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Correspondence

Nonlinear Modeling of Complex Large-Scale Plants Using  As will be explained, our approach is substantially different form

Neural Networks and Stochastic Approximation those cited above, as it considers a single model obtainable in two
. o phases. In the first phase, a model is built that is as consistent
A. Alessandri and T. Parisini as possible with the physical reality of the various components

of the process under examination; this allows one to take into
Abstract—This paper deals with a aeneral methodoloay for svstem dre account different levels of knowledge of such components. In the
box identificationF.) Aps is WeII—knowr?, the tuning of agg[urateymodelz c% second phase, a model-tgnlng process IS_ de_flned that ?llows ong to
real plants (obtained, for instance, by using the physical knowledge of compensate for the unavoidable inaccuracies in the physical modeling
the plants and the technicians’ expertise), on the basis of the measuresdeveloped in the first phase.
provided by the available sensors, remains a challenge. In this paper, |n the context of nonlinear plants, it is also worth recalling that

a tuning methodology for complex large-scale models, is presented. The ; ; ; ;
proposed technique is based on the suitable use of neural networks and the state estimation problem is by no means a simpler problem,

specific stochastic-approximation algorithms. It is therefore possible to @S it can be solved analytically only under the assumptions of a
design a simulator that can be connected in parallel with a real plant, linear dynamic system, of a linear observation channel, and of white
thus providing the plant technician with information about inaccessible ~Gaussian process and measurement noises. The most widely used
variables that are useful for supervision purposes. The proposed method- method is the extended Kalman filter (EKF). This generalization
?;ggﬁslsoﬁriﬁge&;?ng zgi)tlrﬁﬂrr?fsic:\?vatlhizgﬁggt\i/vgg\évssr gﬁﬂ; :;)n;?olgtcl?]h of the _Kalman filter invol\_/es successive Iiner_:lriza_tions qf nonlinear
dynamics around a previously deduced estimation point (see, for
instance, [7]). The EKF performance is generally satisfactory only
when the EKF is applied to nonlinear filtering problems in which such

For plants of high complexity and large dimensions, it is of majqnearizations do not cause a large mismatch between the linear model
importance to develop as accurate models as possible. On the bagi$the nonlinear framework, and only for high signal-to-noise ratios.
of a precise model, one can design a reliable simulator that makes if addition, it should be stressed that, in the case of plants of
pOSSible to define the modes of the plant fUnCtioning under dlﬁerqﬁth Comp|exity and |arge dimensions’ the use of Stationary linear
operating conditions. Such modes are significant for the tuning of th&ydels and the estimation of the state after linearization operations
control system and, above all, for the plant supervision. Moreover, Bye in general unsuitable for supervision purposes, whereas they are
using such models, one can also obtain estimates of the evolutiong@etimes sufficient for the design of reliable regulators. For instance,
both accessible and inaccessible state variables; these estimatesf 8f® makes too simplifying assumptions on a model, fault detection
very useful, for instance, for fault detection. may become infeasible [8], [9].

However, as is well known, despite one has built a structurally some works have recently appeared in the literature that suggest
accurate model, the strong nonlinearities and the variations in th§ing neural networks to solve identification, adaptive-control [10]
dynamic characteristics of such systems over time generally do Be{q state-estimation problems for nonlinear systems [11], [12]. In
allow one to identify accurate stationary models by using standgsdrticular, in [12], the state estimation problem is stated in a different,
identification methods (see, for instance [1]). Actually, these methogﬁ)ugh approximate, way. The nonlinear filter is assigned a given
assume alack-boxmodel, which has not a structure that is necesstrycture in which the values of a certain number of parameters have
sarily compatible with the underlying physical reality of a plant. Ijg pe determined via nonlinear programming so as to minimize the
this respect, grey-boxapproach seems to be more appropriate, asdktimation cost function. The filter structure is implemented by means
is possible to take into account different levels of knowledge abogy multilayer feedforward neural networks in which the unknown
the several parts of the whole plant. parameters are the synaptic weights. Such an approach has yielded

In the literature, one can find many works grey-boxidentification  go0d results for different complex and strongly nonlinear problems
techniques; however, in such works, the models used are linear (38, like the EKF, cannot be applied if a plant model is characterized
for instance, [2] and [3]), hence they are not suitable for the modeling nondifferentiable nonlinearities, and if the computation of the
of real complex physical processes. If models are nonlinear, tprﬁ)del Jacobian matrig% (2,4, = f(z,,1,) being the discrete-time

number of related papers is r?otable reduced and_ aFtent'|on IS Maii¥del state equation) is particularly complex or even impossible, as
focused on the so-called multiple-hypotheses statistical |dent|f|cat|%n,[he case with several types of real plants

te_chnlques (see, [4]-6]). Ac_cordlng to these technlques_, mOdEIS_ Otrhe above considerations have led to a general conceptual approach
different nature and complexity are evaluated from a statistical po'i‘ﬁtcluding the following basic steps
X .

of view, and one resulting model is obtained that is acceptab o . . .

in terms of a prefixed criterion. In any case, however, oneline  Building a plant model that is as accurate as possible. This model

adaptationof the model remains in general rather difficult. should be designed by using as much as possible the available
a-priori knowledge on the dynamic behavior of a system and by
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and Research. + Validation of such a model with respect to the real plant.
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approximations inherent in the model, and taking into account thepresents the number of sections of the global model characterized
fact that many quantities affecting the dynamics of the system are gt a partially/totally unknown structure, ar@ is the part of the
stationary, the problem of on-line tuning the model on the basis of te&ate vector corresponding to tlilh section. Moreover, we collect in
measures provided by the available sensors should be faced. To thésvectoré all the unknown mathematical and physical parameters
end, in the overall model, we define two distinct categories of approsepresenting parametric uncertainties. Then, we obtain the following
imate blocks: i) blocks characterized by approximate mathematieglproximate model to be identified:

structures, and ii) blocks with structures that can be considered correct s Ty = f(if r,,0) 2
but with some partially unknown parameters. The former are replaced - g, = }](J 2)
with multilayer feedforward neural networks, for which we havaheref and h implicitly depend om’ (), j =1, M, i, &

...... z, =

to determine the synaptic weights corresponding to the best tunln(g( M) Now, in order to |dent|fy the model (2) (which, in

of the model to the real system’s behavior. This leads to a Velré(rms of classmal identification theory, is a prediction model), for a
complex parametric identification problem, involving a large numb%

) . ) iven initial state and a given time-instantwe define the following

of parameters. However, as mentioned earlier, most of available pl BLt function
models are characterized by hard nonlinearities that do not allow the t
application of the well-known backpropagation technique for training T e = >y, - gl 3)
neural networks [10], [13]. i=t—N

This justifies our choice of using a suitable stochastic approximahere N is a suitable time-window and’ is a suitable positive
tion technique to estimate the unknown parameters. The applicatitgfinite matrix. Then, the identification problem can be stated as the
of the so-calledsimultaneous perturbation stochastic approximatioffiollowing parametric-functional optimization problem
(SPSA) [14] turns out to be particularly effective. Such a technique Problem 1: At time ¢, find the optimal functlons> ./...71‘”0
is somewhat similar to the classic stochastic approximation usingaad the optimal value of the parameér such that the cost function
finite-difference approximation for the gradients, but is much simpl€8) is minimized for every possible set of measuges..,...,y,.
and more efficient from a computational standpoint, while preservingClearly, the general assumptions under which Problem 1 has been
the same convergence characteristics. stated prevent us from solving it in an analytical way. Actually, Prob-

This paper is organized as follows: in Section Il, the identificatiolem 1 entails the solution of nonlinear (and nonquadratic) functional
problem is stated in its general form and the transformation of tlegtimization problems. The approximating method that constitutes the
learning problem into a parametric estimation one is described. basis for our approach consists in assigning the unknown functions
Section IlI, the salient features of the smoothed SPSA technique usiedined in Problem 1 given structures in which a certain number of
are discussed. Finally, in Section IV, the proposed methodologyparameters have to be determined in order to minimize the above cost.
applied to a specific real plant (the four heaters of a feedwater high-particular, the functions/f (if ) are approximated by parametrized
pressure line of a 320 MW power plant located at Piombino, Italyjunctions of the form?y’ (#,w?), j =1,...,M, where4’ is the
Extensive simulation results are reported that show the effectivenagsut/output mapping of a multilayer feedforward neural network
of the neural-parametric technique in estimating the approximate paatel w’ is a vector of parameters to be tuned. Among various
of a complex model of the plant, previously obtained by using suitabi@ssible approximating functions, we choose nonlinear approximators
physical and thermodynamical laws. based on feedforward neural networks, as these approximators are
computationally easy to handle, and, above all, exhibit powerful
approximating capabilities [15].

Now, the vectorw £ col(w’, j = 1,..., M) represents all the
\%lght vectors of the neural networks apprOX|mat|ng the unknown
functional parts of the model. As a result, denotmg@@ col(w, §)

Il. STATEMENT OF THE IDENTIFICATION PROBLEM

Consider a discrete-time global model of the plant whose dynam|
can be described by

o {’GH = flzy1y) 1) the total parameter vector, we obtain the following approximate
y, = h(z,) parametric model to be identified:
wherez, represents the state vecter, represents the input vector, o [ = f(%t Ty, 3) 4
andy represents the vector of the measurable variables. = {y — h(r“ 3) “)
Unfortunately, when large complex plants are considered, th@cordingly, the cost functlon takes on the form
above model generally includes a significant number of simplifying y
hypotheses about both the mathematical structures of some blocks and j(g) = Z ly. — ;,g‘”%,_ (5)
the values of different parameters. In many cases, the large variations - I~
in the plant over time may give rise to nonnegligible errors on sonKence, we have the following.
model sections. Problem 2: At time ¢, find the optimal value of the paramet&?,
Therefore, despite the intrinsic complexity of the plant, it would bgych that the cost function (5) is minimized for every possible set of
useful to employ suitable techniques that make it possible to FEdUﬂ@asures;; N

the aforementioned approximation errors during the plant operationproblem 1 has been reduced to the parametric optimization Problem
Such techniques would allow the development of an accurate modeland, in the next section, we present an algorithm to solve it.

that might be simulated in parallel with the plant, with obvious
advantages for supervision tasks. For instance, inaccessible state

variables might be visualized. [ll. SOLUTION OF PROBLEM 2 VIA THE SIMULTANEOUS
Consistently with the grey-box approach, we consider two main ~ PERTURBATION STOCHASTIC APPROXIMATION ALGORITHM

types of uncertainties affecting the model: It is now necessary to estimate the optimal parameter vector solving
* uncertainties in the mathematical structure; Problem 2. To this end, it is worth noting that
* uncertainties in parameter values. « in general, real systems exhibit strong nonlinearities, hence it is

The uncertainties in the mathematical structure can be modeled by not possible to apply classical estimation algorithms such as the
using a set of unknown functiong (z’), j = 1,..., M, where M Kalman filter or the least-squares method;
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scalars that satisfy some regularity conditions (see [14] and [16] for

L a detailed discussion on the algorithm and on the characteristics of
the above quantities in terms of convergence properties).

f "E} h The use of the smoothed SPSA algorithm instead of standard finite-

- X xt difference stochastic approximation (FDSA) techniques is motivated

“t+1

I~

by the fact that only two perturbations are needed, instead of the
2p ones necessary for the computation of the approximation to
g,(p = dim (3)). Analogous convergence properties are however

maintained. The above computational advantage is of basic impor-
tance, given the large number of necessary parameters to be estimated,

+

'

1

o e
NIK<>K]J

A X £ which represents a common characteristic of neural-network training.
t+1 . “t '_’ A In the remaining part of the paper, we focus on a specific
]_C ' /;l complex real plant in order to better point out the characteristics
r and potentialities of the proposed methodology.

IV. APPLICATION OF THEMETHODOLOGY TO A POWER PLANT MODEL

In this section, an application of the method previously described
is presented. In the first subsection, for the reader's convenience,
p tuning algorithm brief descriptions of the power plant considered and of its global
model are reported. The reader interested in more details is referred
to [9], where a fault-diagnosis method for the same plant is addressed,
and to [17], where some specific modeling issues are addressed.
However, some technical details of the model development, based
on the physical characteristics of the system, are reported in order to
« the presence of nondifferentiable nonlinearities and the on-lig€fine the advantages of tigeey-boxapproach to the identification

inaccessabilities of some internal model variables prevent OHg)bI.em, in terms of the consistency of the identified model with the

from using techniques based on some linearization methd¥lysical parts of the plant, and to identify the model parts that are
like the EKF or other algorithms based on the computatior?érucm_ra"y and/or parametrically unkr_10wn. This will make it pOSS|bI_e

of the gradients of cost functions (e.g., the backpropagatiéf design a system that can be on-line tuned to the plant behavior,
technique [13]). (For a nonlinear filtering technique based Gnd that e_lllows the monitoring of significant state vanabl_e_s, both
neural networks and on backpropagation, see, for instance, [13¢} & Possible tuning of control components and for supervision and

Refer to the general scheme depicted in Fig. 1. fault-detection purposes.
As can be noticed, the samples of the measures provided by
the available sensors and of the other accessible signals of fneDescription of the Power Plant
plant are used for the on-line estimation of the vector This This subsection describes a section of the 320 MW power plant
can be done by applying some descent algorithm. However, fetated at Piombino, Italy (see Fig. 2). In particular, one of the
the aforementioned reasons, the exact gradient of the expeciRg feedwater high-pressure heater lines electronically controlled is
cost cannot be computed, and hence a stochastic approximatiefsidered. This line is devoted to the regeneration process, i.e., a
approach has to be followed. We choose sheoothed simultaneous technique that improves the plant efficiency. More specifically, the
perturbation stochastic approximati¢h6]. In the following, the most  thermodynamic cycle involves the problem that the energy spent by
significant features of this algorithm will be summarized for théne boiler to transform the water from the liquid phase into the
reader’s convenience. They are detailed in [16], from which we haggriform phase is not completely used in the turbine. This occurs
taken most of the notation. not only because of the intrinsic losses in the turbine, in the boiler,
The algorithm can be written as and in the pump, but mainly because it is necessary to condense the
steam coming from the turbine at the same temperature and pressure
values as those at the beginning of the process. This completes the
thermic cycle, so it is possible to heat the liquid once again.
The regeneration process aims to limit energy losses inside the cold
source. It follows the scheme shown in Fig. 2: the heaters inserted in
G =pGo + (1 - P"')Qk(ﬁk D, Gy=0 @) the thermic c_ycle bleed_steam from the high-pregsure and medium-
pressure turbine stages in order to preheat the liquid feedwater coming
whereg is the so-called simultaneous perturbation approximation tem the feed pumps and going into the boiler. This process is basic
g, (see [14] for the original definition of the unsmoothed simultato a high overall plant efficiency, as the water needs less energy from
neous perturbation technique). More specifically, #ecomponent the boiler and decreases the heat given to the cold source.

Fig. 1. General scheme of the tuning algorithm.

B,=8, , —axG, k=0.1,... (6)

1

whereG, is a smoothed approximation g (3,) £ V5 E(J) of
the form -

of Qz~(§h-,_1) is given by The high-pressure heater line is depicted in Fig. 3 and is composed
of four heaters, denoted by HPHX1, HPHX2, HPHX3, and HPHX4.

. J - The feedwater comes from the feed pump, flows through the four

g8, )= T 2 Ay (8)  heaters, and goes into the boiler. After leaving the turbine, the super-

heated steam exchanges heat with the feedwater and then condenses.
Where.f,g_) and JA,EH are two observations corresponding to the peEach heater (see Fig. 4) consists of a vertical-axis cylindrical hollow,
rameter perturbation_ék — Aoy and£k+ckékaﬂk, respectively. divided into halves by a vertical septum and including\-shaped
Ay, are suitable random variables afid. } is a sequence of positive tube-bundle where the feedwater flows.
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Fig. 2. Scheme of the regeneration process.
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Fig. 3. The high-pressure heater line.

The hollow is made up of three areas for the different types of B: condensing area, where the saturated steam condenses (vapor-
steam: liquid transition);
A: desuperheating area, where the superheated steam cools dovigi subcooling area, where the condensed steam and the drain
until it reaches the saturated steam condition through the heat coming from the downstream heaters undergo a process of
exchange with the feedwater flowing in the tube-bundle; heat exchange with the feedwater.
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side tank diameter, pipe length, inside and outside pipe diameters,
desuperheating area), thermal coefficients (pipe-metal specific heat,
pipe-metal thermal conductivity, steam thermal-exchange coefficient,
water thermal-exchange coefficient), number of tubes in the tube-
bundle, etc.

The complex nonlinear model of the power plant considered has
first been extensively simulated, and the behaviors of the accessible
system variables have then been analyzed by plant experts. Subse-

Drain —
PR quently, the system has been tested on the real plant. The reader

nput is referred to [9] for more details on the validation phase. As can
be noticed from the figures in [9] (not shown here) the results are
J satisfactory, thus proving the reliability of the model developed,
Drain Steam bled especially in the light of the fact that it has been connected to the
output input real plant in an adequate way. Suffice it to say that the differences
between simulated and real variables have always been of a percent
Feedwater Feedwater order not exceeding_ thq accuracy limits Qf the available sensors.
inpm—>  utput However, the valldatlon.of the descrlbgd mgdel alloyvs one to
N 1 P confirm only that the behavior of the model is satisfactory in terms of

accessible variables. By contrast, nothing can be said on the modeling
of the parts related to inaccessible state variables, which are very
. . important for the supervision, as previously mentioned. Therefore, in
The model of the plant has been built on the basis of the modly, eyt subsection, we shall show, on the basis of simulation results,
of the single heaters that make up the high-pressure line, of @ the model tuning by the methodology described in Sections I

sensors, of the actuators and of the controller elements. The modelgf || ajiows one to estimate also such inaccessible model parts.
each heater (see Fig. 4), has been obtained by a “physical” approach

according to the grey-box identification concept. The equations
describing each heater have been derived from the mass, energy @ngtuning of the Power Plant Model

momentum conservation laws. In particular, an analysis has beeq.h | | briefly d ibed i Lo
o . the subsection includes a
made of i) the behavior of the fluid inside the hollow by using thE e complex model briefly described in

Fig. 4. A heater.

" for th i f th f drai ter f targe number of simplifying hypotheses about both the mathematical
equations for the conservation of the mass of drain waler, 1or Wg, ., .e5 of some blocks and the values of different parameters. In
conservation of the mass of water and steam, and for the conserva}wé'hy cases, the large variations in the plant over time may give
of the energy of subcooled water; and ii) the behavior of the fluid ’

. ) . Iise to nonnegligible errors on some model sections that cannot be
the tube-bundle by using the equations for the heat exchange in & essed by the available sensors

desuperheating, drainage, and condensation areas, and the equati erefore, it would be very useful to employ the technique

for the I.OSS of pressure in the tube-bundles du_e to the met_al fr'Ct'Qﬁ}esented in Sections Il and Il in order to reduce the aforementioned
Regarding the fluid inside the hollow, the following assumptions ha\é%proximation errors during the plant operation

been made: In this respect, consider the global scheme in Fig. 5. Such a scheme
—negligible heat exchange between the hollow and the exterigdjudes some parts that are specific for the plant model considered,
environment; but that do not affect the generality of the proposed methodology,
—negligible exchanges of energy and mass, due to surface pﬁg'previously stressed.
nomena at the interface between the condensing and subcooling,ch a scheme points out the two main types of uncertainties

areas; affecting the developed model:

— the heat-exchange surface between the hollow fluid and the tUbe'1) Uncertainties in the mathematical structurgor instance, the

Eundle 'Shf'XEd clin theddesupﬁrheatlgg area angl thﬁ Ievﬁl of the _ quantities related to the other parts of the power plant have
eat exchange depends on the condensing and subcooling areas; oo gssumed to be proportional to the load. This assumption

—un!;orm prers]slure (;j.IStr.It?Ut.lon _|ns_|(;je thethHOW;A B and C): may turn out to be very simplistic. Other approximations about
— uniform enthalpy distribution inside each area (A, B, and C); the mathematical structure are inherent in the use of steam

—negligible densﬂy variations |r15|de the subcooling area. tables and in the various discretized transformation functions.
Moreover, the following assumptions have been made about the |y Fig. 5, we refer to completely unknown and approximately

feedwater: known structures. The former are really black-box models,
—feedwater in liquid state and in subcooling condition; while the latter are made of known and unknown sub-blocks.
— constant fluid pressure in the tube-bundle and equal to the input  This schematization is very useful in the application considered
pressure in the heater; here, and may turn out to be of some utility also in general.
—uniform physical properties of the tube-bundle metal; 2) Uncertainties in parameter valugEor instance, we have used
—negligible longitudinal heat conduction in both the pipe metals  thermodynamic constants and geometrical parameters that are
and the fluid. not known with precision and that may vary during the plant

From the above assumptions, a set of nonlinear state equations can be operation (e.g., pipe diameters, thermal capacities of the various

derived to define the behavior of the thermodynamic coordinates of ~Metals used, etc.).

the thermotransformation in each heater [17]. The global system carFurthermore, the model includes several hard nondifferentiable

be described by 71 state variables (to the exclusion of those relatenhlinearities placed in the different blocks depicted in Fig. 5, which

to the regulation system) and 29 measurable variables. make it necessary to use the tuning algorithm presented in Sections
The models of the heaters have an identical structure and diffeland Ill. The list of the above nonlinearities for each block is the

only in constants such as geometric coefficients (tank height, i@llowing:
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Fig. 5. Scheme of the global model. The parts with uncertain structures and/or uncertain parameters are clearly indicated.

Input block load saturation.
Sensors block water _Ievel saturation. plant emulator
Regulator block anti-wind-up actions and control satura-
tions.
Actuators block rate limiters and saturations. Smoothed SPSA

Elaboration block  square-root functions in the output feedwa-
ter sections.

Transformation blocksteam-tables and square-root functions in paraf;;c{g:éﬁd plant
the output feedwater sections.

By replacing all the parts affected by uncertain functioning (see
Fig. 5) with neural networks, one obtains the model (4) (see Section ) ] ) )
1), wherex 2 Col(ﬂl,ﬁA’ﬁS) represents the state vectdim(z) = Fig. 6. _ Scheme of the simulation framework to verify the effectiveness of
A ) - the tuning method.

71), y = col(y™,y") represents the vector of the measurable
variables (dim(y) = 34), w is the total vector of the synaptic
weights of the neural networks, aidis the vector of the unknown
mathematical and physical parameters. For notation simplicity, hdrave developed an analogous model whose parameters had yet to
and in the following, we drop the index In [9], the list of parameters be tuned. We aimed to ascertain if the proposed methodology makes
to be estimated (i.e., the components of the vedtpiis given, it possible to tune the model parameters to real values, and if the
together with their approximate values based on the expertise infernal parts are estimated correctly. We refer the reader to Fig. 6,
plant technicians. which is only a simplified version of Fig. 1, but which is useful within

As clearly stated in Section I, two distinct types of quantitiethe context of the present section.
have been identified, which have to be estimated on the basis of th&low, we describe the just introducesimulation-based valida-
measures provided by the available sensors of the plant: i) paramet@ns. The model parts modeled by the neural networks are the
of the model parts whose mathematical structures are assumed tanoelulating actuators, the steam table and the table of the enthalphy-
accurate enough, and ii) synaptic weights of the neural networkgo-temperature conversion; the parameters to be estimated are the
that describe the model parts whose mathematical structures are weager levels in the desuperheating areas. For the actuators, we used
approximate. neural networks with two input units, four hidden units and one

As mentioned in [9], the simulator on which the global modebutput unit; for the steam table, we used neural networks with ten
(including the neural networks) has been implemented can be camput units, 20 hidden units, and ten output units; for the table of
nected to the FIP automation system of the power plant. This allowt®e enthalphy-into-temperature conversion, we used neural networks
the on-line tuning of the model to the real plant. Clearly, onwith eightinput units, 15 hidden units and four output units. As to the
can verify that even the inaccessible model parts can be estimatedt function (5), we chose experimentally= 1000, t = N fixed,
to a reasonable accuracy by the proposed tuning method oalyd P = 0.1 -1, wherel is the identity matrix. For the parameters
via simulation. Therefore, we have developed an emulator of tlé the Smoothed SPSA algorithm, we chase = 0.004/%%-902,
described accurate model validated on the real plant. Such a simulatee= 0.6/%°1°, andp; = 0.5/k°-°%*; the scalarsy; were suitably
model has then been regarded as a real system, thus allowing onehmsen according to the magnitudes of éhpriori estimated values
measure even the inaccessible internal model parts. In parallel, @fehe corresponding parameters. We took the perturbationsto

-
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be Bernoulli+0.5 distributed, so guaranteeing the fulfillment of the 3 5 ' ‘ '
main regularity assumptions made in [16]. 10k

The convergence of the learning procedure was satisfactory, as
shown in Fig. 7. Note that the estimation cost function, whose be-,
havior is shown in Fig. 7, may not be a reliable indicator as to whether
the state variables generated by the model during the plant operatiog,
actually represent the real variables to a good approximation. Such a
cost takes into account only the input—output behavior of the modeluo_
as compared with the behavior previously determined and parallel-
simulated. Moreover, according to the scheme shown in Fig. 6, during
the simulation phase, it is possible to build also an indicator of the
goodness of the state-variable estimation, e.g., the root sum squarel
(RSS) error of the state vector
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wherex;(t) and.z;(t) are theith components of, and.i, respec Fig. 9. Comparison between the estimated (dashed line) and true (continuous

tively, .and "= ‘li"‘(‘/—bﬁ)'_ o _ line) behaviors of the condensate level in Heater 1, after 1000 training steps.
Obviously, such an indicator can be computed only via simulation,

not in real time; nevertheless, it is useful to assess the reliability
the approach in terms of estimation of the inaccessible state variables. "~ )
Fig. 8 shows the good behavior of the RSS error. conditions of the system) ang > 0 is a scalar that models the

In confirmation of the satisfactory estimates of the state variablég‘,"‘k n th_e tube-bundie (i.e = 0 means ab;gnce of leaks, "’?”d an
Fig. 9 shows a comparison between the real behavior of the waldgrease iny, under the same operating conditions, means an increase
level in the condensing area and the estimated value in HPHX1, af'fgztthe leakage flow). In particular, one leak speed with 0.05 was

1000 training steps. It is easy to deduce that the deviation betw ulated._ Fig. 11 shows the bghawors of the heaters’ condensate
the two behaviors is very small. evels during the plant malfunction. As can be seen, the feedwater

Furthermore, Fig. 10 gives the behaviors of four estimated pLg_ak in the tube-bundle of HPHX3 causes a decrease in the levels
rameters. i.e ’the Water levels in the desuperheating areas in ifh he downstream heaters and an increase in the levels in the same

four heaters. As can be noticed, for all four heaters, satisfactd??a,ter and in the upstream ones.

convergences of the parameters to their true values were obtain '9. _11 shows tha_t one can model the aforement_loned fault _by
after a reasonable number of iterations. observing the behaviors of the condensate levels. It is worth noting

Finally, we report the results of some simulations of a pla pat tr}e smulagor;l and hlgnce the |nput—qg|tput r;wodhellnkg of thhe f?ult
malfunction only to stress, once again, the usefulness of a grey- ry frequent in heater lines) were possible only thanks to the fact

approach to the identification problem, based on the developmentt t the developed model is con5|ste_nt W'th_ the phy_smal parts of
a model strictly consistent with the physical parts of the plant (mojf?g/plam and to the fact that an effective tuning technique has been
details on such a model-based fault-detection problem can be fo ised.

in [17]). In particular, we simulated a feedwater leak in the tube-

bundle in the condensing area. More specifically, the leakage flow V. CONCLUSION

from the tube-bundle can be expressed+aéA, where A is the In this paper, a methodology for the grey-box identification of

difference in pressure existing between the hollow of the heater armimplex models of real plants has been proposed. More specifically,

f
f%g feedwater (such a difference of course depends on the operating
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Fig. 10. Convergences of the estimated water levels in the desuperheatifg
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Fig. 11. Condensate levels in HPHX1, HPHX2, HPHX3, and HPHX4 duringﬂ]

a plant malfunction in HPHX3 withy = 0.05.

the tuning of the model parts, whose structures and/or parameters
were approximately known, has been accomplished by using the
measures provided by the available sensors.

The replacement of the structurally unknown parts with suitable
multilayer feedforward neural networks makes it possible to reduce
the model-tuning problem to a parametric-identification problem,
which in general involves a large number of parameters to be tuned.
The numerical solution of this problem can be obtained by a stochastic
approximation technique, i.e., the SPSA, which allows, at the same
time, the training of the neural networks and the estimation of
the model parameters. The proposed method was applied to a real
320 MW power plant. Simulation results confirm the validity of
the described approach, which is much more efficient than standard
finite-difference methods for this application.
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