κ steps (i.e. cycles
back and forth), measured by the criterion |pk − pk−κ | < ξ ;
in our computations, we chose κ = 6 and ξ = 2. Note that we
do not necessarily stop at an optimum but rather at some ran-
dom point while jumping back and forth; however, both the
stopping point as well as the best point encountered during the
process are usually very close in value to the global optimum.

The success of this algorithm is due to the fact that even
though it only uses two function evaluations per iteration and
uses random directions, it always generates a descent direction
(at least with respect to the given step length). It is thus able to
approximate the gradient of f (·) without actually computing
it, by generating random directions that, on average, resemble
the gradient.

As mentioned above, we only consider a discrete and finite
set P for the possible well locations. Thus, the above algorithm
requires two modifications:

� ck and ak gk need to be integers. To enforce this, we al-
ways round these values up to the next integer, i.e. we use
� c

kγ �, � a
kα gk� where ck and ak gk appear. This, together with

the choice of �k makes sure that all iterates and evaluation
points are on the integer lattice on which we optimize.

� Iterates and evaluation points have to stay within the
bounds surrounding P . For this, let �(p) be the clos-
est point in P for a given point p (which may lie out-
side of P). Then we use f + = f (�(pk + ck�k)) and
f − = f (�(pk − ck�k)). The new step is computed as
pk+1 = �(pk ± ak gk�k). Since our feasible region P is
the set of integers inside a box, this simple procedure al-
ways guarantees that we find a viable step.

With these modifications, the algorithm only ever evaluates
points that are members of the set P .

We note that in the present context of distributed peer-to-
peer applications, SPSA has a number of advantages com-
pared to some other optimization algorithms, for example the
VFSA algorithm mentioned above [15]. In particular, in Step
2.4 of the SPSA algorithm outlined above, we need to per-
form two function evaluations, each of which requires running
IPARS for a given well location. Since these computations are
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Figure 1. Permeability field showing the positions of current wells. The symbols ‘∗’ and ‘+’ indicate injection and producer wells, respectively.

independent, they could well be run in parallel, for example
on two different clusters. Given the high cost of running each
of these simulations, this can reduce the run-time by a factor
of two. Also, there are modifications of the basic SPSA al-
gorithm that not only compute one search direction �k and
evaluate the objective function in forward and backward di-
rection, but rather generate several, say S search directions,
resulting in 2S function evaluations [25]. The final update step
from pk to pk+1 is then done by incorporating the information
of all these computations. This modification allows a better ap-
proximation of the true gradient of f (·) and will thus converge
in less iterations. The cost of additional function evaluations
could be buffered by running some or all of the independent
2S IPARS computations in parallel, a task which the IPARS
Factory (to be described below) could easily distribute to avail-
able resources. Finally, by starting at different initial points,
the algorithm may converge to the same optimum solution
(augmenting the reliability of reaching a unique global solu-
tion) or to a set of different solutions (several extrema due to
the nonlinearity of the problem). In the latter case, specialists
and management could be interested in looking at clusters of
solutions for comparison against other complex factors not
included during the optimization stage. We have not yet im-
plemented these extensions to the basic SPSA algorithm, but
plan to explore them in a future work.

2.5. Case study

In our case study we consider a 2D reservoir � = [0, 4880]×
[0, 5120] of roughly 25 million ft2, which is discretized by

a 61 × 64 spatial grid of 80 ft spacing along each horizontal
direction, and a depth of 30 ft. Hence, the model consists
of 3904 gridblocks. The reservoir under study is located at
a depth of 3868.94 ft (i.e., 1 km) and corresponds to a 2D
section extracted from the Gulf of Mexico. The porosity has
been fixed at φ = 0.2 but the reservoir has a heterogeneous
permeability field as shown in figure 1. The fluids are initially
in equilibrium with water pressures set to 2600 psi and oil
saturation to 0.7.

The original reservoir consists of 5 wells: 2 water injectors
and 3 oil producers. Figure 1 shows the opposite-corner dis-
tribution of injectors (bottom left) and producers (top right).
Injection and production rates are computed by specifying a
fixed bottom hole pressure (BHP). Since oil flows from the
lower left corner to the upper right corner, one would intu-
itively guess that the new injection well should be located
somewhere in the neighborhood of the reservoir center. The
permeability field suggests that flow should be faster in the
lower part of the reservoir, so the new well should shift its
location to the upper part, where oil is displaced more slowly.
This is also indicated by looking at the oil saturation and pres-
sures at the end of the simulation period at T = 2000 days, as
shown in figure 2. However, such analysis is not that straight-
forward when more wells are involved.

Given this description of the domain, the parameter
space is the set of 3904 points of the integer lattice P =
{40, 80, 120, . . . , 4840} × {40, 80, 120, . . . , 5080} of cell
midpoints, at which we can place wells in our computational
model. We assume that the well penetrates through the entire
depth of the reservoir, that is, the depths of its bottom and
top are fixed. We also fix the BHP operating conditions at the
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Figure 2. Top: Oil saturation at the end of the simulation for the original well distribution. Bottom: Oil pressure.

new injection well to be the same as that at the other injection
wells. We note that in general, the BHP and well penetration
parameter could vary and become an element of P . Also, more
wells could be placed.

The goal of the case study is then to find the optimal posi-
tion p ∈ P of a new well, with respect to the objective function
f (p) defined above. Given enough computing resources, one

could evaluate f (p) for all 3904 possible p ∈ P and from this
easily determine the optimal well location. For the simple test
case considered here where every function evaluation takes
about 25 min on a Linux PC consisting of dual 2 GHz AMD
Athlon processors, we have actually done this and show the
results in figure 3. However, for more realistic computations,
this is of course not possible, and optimization algorithms
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Figure 3. Search space response surface: Expected revenue − f (p) for all possible well locations p ∈ P . White marks indicate optimal well locations found
by SPSA for 7 different starting points of the algorithm.

have to use much less than this number of function evalua-
tions. In this paper we achieve this using the SPSA algorithm
discussed above.

Note that while we would in general like to compute the
global optimum, we will usually be content if the algorithm
finds a solution that is almost as good. This is important in
the present context where the revenue surface plotted in fig-
ure 3 has 72 local optima, with the global optimum being
f (p = {2920, 920}) = −1.09804 · 108. However, there are 5
more local extrema within only half a per cent of this optimal
value, which makes finding the global optimum rather com-
plicated. The white marks in the figure indicate the best well
positions found by the SPSA algorithm when started from
seven different points on the top-left to bottom-right diagonal
of the domain. As can be seen, SPSA is able to find very good
well locations from arbitrary starting points, even though it
does not find the global optimum every time.

3. Enabling autonomic oil reservoir optimization using
decentralized services

The overall application scenario is illustrated in figure 4. The
primary peers and services participating in the application are
described below.

3.1. Integrated Parallel Accurate Reservoir Simulator
(IPARS)

IPARS is the reservoir simulator that, together with the eco-
nomic model, is used to evaluate the objective function. It is

a peer in our application that takes a number of input files
which, among other things, specify a well position p, and
returns the production history of all wells. IPARS is primar-
ily implemented in Fortran and C, but is integrated with the
framework discussed in this paper using C++ wrappers and
the Java Native Interface.

3.2. IPARS factory

The IPARS Factory is responsible for configuring instances
of IPARS simulations, deploying them on resources on the
Grid, and managing their execution. Configuration consists
of generating the relevant input files that select appropriate
models from those provided by IPARS, define the structure
and properties of the reservoir to be simulated, and list required
parameters. Deployment and management of IPARS instances
use services provided by Discover [14] and Globus [6], and
build on the CORBACoG Kit [18].

3.3. SPSA optimization service

The SPSA Optimization service runs on the Optimization peer
and implements the SPSA algorithm presented in Section 2.4.
It also offers interfaces and mechanisms for interactive and
autonomic communications between the Optimization peer,
IPARS instances, and the IPARS Factory. The optimization
service uses the SPSA algorithm to generate guesses of new
well positions. This guess is first compared against an archive
of already computed well positions, therefore preventing use-
less computation of already known data. If no match is found,
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Figure 4. Autonomous oil reservoir optimization using decentralized services.

the new guess is added to the archive and is forwarded to
the IPARS Factory. The IPARS factory then uses these well
positions to initialize and configure a new instance of IPARS.

3.4. Economic modeling service

The Economic Modeling Service is based on the eco-
nomic model presented in Section 2.3 and uses the out-
put produced by an IPARS simulation instance and cur-
rent market parameters (e.g. oil prices, drilling costs, etc.)
to compute estimated revenues for a particular reservoir
configuration.

The market parameters used by the model are variable
economic indices including the price of oil per volume pro-
duced, the cost of water per volume, the cost of disposal of
water, and the current discount rate. These indices are ob-
tained using a network information service that collects in-
formation at regular intervals from different sources on the
Internet. The network information service is implemented
as a threaded Java Servlet and is part of the Discover mid-
dleware. The Servlet essentially queries a relevant URL
(e.g. http://money.cnn.com/markets/commodities.html), and
parses the responses to extract current oil, gas and water prices.
This information is then fed into the economic model during
the optimization process.

In general, instead of fixed current prices obtained by the
network information services, one may be able to use a set of
“forecasts” of prices, delivered by stochastic or other math-

ematical models. This would allow a more realistic planning
of future revenues from an oil field. However, this capability
is not currently implemented and is not a part of the prototype
application.

3.5. Discover computational collaboratory

Discover [14] is a virtual, interactive computational collab-
oratory that provides services to enable geographically dis-
tributed scientists and engineers to collaboratively monitor
and control high performance parallel/distributed applications
on the Grid. Its primary goal is to bring Grid applications
to the scientists’/engineers’ desktops, enabling them to col-
laboratively access, interrogate, interact with, and steer these
applications using pervasive portals. Key components of the
Discover collaboratory include:

� Discover Interaction & Collaboration Middleware Sub-
strate [3] that enables global collaborative access to mul-
tiple, geographically distributed instances of the Discover
computational collaboratory, and provides interoperability
between Discover and external Grid services. The middle-
ware substrate enables Discover interaction and collabo-
ration servers to dynamically discover and connect to one
another to form a peer network. This allows clients con-
nected to their local servers to have global access to all
applications and services across all servers based on their
credentials, capabilities and privileges.
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Figure 5. Pawn architecture: Pawn builds on network and interaction services to enable P2P interactions in Grid applications.

The Discover middleware also integrates Discover col-
laboratory services with the Grid services provided by the
Globus Toolkit [6] using the CORBA Commodity Grid
(CORBA CoG) Kit [18]. Clients can use the services
provided by the CORBA CoG Kit to discover available
resources on the Grid, to allocate required resources, to
run applications on these resources, and use Discover to
connect to and collaboratively monitor, interact with, and
steer the applications.

� DIOS Interactive Object Framework (DIOS) [12,16] that
enables the runtime monitoring, interaction and compu-
tational steering of parallel and distributed applications
on the Grid. DIOS enables application objects to be en-
hanced with sensors and actuators so that they can be
interrogated and controlled. Application objects may be
distributed (spanning many processors) and dynamic (be
created, deleted, changed or migrated at runtime). A con-
trol network connects and manages the distributed sensors
and actuators, and enables their external discovery, interro-
gation, monitoring and manipulation. The control network
enables sensors and actuators to be encapsulated within,
and directly deployed with the computational objects. The
DIOS distributed rule engine allows users to remotely de-
fine and deploy rules and policies at runtime and enables
autonomic monitoring and steering of Grid applications.

� Discover Collaborative Portals [14] that provide the ex-
perts (scientists, engineers) with collaborative access to
other peer components. Using these portals, experts can
discover and allocate resources, configure and launch
peers, and monitor, interact with, and steer peer execution.
The portal provides a replicated shared workspace archi-
tecture and integrates collaboration tools such as chat and
whiteboard. It also integrates “Collaboration Streams,”
that maintain a navigable record of all client-client and
client-applications interactions and collaboration.

3.6. Pawn peer-to-peer messaging framework

Pawn builds on Project JXTA [22] and enables peers to ex-
change messages through common services and interaction
modes. Figure 5 shows the services and interaction modali-
ties enabled by the Pawn framework.

Pawn offers four key services to enable dynamic collab-
orations and autonomic interactions in scientific computing
environments.

The Application Runtime and Control [ARC] announces the
existence of an application to the peergroup, sends applica-
tion responses, publishes application update messages, and
notifies the peergroup of an application termination.

The Application Monitoring and Steering Service [AMS] en-
ables users to interact with an application in real-time. Us-
ing the AMS service a user can monitor, retrieve, or set
application data.

The Application Execution Service [AEX] enables a peer to
remotely start, stop, get the status of, or restart an appli-
cation. This service requires a mechanism that supports
synchronous and guaranteed remote calls necessary for re-
source allocation and application deployment (i.e. transac-
tion oriented interactions) in a P2P environment.

The Collaboration Service [Group Communication,
Presence] extends the Discover substrate to provide
collaborative tools and support for group communication
and detection of presence.

Every peer can implement all or a subset of these services.
Particular services subsets characterize a role for the peer.
There are three distinct roles that a peer can take:

Client Peer that can deploy applications on available resources
for monitoring and/or steering; the client can also collab-
orate with other peers in the group using Chat and White-
board tools.

Application Peer that exports the application interfaces and
controls to the peergroup; these interfaces are used by other
peers to interact with the application. An application may
already be enabled to communicate remotely with a middle-
ware server as in the Discover computational collaboratory
[14]; in such a case, the application peer acts as a proxy
peer, relaying queries and responses to and from clients to
applications.

Rendezvous Peer to distribute or relay messages. Rendezvous
peers filter messages as defined by filtering rules input from
the connected clients. The communication uses TCP unicast
messages between endpoints to establish one-to-one and
one-to-many delivery modes.
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Using the Pawn and Discover computational collaboratory,
clients can connect to a local server using the portal, and can
use it to discover and access active applications and services
on the Grid as long as they have appropriate privileges and
capabilities. Furthermore, they can form or join collaboration
groups and can securely, consistently, and collaboratively in-
teract with and steer applications based on their privileges
and capabilities. The components described above need to
dynamically discover and interact with one another as peers
to achieve the overall application objectives. As can be seen
in figure 4, the experts use the portals to interact with the
Discover middleware and the Globus Grid services to dis-
cover and allocate appropriate resource, and to deploy the
IPARS Factory, SPSA and Economic Model peers (Step 1).
The IPARS Factory discovers and interacts with the SPSA
service peer to configure and initialize it (Step 2). The expert
interacts with the IPARS Factory and SPSA to define appli-
cation configuration parameters (Step 3). The IPARS Factory
then interacts with the Discover middleware to discover and
allocate resources and to configure and execute IPARS sim-
ulations (Step 4). The IPARS simulation now interacts with
the Economic Model to determine current revenues, and dis-
covers and interacts with the SPSA service when it needs
optimization (Step 5). SPSA provides the IPARS Factory
with a new guess for a better well location (Step 6), which
then uses it to configure and launch new IPARS simulations
(Step 7). Experts can, at anytime, discover, collaboratively
monitor, and interactively steer IPARS simulations, configure
the other services, and drive the scientific discovery process
(Step 8). Once the optimal well parameters are determined, the
IPARS Factory configures and deploys a production IPARS
run.

These interactions are enabled by the Pawn services that
build on JXTA’s pipe and resolver services to provide stateful
and guaranteed messaging. In Pawn, messages are platform-
independent, and are composed of source and destination
identifiers, a message type, a message identifier, a payload,
and a handler tag. State is maintained by making every mes-
sage a self-sufficient and self-describing entity that carries
enough information such that, in case of a link failure, it can
be resent to its destination by an intermediary peer without
the need to be recomposed by its original sender. In addition,
messages can include system and application parameters in
the payload to maintain application state.

Pawn implements application-level communication guar-
antees by combining stateful messages, message queueing,
and a per-message acknowledgment table maintained at ev-
ery peer. This messaging is used to enable the key application-
level interactions such as :

Synchronous/Asynchronous Communication: Communica-
tion in JXTA can be synchronous (using blocking pipes)
or asynchronous (using non-blocking pipes or the resolver
service). In order to provide reliable messaging, Pawn com-
bines these communication modalities with stateful mes-
saging and guarantee mechanism.

Dynamic Data Injection: Pawn leverages JXTA pipes mecha-
nisms and combines it with its guaranteed message delivery
mechanism to provide Dynamic Data Injection.

Remote Procedure Calls (PawnRPC): The PawnRPC mecha-
nism provides the low-level constructs for building appli-
cations interactions across distributed peers. Using Pawn-
RPC, a peer can dynamically invoke a method on a remote
peer by passing its request as an XML message through a
pipe.

4. Reservoir optimization using the pawn framework

In this section, we describe how Pawn is used to support the
prototype autonomic oil reservoir optimization application
outlined in Section 2. Every interacting component is a peer
that implements Pawn services. The IPARS Factory, SPSA,
and the Discover collaboratory are Application peers and im-
plement ARC and AEX services. The Discover portals are
Client peers and implement AMS and Group communication
services. Key operations in the process include peer deploy-
ment (e.g. IPARS Factory deploys IPARS), peer discovery
(e.g IPARS Factory discovers SPSA), peer initialization and
configuration (e.g. Expert configures SPSA), autonomic op-
timization (e.g IPARS and SPSA interactively optimize rev-
enue), interactive monitoring and steering (e.g. Experts con-
nect to, monitor, and steer IPARS), and collaboration (e.g.
Experts collaborate with one another). These operations are
described below.

4.1. IPARS factory and SPSA optimization service
deployment

The IPARS Factory and SPSA Optimization peers are
deployed using Globus services accessed through Dis-
cover/CORBACoG. The SPSA peer is a C++ program that is
integrated with Pawn using the Java Native Interface. Figure 6
presents the sequence of operations involved. The deployment
is orchestrated by the Expert through the Discover portal. The
portal gives the Expert secure access to all the machines reg-
istered with Globus Meta Directory Service (MDS) to which
the Expert has access privileges. Authentication and autho-
rization is based on the Globus Grid Security Infrastructure
(GSI) service. Once authenticated, the Expert can use the por-
tal to deploy the IPARS Factory and SPSA peers on machines
of choice after verifying their availability and current status
(load, CPU, memory). Deployment uses the Globus GRAM
service. The portal also gives the Expert access to already de-
ployed services and applications for collaborative monitoring
and steering using Discover.

4.2. Peer initialization and discovery

At startup, peers use the underlying JXTA discovery service to
publish an advertisement to the peergroup. This advertisement
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Figure 6. Peer deployment.

describes the functionalities and services offered by the peer.
It also contains a pipe advertisement for input and output
communications, and the RPC interfaces offered by the peer
for remote monitoring, steering, service invocation and man-
agement. To enable peers to mutually identify each other,
the peer that discovers an advertisement sends its adver-
tisement back to the discovered peer. This discovery pro-
cess is also used by IPARS instances to discover the SPSA
service.

4.3. IPARS and SPSA configuration

The Expert uses the portal and the control interfaces exported
to configure the SPSA service and to define its operating pa-
rameters. The Expert also configures the IPARS Factory by
specifying the parameters for IPARS simulations. The IPARS
Factory uses these parameters to set up IPARS instances dur-
ing the optimization process, and initialize the SPSA service.
Note that the Expert can always use the interaction and con-
trol interfaces to modify these configurations. The configura-
tion uses AMS to send application parameters to the IPARS
Factory and SPSA peer. A response is generated and sent
back (using AEX) to the client to confirm the configuration
change.

4.4. Oil reservoir optimization

The reservoir optimization process consists of two phases,
an initialization phase and an iterative optimization phase as
described below.

Initialization phase: In the initialization phase, SPSA provides
the IPARS Factory with an initial guess of well parameters
based on its configuration by the Expert and the IPARS

Factory. This is done using the channel established during
discovery and is used by the IPARS Factory to initialize
and deploy an IPARS instance.

Iterative optimization phase: In the iterative optimization
phase, the IPARS instance uses the Economic Model along
with current market parameters to estimate the current rev-
enue f (p) for the trial well locations p. SPSA uses this
value to generate an updated guess of the well parameters
pk+1. It then sends new trial well locations to the IPARS
Factory. The IPARS Factory now configures a new instance
of IPARS with the updated well parameters and deploys it.
This process continues until the required terminating con-
dition is reached. Figure 7 shows the overall optimization
process between IPARS Factory, IPARS, and SPSA. Note
that experts can connect to any of these peers at any time
and steer the optimization process.

Well parameter and revenue archive: After each evaluation of
a trial well location, these well parameters and the corre-
sponding revenue computed by IPARS and the Economic
Model are stored in an archive (a MySQL database) main-
tained by an archival peer. During the optimization pro-
cess, when a new trial location is received from SPSA,
the IPARS Factory checks the archive before launching an
IPARS instance. If the current location is already present
in the archive, the corresponding normalized revenue value
is sent back to SPSA and a redundant IPARS instance is
avoided.

Note that peer interactions during the optimization pro-
cess are highly dynamic and require synchronous or asyn-
chronous RPC semantics with guarantees, rather than doc-
ument exchanges typically supported by P2P systems. In
Pawn, these interactions are enabled by PawnRPC, which
provides the same semantics as the traditional RPC in a

Figure 7. Optimization process.
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Figure 8. Graphical user interface of the Expert’s portal.

Figure 9. Computed well positions and economic revenue during the optimization process.

client-server system, but is implemented in a purely P2P
manner.

4.5. Production runs and collaborative monitoring and
steering

Once the optimization process terminates and the optimal
well parameters are determined, the IPARS Factory allo-
cates appropriate resources, configures a production run based
on these parameter, and launches this run on the allocated
resources.

Experts can now collaboratively connect to the running ap-
plication, collectively monitor its execution and interactively
steer it. Figure 8 presents the client peer’s portal interface used
by the Experts. The portal interface can also be used to access,

monitor and steer the IPARS Factory, the SPSA Optimization
service, and the Economic Model.

4.6. Sample results from the oil reservoir
optimization process

Sample results from the oil reservoir optimization process
are shown in figures 3 and 9. The first shows the computed
revenue for each possible well location, and the points which
SPSA chooses as optimal well locations for a number of differ-
ent initial guesses. Figure 9 shows the path the SPSA iterates
take for a particular initial guess. Note that, in general, starting
at different initial values yields different end points, which is
not suprising given that the shown surface has 72 local optima.
However, in all cases we investigated, the found optimum is
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within half a per cent of the global one. In view of this, the
algorithm performs very favorably and took on average only
25–30 iterations to converge.

5. Policy-driven reservoir optimization

A key objective of the research presented in this paper is to
formulate policies that can be used by the autonomic self-
optimizing reservoir framework to discover, select, configure,
and invoke appropriate optimization services to determine op-
timal well locations.

The choice of optimization service depends on the size
and nature of the reservoir. The SPSA algorithm studied in
this paper is suited for larger reservoirs with relatively smooth
characteristics. In case of reservoirs with many randomly dis-
tributed maxima and minima, the VFSA algorithm studied in
our previous paper [15] can be employed during the initial op-
timization phase. Once convergence slows down, VFSA can
be replaced by SPSA. Alternate optimization schemes (e.g.,
genetic algorithms, local methods such as Newton) can also
be used if convergence breaks down. We plan to study and
characterize the behavior and interaction of these schemes in
a future work.

Similarly, policies can also be used to manage the be-
havior of the reservoir simulator. For example, the policy
may monitor convergence of the optimizer and as it ap-
proaches the solution, it may use a finer mesh and/or smaller
timesteps. The policy may even attempt to activate other nu-
merical algorithms (e.g., time discretization schemes, solvers)
or physical models (e.g., one-, two-, or three-phase flow, ge-
omechanical). Moreover, the policy may replace IPARS by
some other simulator capable of using unstructured grids or
adaptive mesh refinement in order to generate more accurate
simulations.

In an alternative scenario, policies may be defined to en-
able various optimizers to execute concurrently on dynam-
ically acquired Grid resources, and select the best well lo-
cation among these based on some metric (e.g., estimated
revenue, time or cost of completion). This aspect is impor-
tant for speeding up the search, or for studying the effects of
parameters that were not included at the start of the optimiza-
tion. For instance, some topological difficulties or unforeseen
costs for drilling a well may eventually arise in some parts of
the reservoir. In such a case, the expert may decide to stop
the process based on a small set of nearly optimal solutions
or perturb the course of the optimization (e.g. by the intro-
duction or removal of decision variables, constraints or trial
points).

The autonomic reservoir framework and the underlying
Pawn peer-to-peer middleware substrate presented in this pa-
per enable the decoupling of services and the separation of
policy and mechanism. This allows external policies, such
as those outlined above, to be dynamically defined and used
to manage the behavior of the components/services, and to
orchestrate interactions between them to achieve overall op-
timization goals of the reservoir.

6. Summary and conclusions

In this paper we presented the design, development, and op-
eration of a prototype autonomic self-optimizing reservoir
framework that uses peer-to-peer interactions between ap-
plications and services on the Grid to enable the autonomic
optimization of well placement and operation to maximize
overall revenue. The application consisted of instances of dis-
tributed multi-model, multi-block reservoir simulation com-
ponents provided by IPARS, stochastic optimization services
provided by SPSA, economic modeling services, real-time
services providing current economic data (e.g. oil prices),
archives for already computed data, and experts (scientists,
engineers) connected via pervasive collaborative portals. It
was built on the Pawn P2P substrate, which provided JXTA-
based peer-to-peer messaging services, and the Discover com-
putational collaboratory, which combines Grid infrastructure
services provided by Globus and interaction and collabora-
tion services. Sample outputs from the optimization process
were presented that showed how the interaction of all these
components can be used to solve the economically impor-
tant question of where to place a new well into an existing
reservoir. This problem is computationally very challenging
due to the enormous complexity of optimizing a complicated
mathematical model, and can benefit from the distributed and
autonomous features of the approach presented here. Further-
more, the formulation of policies for the autonomic selec-
tion, configuration and invocation of optimization services are
necessary ingredients of adaptively changing the components
used in the optimization.

The prototype autonomic Grid application presented in
this paper demonstrated the potential of the emerging Grid
infrastructure and its support for secure and seamless interac-
tions, enabling a new generation of autonomic applications.
These applications will be based on peer-to-peer interactions
between application components, Grid services, resources,
and data, and will use separately defined policies to orches-
trate these interactions and enable self-managing and self-
optimizing behaviors. We believe that such autonomic behav-
iors will be critical for addressing the scale, complexity, het-
erogeneity and dynamism inherent in Grid applications and
environments.
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