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Abstract—This paper deals with a general methodology for system grey-
box identification. As is well-known, the tuning of accurate models of
real plants (obtained, for instance, by using the physical knowledge of
the plants and the technicians’ expertise), on the basis of the measures
provided by the available sensors, remains a challenge. In this paper,
a tuning methodology for complex large-scale models, is presented. The
proposed technique is based on the suitable use of neural networks and
specific stochastic-approximation algorithms. It is therefore possible to
design a simulator that can be connected in parallel with a real plant,
thus providing the plant technician with information about inaccessible
variables that are useful for supervision purposes. The proposed method-
ology is applied to a section of a real 320 MW power plant. Simulation
results on the tuning algorithm show the effectiveness of the approach.

I. INTRODUCTION

For plants of high complexity and large dimensions, it is of major
importance to develop as accurate models as possible. On the basis
of a precise model, one can design a reliable simulator that makes it
possible to define the modes of the plant functioning under different
operating conditions. Such modes are significant for the tuning of the
control system and, above all, for the plant supervision. Moreover, by
using such models, one can also obtain estimates of the evolutions of
both accessible and inaccessible state variables; these estimates are
very useful, for instance, for fault detection.

However, as is well known, despite one has built a structurally
accurate model, the strong nonlinearities and the variations in the
dynamic characteristics of such systems over time generally do not
allow one to identify accurate stationary models by using standard
identification methods (see, for instance [1]). Actually, these methods
assume ablack-boxmodel, which has not a structure that is neces-
sarily compatible with the underlying physical reality of a plant. In
this respect, agrey-boxapproach seems to be more appropriate, as it
is possible to take into account different levels of knowledge about
the several parts of the whole plant.

In the literature, one can find many works ongrey-boxidentification
techniques; however, in such works, the models used are linear (see,
for instance, [2] and [3]), hence they are not suitable for the modeling
of real complex physical processes. If models are nonlinear, the
number of related papers is notable reduced and attention is mainly
focused on the so-called multiple-hypotheses statistical identification
techniques (see, [4]–[6]). According to these techniques, models of
different nature and complexity are evaluated from a statistical point
of view, and one resulting model is obtained that is acceptable
in terms of a prefixed criterion. In any case, however, theon-line
adaptationof the model remains in general rather difficult.
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As will be explained, our approach is substantially different form
those cited above, as it considers a single model obtainable in two
phases. In the first phase, a model is built that is as consistent
as possible with the physical reality of the various components
of the process under examination; this allows one to take into
account different levels of knowledge of such components. In the
second phase, a model-tuning process is defined that allows one to
compensate for the unavoidable inaccuracies in the physical modeling
developed in the first phase.

In the context of nonlinear plants, it is also worth recalling that
the state estimation problem is by no means a simpler problem,
as it can be solved analytically only under the assumptions of a
linear dynamic system, of a linear observation channel, and of white
Gaussian process and measurement noises. The most widely used
method is the extended Kalman filter (EKF). This generalization
of the Kalman filter involves successive linearizations of nonlinear
dynamics around a previously deduced estimation point (see, for
instance, [7]). The EKF performance is generally satisfactory only
when the EKF is applied to nonlinear filtering problems in which such
linearizations do not cause a large mismatch between the linear model
and the nonlinear framework, and only for high signal-to-noise ratios.

In addition, it should be stressed that, in the case of plants of
high complexity and large dimensions, the use of stationary linear
models and the estimation of the state after linearization operations
are in general unsuitable for supervision purposes, whereas they are
sometimes sufficient for the design of reliable regulators. For instance,
if one makes too simplifying assumptions on a model, fault detection
may become infeasible [8], [9].

Some works have recently appeared in the literature that suggest
using neural networks to solve identification, adaptive-control [10]
and state-estimation problems for nonlinear systems [11], [12]. In
particular, in [12], the state estimation problem is stated in a different,
though approximate, way. The nonlinear filter is assigned a given
structure in which the values of a certain number of parameters have
to be determined via nonlinear programming so as to minimize the
estimation cost function. The filter structure is implemented by means
of multilayer feedforward neural networks in which the unknown
parameters are the synaptic weights. Such an approach has yielded
good results for different complex and strongly nonlinear problems
but, like the EKF, cannot be applied if a plant model is characterized
by nondifferentiable nonlinearities, and if the computation of the
model Jacobian matrix

@f

@x
(xt+1 = f(xt; rt) being the discrete-time

model state equation) is particularly complex or even impossible, as
is the case with several types of real plants.

The above considerations have led to a general conceptual approach
including the following basic steps.

• Building a plant model that is as accurate as possible. This model
should be designed by using as much as possible the available
a-priori knowledge on the dynamic behavior of a system and by
exploiting the expertise of plant technicians.

• Validation of such a model with respect to the real plant.
• Tuning of the inaccessible internal parts of the model on the

basis of the measures provided by the available sensors, using
neural networks and stochastic approximation.

After the first step, i.e., the definition of the plant model (obviously,
this step is specific for the particular plant considered), given the
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approximations inherent in the model, and taking into account the
fact that many quantities affecting the dynamics of the system are not
stationary, the problem of on-line tuning the model on the basis of the
measures provided by the available sensors should be faced. To this
end, in the overall model, we define two distinct categories of approx-
imate blocks: i) blocks characterized by approximate mathematical
structures, and ii) blocks with structures that can be considered correct
but with some partially unknown parameters. The former are replaced
with multilayer feedforward neural networks, for which we have
to determine the synaptic weights corresponding to the best tuning
of the model to the real system’s behavior. This leads to a very
complex parametric identification problem, involving a large number
of parameters. However, as mentioned earlier, most of available plant
models are characterized by hard nonlinearities that do not allow the
application of the well-known backpropagation technique for training
neural networks [10], [13].

This justifies our choice of using a suitable stochastic approxima-
tion technique to estimate the unknown parameters. The application
of the so-calledsimultaneous perturbation stochastic approximation
(SPSA) [14] turns out to be particularly effective. Such a technique
is somewhat similar to the classic stochastic approximation using a
finite-difference approximation for the gradients, but is much simpler
and more efficient from a computational standpoint, while preserving
the same convergence characteristics.

This paper is organized as follows: in Section II, the identification
problem is stated in its general form and the transformation of the
learning problem into a parametric estimation one is described. In
Section III, the salient features of the smoothed SPSA technique used
are discussed. Finally, in Section IV, the proposed methodology is
applied to a specific real plant (the four heaters of a feedwater high-
pressure line of a 320 MW power plant located at Piombino, Italy).
Extensive simulation results are reported that show the effectiveness
of the neural-parametric technique in estimating the approximate parts
of a complex model of the plant, previously obtained by using suitable
physical and thermodynamical laws.

II. STATEMENT OF THE IDENTIFICATION PROBLEM

Consider a discrete-time global model of the plant whose dynamics
can be described by

� :
xt+1 = f(xt; rt)

y
t
= h(xt)

(1)

wherext represents the state vector,rt represents the input vector,
andy

t
represents the vector of the measurable variables.

Unfortunately, when large complex plants are considered, the
above model generally includes a significant number of simplifying
hypotheses about both the mathematical structures of some blocks and
the values of different parameters. In many cases, the large variations
in the plant over time may give rise to nonnegligible errors on some
model sections.

Therefore, despite the intrinsic complexity of the plant, it would be
useful to employ suitable techniques that make it possible to reduce
the aforementioned approximation errors during the plant operation.
Such techniques would allow the development of an accurate model
that might be simulated in parallel with the plant, with obvious
advantages for supervision tasks. For instance, inaccessible state
variables might be visualized.

Consistently with the grey-box approach, we consider two main
types of uncertainties affecting the model:

• uncertainties in the mathematical structure;
• uncertainties in parameter values.

The uncertainties in the mathematical structure can be modeled by
using a set of unknown functions
j(�xj); j = 1; . . . ;M , whereM

represents the number of sections of the global model characterized
by a partially/totally unknown structure, and�xj is the part of the
state vector corresponding to thejth section. Moreover, we collect in
the vector� all the unknown mathematical and physical parameters
representing parametric uncertainties. Then, we obtain the following
approximate model to be identified:

~� :
~xt+1 = ~f(~xt; rt; �)

~y
t
= ~h(~xt; �)

(2)

where ~f and ~h implicitly depend on
j(�xj); j = 1; . . . ;M; ~xt
col(�x1t ; . . . ; �x

M
t ). Now, in order to identify the model (2) (which, in

terms of classical identification theory, is a prediction model), for a
given initial state and a given time-instantt, we define the following
cost function

J(

1
; . . . ; 


M
; �) =

t

i=t�N

ky
i
� ~y

i
k2P (3)

where N is a suitable time-window andP is a suitable positive
definite matrix. Then, the identification problem can be stated as the
following parametric-functional optimization problem.

Problem 1: At time t, find the optimal functions
1 ; . . . ; 
M

and the optimal value of the parameter��, such that the cost function
(3) is minimized for every possible set of measuresy

t�N
; . . . ; y

t
.

Clearly, the general assumptions under which Problem 1 has been
stated prevent us from solving it in an analytical way. Actually, Prob-
lem 1 entails the solution of nonlinear (and nonquadratic) functional
optimization problems. The approximating method that constitutes the
basis for our approach consists in assigning the unknown functions
defined in Problem 1 given structures in which a certain number of
parameters have to be determined in order to minimize the above cost.
In particular, the functions
j(�xj) are approximated by parametrized
functions of the form
̂j(�xj ; wj); j = 1; . . . ;M , where 
̂j is the
input/output mapping of a multilayer feedforward neural network
and wj is a vector of parameters to be tuned. Among various
possible approximating functions, we choose nonlinear approximators
based on feedforward neural networks, as these approximators are
computationally easy to handle, and, above all, exhibit powerful
approximating capabilities [15].

Now, the vectorw col(wj ; j = 1; . . . ;M) represents all the
weight vectors of the neural networks approximating the unknown
functional parts of the model. As a result, denoting by� col(w; �)

the total parameter vector, we obtain the following approximate
parametric model to be identified:

�̂ :
x̂t+1 = f̂(x̂t; rt; �)

ŷ
t
= ĥ(x̂t; �)

: (4)

Accordingly, the cost function takes on the form

Ĵ(�) =

t

i=t�N

ky
i
� ŷ

i
k2P : (5)

Hence, we have the following.
Problem 2: At time t, find the optimal value of the parameter��,

such that the cost function (5) is minimized for every possible set of
measuresy

t�N
; . . . ; y

t
.

Problem 1 has been reduced to the parametric optimization Problem
2, and, in the next section, we present an algorithm to solve it.

III. SOLUTION OF PROBLEM 2 VIA THE SIMULTANEOUS

PERTURBATION STOCHASTIC APPROXIMATION ALGORITHM

It is now necessary to estimate the optimal parameter vector solving
Problem 2. To this end, it is worth noting that

• in general, real systems exhibit strong nonlinearities, hence it is
not possible to apply classical estimation algorithms such as the
Kalman filter or the least-squares method;
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Fig. 1. General scheme of the tuning algorithm.

• the presence of nondifferentiable nonlinearities and the on-line
inaccessabilities of some internal model variables prevent one
from using techniques based on some linearization method,
like the EKF or other algorithms based on the computations
of the gradients of cost functions (e.g., the backpropagation
technique [13]). (For a nonlinear filtering technique based on
neural networks and on backpropagation, see, for instance, [12].)

Refer to the general scheme depicted in Fig. 1.
As can be noticed, the samples of the measures provided by

the available sensors and of the other accessible signals of the
plant are used for the on-line estimation of the vector�. This
can be done by applying some descent algorithm. However, for
the aforementioned reasons, the exact gradient of the expected
cost cannot be computed, and hence a stochastic approximation
approach has to be followed. We choose thesmoothed simultaneous
perturbation stochastic approximation[16]. In the following, the most
significant features of this algorithm will be summarized for the
reader’s convenience. They are detailed in [16], from which we have
taken most of the notation.

The algorithm can be written as

�̂
k
= �̂

k�1
� akGk; k = 0; 1; . . . (6)

whereGk is a smoothed approximation tog
k
(�̂

k
) r� E(Ĵ) of

the form

Gk = �kGk�1 + (1� �k)ĝ
k
(�̂

k�1
); G0 = 0 (7)

whereĝ
k

is the so-called simultaneous perturbation approximation to
g
k

(see [14] for the original definition of the unsmoothed simulta-
neous perturbation technique). More specifically, thelth component
of ĝ

k
(�̂

k�1
) is given by

gkl(�̂
k�1

) =
Ĵ
(+)

k�1 � Ĵ
(�)

k�1

2ck�kl

(8)

whereĴ(�)

k and Ĵ(+)

k are two observations corresponding to the pa-
rameter perturbationŝ�

k
� ck�k�k and�̂

k
+ ck�k�k, respectively.

�kl are suitable random variables andfckg is a sequence of positive

scalars that satisfy some regularity conditions (see [14] and [16] for
a detailed discussion on the algorithm and on the characteristics of
the above quantities in terms of convergence properties).

The use of the smoothed SPSA algorithm instead of standard finite-
difference stochastic approximation (FDSA) techniques is motivated
by the fact that only two perturbations are needed, instead of the
2p ones necessary for the computation of the approximation to
g
k
(p = dim (�)). Analogous convergence properties are however

maintained. The above computational advantage is of basic impor-
tance, given the large number of necessary parameters to be estimated,
which represents a common characteristic of neural-network training.

In the remaining part of the paper, we focus on a specific
complex real plant in order to better point out the characteristics
and potentialities of the proposed methodology.

IV. A PPLICATION OF THEMETHODOLOGY TO A POWER PLANT MODEL

In this section, an application of the method previously described
is presented. In the first subsection, for the reader’s convenience,
brief descriptions of the power plant considered and of its global
model are reported. The reader interested in more details is referred
to [9], where a fault-diagnosis method for the same plant is addressed,
and to [17], where some specific modeling issues are addressed.
However, some technical details of the model development, based
on the physical characteristics of the system, are reported in order to
define the advantages of thegrey-boxapproach to the identification
problem, in terms of the consistency of the identified model with the
physical parts of the plant, and to identify the model parts that are
structurally and/or parametrically unknown. This will make it possible
to design a system that can be on-line tuned to the plant behavior,
and that allows the monitoring of significant state variables, both
for a possible tuning of control components and for supervision and
fault-detection purposes.

A. Description of the Power Plant

This subsection describes a section of the 320 MW power plant
located at Piombino, Italy (see Fig. 2). In particular, one of the
two feedwater high-pressure heater lines electronically controlled is
considered. This line is devoted to the regeneration process, i.e., a
technique that improves the plant efficiency. More specifically, the
thermodynamic cycle involves the problem that the energy spent by
the boiler to transform the water from the liquid phase into the
aeriform phase is not completely used in the turbine. This occurs
not only because of the intrinsic losses in the turbine, in the boiler,
and in the pump, but mainly because it is necessary to condense the
steam coming from the turbine at the same temperature and pressure
values as those at the beginning of the process. This completes the
thermic cycle, so it is possible to heat the liquid once again.

The regeneration process aims to limit energy losses inside the cold
source. It follows the scheme shown in Fig. 2: the heaters inserted in
the thermic cycle bleed steam from the high-pressure and medium-
pressure turbine stages in order to preheat the liquid feedwater coming
from the feed pumps and going into the boiler. This process is basic
to a high overall plant efficiency, as the water needs less energy from
the boiler and decreases the heat given to the cold source.

The high-pressure heater line is depicted in Fig. 3 and is composed
of four heaters, denoted by HPHX1, HPHX2, HPHX3, and HPHX4.
The feedwater comes from the feed pump, flows through the four
heaters, and goes into the boiler. After leaving the turbine, the super-
heated steam exchanges heat with the feedwater and then condenses.
Each heater (see Fig. 4) consists of a vertical-axis cylindrical hollow,
divided into halves by a vertical septum and including a\-shaped
tube-bundle where the feedwater flows.
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Fig. 2. Scheme of the regeneration process.

Fig. 3. The high-pressure heater line.

The hollow is made up of three areas for the different types of
steam:

A: desuperheating area, where the superheated steam cools down
until it reaches the saturated steam condition through the heat
exchange with the feedwater flowing in the tube-bundle;

B: condensing area, where the saturated steam condenses (vapor-
liquid transition);

C: subcooling area, where the condensed steam and the drain
coming from the downstream heaters undergo a process of
heat exchange with the feedwater.
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Fig. 4. A heater.

The model of the plant has been built on the basis of the models
of the single heaters that make up the high-pressure line, of the
sensors, of the actuators and of the controller elements. The model of
each heater (see Fig. 4), has been obtained by a “physical” approach
according to the grey-box identification concept. The equations
describing each heater have been derived from the mass, energy and
momentum conservation laws. In particular, an analysis has been
made of i) the behavior of the fluid inside the hollow by using the
equations for the conservation of the mass of drain water, for the
conservation of the mass of water and steam, and for the conservation
of the energy of subcooled water; and ii) the behavior of the fluid in
the tube-bundle by using the equations for the heat exchange in the
desuperheating, drainage, and condensation areas, and the equations
for the loss of pressure in the tube-bundles due to the metal friction.
Regarding the fluid inside the hollow, the following assumptions have
been made:

— negligible heat exchange between the hollow and the external
environment;

— negligible exchanges of energy and mass, due to surface phe-
nomena at the interface between the condensing and subcooling
areas;

— the heat-exchange surface between the hollow fluid and the tube-
bundle is fixed in the desuperheating area and the level of the
heat exchange depends on the condensing and subcooling areas;

— uniform pressure distribution inside the hollow;
— uniform enthalpy distribution inside each area (A, B, and C);
— negligible density variations inside the subcooling area.

Moreover, the following assumptions have been made about the
feedwater:

— feedwater in liquid state and in subcooling condition;
— constant fluid pressure in the tube-bundle and equal to the input

pressure in the heater;
— uniform physical properties of the tube-bundle metal;
— negligible longitudinal heat conduction in both the pipe metals

and the fluid.

From the above assumptions, a set of nonlinear state equations can be
derived to define the behavior of the thermodynamic coordinates of
the thermotransformation in each heater [17]. The global system can
be described by 71 state variables (to the exclusion of those related
to the regulation system) and 29 measurable variables.

The models of the heaters have an identical structure and differ
only in constants such as geometric coefficients (tank height, in-

side tank diameter, pipe length, inside and outside pipe diameters,
desuperheating area), thermal coefficients (pipe-metal specific heat,
pipe-metal thermal conductivity, steam thermal-exchange coefficient,
water thermal-exchange coefficient), number of tubes in the tube-
bundle, etc.

The complex nonlinear model of the power plant considered has
first been extensively simulated, and the behaviors of the accessible
system variables have then been analyzed by plant experts. Subse-
quently, the system has been tested on the real plant. The reader
is referred to [9] for more details on the validation phase. As can
be noticed from the figures in [9] (not shown here) the results are
satisfactory, thus proving the reliability of the model developed,
especially in the light of the fact that it has been connected to the
real plant in an adequate way. Suffice it to say that the differences
between simulated and real variables have always been of a percent
order not exceeding the accuracy limits of the available sensors.

However, the validation of the described model allows one to
confirm only that the behavior of the model is satisfactory in terms of
accessible variables. By contrast, nothing can be said on the modeling
of the parts related to inaccessible state variables, which are very
important for the supervision, as previously mentioned. Therefore, in
the next subsection, we shall show, on the basis of simulation results,
that the model tuning by the methodology described in Sections II
and III allows one to estimate also such inaccessible model parts.

B. Tuning of the Power Plant Model

The complex model briefly described in the subsection includes a
large number of simplifying hypotheses about both the mathematical
structures of some blocks and the values of different parameters. In
many cases, the large variations in the plant over time may give
rise to nonnegligible errors on some model sections that cannot be
accessed by the available sensors.

Therefore, it would be very useful to employ the technique
presented in Sections II and III in order to reduce the aforementioned
approximation errors during the plant operation.

In this respect, consider the global scheme in Fig. 5. Such a scheme
includes some parts that are specific for the plant model considered,
but that do not affect the generality of the proposed methodology,
as previously stressed.

Such a scheme points out the two main types of uncertainties
affecting the developed model:

1) Uncertainties in the mathematical structure. For instance, the
quantities related to the other parts of the power plant have
been assumed to be proportional to the load. This assumption
may turn out to be very simplistic. Other approximations about
the mathematical structure are inherent in the use of steam
tables and in the various discretized transformation functions.
In Fig. 5, we refer to completely unknown and approximately
known structures. The former are really black-box models,
while the latter are made of known and unknown sub-blocks.
This schematization is very useful in the application considered
here, and may turn out to be of some utility also in general.

2) Uncertainties in parameter values. For instance, we have used
thermodynamic constants and geometrical parameters that are
not known with precision and that may vary during the plant
operation (e.g., pipe diameters, thermal capacities of the various
metals used, etc.).

Furthermore, the model includes several hard nondifferentiable
nonlinearities placed in the different blocks depicted in Fig. 5, which
make it necessary to use the tuning algorithm presented in Sections
II and III. The list of the above nonlinearities for each block is the
following:
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Fig. 5. Scheme of the global model. The parts with uncertain structures and/or uncertain parameters are clearly indicated.

Input block load saturation.
Sensors block water level saturation.
Regulator block anti-wind-up actions and control satura-

tions.
Actuators block rate limiters and saturations.
Elaboration block square-root functions in the output feedwa-

ter sections.
Transformation blocksteam-tables and square-root functions in

the output feedwater sections.

By replacing all the parts affected by uncertain functioning (see
Fig. 5) with neural networks, one obtains the model (4) (see Section
II), wherex col(xI ; xA; xS) represents the state vector(dim(x) =

71); y col(ym; yr) represents the vector of the measurable
variables (dim(y) = 34); w is the total vector of the synaptic
weights of the neural networks, and� is the vector of the unknown
mathematical and physical parameters. For notation simplicity, here
and in the following, we drop the indext. In [9], the list of parameters
to be estimated (i.e., the components of the vector�) is given,
together with their approximate values based on the expertise of
plant technicians.

As clearly stated in Section II, two distinct types of quantities
have been identified, which have to be estimated on the basis of the
measures provided by the available sensors of the plant: i) parameters
of the model parts whose mathematical structures are assumed to be
accurate enough, and ii) synaptic weights of the neural networks
that describe the model parts whose mathematical structures are very
approximate.

As mentioned in [9], the simulator on which the global model
(including the neural networks) has been implemented can be con-
nected to the FIP automation system of the power plant. This allows
the on-line tuning of the model to the real plant. Clearly, one
can verify that even the inaccessible model parts can be estimated
to a reasonable accuracy by the proposed tuning method only
via simulation. Therefore, we have developed an emulator of the
described accurate model validated on the real plant. Such a simulated
model has then been regarded as a real system, thus allowing one to
measure even the inaccessible internal model parts. In parallel, we

Fig. 6. Scheme of the simulation framework to verify the effectiveness of
the tuning method.

have developed an analogous model whose parameters had yet to
be tuned. We aimed to ascertain if the proposed methodology makes
it possible to tune the model parameters to real values, and if the
internal parts are estimated correctly. We refer the reader to Fig. 6,
which is only a simplified version of Fig. 1, but which is useful within
the context of the present section.

Now, we describe the just introducedsimulation-based valida-
tion. The model parts modeled by the neural networks are the
modulating actuators, the steam table and the table of the enthalphy-
into-temperature conversion; the parameters to be estimated are the
water levels in the desuperheating areas. For the actuators, we used
neural networks with two input units, four hidden units and one
output unit; for the steam table, we used neural networks with ten
input units, 20 hidden units, and ten output units; for the table of
the enthalphy-into-temperature conversion, we used neural networks
with eight input units, 15 hidden units and four output units. As to the
cost function (5), we chose experimentallyN = 1000, t = N fixed,
andP = 0:1 � I, whereI is the identity matrix. For the parameters
of the Smoothed SPSA algorithm, we choseak = 0:004=k0:602;

ck = 0:6=k0:101, and�k = 0:5=k0:603; the scalars�k were suitably
chosen according to the magnitudes of thea priori estimated values
of the corresponding parameters. We took the perturbations�kl to
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Fig. 7. Behavior of the estimation cost function during the learning proce-
dure.

be Bernoulli�0:5 distributed, so guaranteeing the fulfillment of the
main regularity assumptions made in [16].

The convergence of the learning procedure was satisfactory, as
shown in Fig. 7. Note that the estimation cost function, whose be-
havior is shown in Fig. 7, may not be a reliable indicator as to whether
the state variables generated by the model during the plant operation
actually represent the real variables to a good approximation. Such a
cost takes into account only the input–output behavior of the model,
as compared with the behavior previously determined and parallel-
simulated. Moreover, according to the scheme shown in Fig. 6, during
the simulation phase, it is possible to build also an indicator of the
goodness of the state-variable estimation, e.g., the root sum square
(RSS) error of the state vector

RSS(t) =
1

N

N

i=1

kxi(t)� x̂i(t)k2

wherexi(t) and x̂i(t) are theith components ofx
t

and x̂t, respec-
tively, andn = dim(x

t
).

Obviously, such an indicator can be computed only via simulation,
not in real time; nevertheless, it is useful to assess the reliability of
the approach in terms of estimation of the inaccessible state variables.
Fig. 8 shows the good behavior of the RSS error.

In confirmation of the satisfactory estimates of the state variables,
Fig. 9 shows a comparison between the real behavior of the water
level in the condensing area and the estimated value in HPHX1, after
1000 training steps. It is easy to deduce that the deviation between
the two behaviors is very small.

Furthermore, Fig. 10 gives the behaviors of four estimated pa-
rameters, i.e., the water levels in the desuperheating areas in the
four heaters. As can be noticed, for all four heaters, satisfactory
convergences of the parameters to their true values were obtained
after a reasonable number of iterations.

Finally, we report the results of some simulations of a plant
malfunction only to stress, once again, the usefulness of a grey-box
approach to the identification problem, based on the development of
a model strictly consistent with the physical parts of the plant (more
details on such a model-based fault-detection problem can be found
in [17]). In particular, we simulated a feedwater leak in the tube-
bundle in the condensing area. More specifically, the leakage flow
from the tube-bundle can be expressed as


p
�, where� is the

difference in pressure existing between the hollow of the heater and

Fig. 8. Behavior of the RSS error during the learning procedure.

Fig. 9. Comparison between the estimated (dashed line) and true (continuous
line) behaviors of the condensate level in Heater 1, after 1000 training steps.

the feedwater (such a difference of course depends on the operating
conditions of the system) and
 � 0 is a scalar that models the
leak in the tube-bundle (i.e.,
 = 0 means absence of leaks, and an
increase in
, under the same operating conditions, means an increase
in the leakage flow). In particular, one leak speed with
 = 0:05 was
simulated. Fig. 11 shows the behaviors of the heaters’ condensate
levels during the plant malfunction. As can be seen, the feedwater
leak in the tube-bundle of HPHX3 causes a decrease in the levels
in the downstream heaters and an increase in the levels in the same
heater and in the upstream ones.

Fig. 11 shows that one can model the aforementioned fault by
observing the behaviors of the condensate levels. It is worth noting
that the simulation and hence the input–output modeling of the fault
(very frequent in heater lines) were possible only thanks to the fact
that the developed model is consistent with the physical parts of
the plant and to the fact that an effective tuning technique has been
devised.

V. CONCLUSION

In this paper, a methodology for the grey-box identification of
complex models of real plants has been proposed. More specifically,
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Fig. 10. Convergences of the estimated water levels in the desuperheating
areas to their true values.

Fig. 11. Condensate levels in HPHX1, HPHX2, HPHX3, and HPHX4 during
a plant malfunction in HPHX3 with
 = 0:05.

the tuning of the model parts, whose structures and/or parameters
were approximately known, has been accomplished by using the
measures provided by the available sensors.

The replacement of the structurally unknown parts with suitable
multilayer feedforward neural networks makes it possible to reduce
the model-tuning problem to a parametric-identification problem,
which in general involves a large number of parameters to be tuned.
The numerical solution of this problem can be obtained by a stochastic
approximation technique, i.e., the SPSA, which allows, at the same
time, the training of the neural networks and the estimation of
the model parameters. The proposed method was applied to a real
320 MW power plant. Simulation results confirm the validity of
the described approach, which is much more efficient than standard
finite-difference methods for this application.
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