
Citation: Spall, J. C. (2012), “Stochastic Optimization,” in Handbook of Computational
Statistics: Concepts and Methods (2nd ed.) (J. Gentle, W. Härdle, and Y. Mori, eds.),

Springer−Verlag, Heidelberg, Chapter 7, pp. 173–201.
dx.doi.org/10.1007/978-3-642-21551-3_7

STOCHASTIC OPTIMIZATION

James C. Spall

The Johns Hopkins University
Applied Physics Laboratory
11100 Johns Hopkins Road

Laurel, Maryland 20723-6099 U.S.A.
james.spall@jhuapl.edu

Stochastic optimization algorithms have been growing rapidly in
popularity over the last decade or two, with a number of methods now becoming
“industry standard” approaches for solving challenging optimization problems.
This chapter provides a synopsis of some of the critical issues associated with
stochastic optimization and a gives a summary of several popular algorithms.
Much more complete discussions are available in the indicated references.

To help constrain the scope of this article, we restrict our attention to
methods using only measurements of the criterion (loss function). Hence, we do
not cover the many stochastic methods using information such as gradients of the
loss function. Section 1 discusses some general issues in stochastic optimization.
Section 2 discusses random search methods, which are simple and surprisingly
powerful in many applications. Section 3 discusses stochastic approximation,
which is a foundational approach in stochastic optimization. Section 4 discusses a
popular method that is based on connections to natural evolution—genetic
algorithms. Finally, Section 5 offers some concluding remarks.

1 Introduction

1.1 General Background

Stochastic optimization plays a significant role in the analysis, design, and
operation of modern systems. Methods for stochastic optimization provide a
means of coping with inherent system noise and coping with models or systems
that are highly nonlinear, high dimensional, or otherwise inappropriate for
classical deterministic methods of optimization. Stochastic optimization
algorithms have broad application to problems in statistics (e.g., design of
experiments and response surface modeling), science, engineering, and business.
Algorithms that employ some form of stochastic optimization have become widely
available. For example, many modern data mining packages include methods such

as simulated annealing and genetic algorithms as tools for extracting patterns in
data.
 Specific applications include business (making short- and long-term
investment decisions in order to increase profit), aerospace engineering (running
computer simulations to refine the design of a missile or aircraft), medicine
(designing laboratory experiments to extract the maximum information about the
efficacy of a new drug), and traffic engineering (setting the timing for the signals
in a traffic network). There are, of course, many other applications.

Let us introduce some concepts and notation. Suppose Θ is the domain of
allowable values for a vector θ. The fundamental problem of interest is to find the
value(s) of a vector θ ∈ Θ that minimize a scalar-valued loss function L(θ). Other
common names for L are performance measure, objective function, measure-of-
effectiveness (MOE), fitness function (or negative fitness function), or criterion.
While this problem refers to minimizing a loss function, a maximization problem
(e.g., maximizing profit) can be trivially converted to a minimization problem by
changing the sign of the criterion. This chapter focuses on the problem of
minimization. In some cases (i.e., differentiable L), the minimization problem can
be converted to a root-finding problem of finding θ such that g(θ) = ()L∂ ∂θ θ =
0. Of course, this conversion must be done with care because such a root may not
correspond to a global minimum of L.

The three remaining subsections in this section define some basic
quantities, discuss some contrasts between (classical) deterministic optimization
and stochastic optimization, and discuss some basic properties and fundamental
limits. This section provides the foundation for interpreting the algorithm
presentations in Sections 2 to 4. There are many other references that give general
reviews of various aspects of stochastic optimization. Among these are Arsham
(1998), Fouskakis and Draper (2002), Fu (2002), Gosavi (2003), Michalewicz and
Fogel (2000), Spall (2003), and Cochran (2011; see topic area “stochastic
optimization”).

1.2 Formal Problem Statement

The problem of minimizing a loss function L = L(θ) can be formally
represented as finding the set:

arg min () : () for all(){ }L L L
∈Θ

∗ ∗ ∗Θ ≡ = ∈Θ ∈Θ≤
θ

θ θ θ θ θ , (1.1)

where θ is the p-dimensional vector of parameters that are being adjusted and Θ ⊆
p. The “ arg min ∈Θθ ” statement in (1.1) should be read as: ∗Θ is the set of
values θ = ∗θ (θ the “argument” in “arg min”) that minimize L(θ) subject to ∗θ
satisfying the constraints represented in the set Θ. The elements ∗θ ∈ ∗Θ ⊆ Θ are
equivalent solutions in the sense that they yield identical values of the loss

function. The solution set ∗Θ in (1.1) may be a unique point, a countable (finite
or infinite) collection of points, or a set containing an uncountable number of
points.
 For ease of exposition, this chapter generally focuses on continuous
optimization problems, although some of the methods may also be used in discrete
problems. In the continuous case, it is often assumed that L is a “smooth” (perhaps
several times differentiable) function of θ. Continuous problems arise frequently
in applications such as model fitting (parameter estimation), adaptive control,
neural network training, signal processing, and experimental design. Discrete
optimization (or combinatorial optimization) is a large subject unto itself
(resource allocation, network routing, policy planning, etc.).

A major issue in optimization is distinguishing between global and local
optima. All other factors being equal, one would always want a globally optimal
solution to the optimization problem (i.e., at least one ∗θ in the set of values ∗Θ).
In practice, however, it may not be feasible to find a global solution and one must
be satisfied with obtaining a local solution. For example, L may be shaped such
that there is a clearly defined minimum point over a broad region of the domain
Θ, while there is a very narrow spike at a distant point. If the trough of this spike
is lower than any point in the broad region, the local optimal solution is better
than any nearby θ, but it is not be the best possible θ.

It is usually only possible to ensure that an algorithm approaches a local
minimum with a finite amount of resources being put into the optimization
process. That is, it is easy to construct functions that will “fool” any known
algorithm, unless the algorithm is given explicit prior information about the
location of the global solution—certainly not a case of practical interest!
However, since the local minimum may still yield a significantly improved
solution (relative to no formal optimization process at all), the local minimum may
be a fully acceptable solution for the resources available (human time, money,
computer time, etc.) to be spent on the optimization. However, we discuss several
algorithms (random search, stochastic approximation, and genetic algorithms) that
are sometimes able to find global solutions from among multiple local solutions.

1.3 Contrast of Stochastic and Deterministic Optimization

As a chapter on stochastic optimization, the algorithms considered here
apply where:

I. There is random noise in the measurements of L(θ)

—and/or —

II. There is a random (Monte Carlo) choice made in the search direction as the
algorithm iterates toward a solution.

In contrast, classical deterministic optimization assumes that perfect information
is available about the loss function (and derivatives, if relevant) and that this
information is used to determine the search direction in a deterministic manner at
every step of the algorithm. In many practical problems, such information is not
available. We discuss properties I and II below.

Let ˆ
kθ be the generic notation for the estimate for θ at the kth iteration of

whatever algorithm is being considered, k = 0, 1, 2,…. Throughout this chapter,
the specific mathematical form of ˆ

kθ will change as the algorithm being
considered changes. The following notation is used to represent noisy
measurements of L at a specific θ:

y(θ) ≡ L(θ) + ε(θ), (1.2)

where ε represents the noise terms. Note that the noise terms show dependence on
θ. This dependence is relevant for many applications. It indicates that the common
statistical assumption of independent, identically distributed (i.i.d.) noise does not
necessarily apply since θ will be changing as the search process proceeds.

Relative to property I, noise fundamentally alters the search and
optimization process because the algorithm is getting potentially misleading
information throughout the search process. For example, as described in Example
1.4 of Spall (2003), consider the following loss function with a scalar θ: L(θ) =

0.1 sin(2)e− θ θ . If the domain for optimization is Θ = [0, 7], the (unique) minimum
occurs at ∗θ = 3 4π ≈ 2.36, as shown in Figure 1. Suppose that the analyst
carrying out the optimization is not able to calculate L(θ), obtaining instead only
noisy measurements y(θ) = L(θ) + ε, where the noises ε are i.i.d. with distribution
N(0, 0.52) (a normal distribution with mean zero and variance 0.52). The analyst
uses the y(θ) measurements in conjunction with an algorithm to attempt to find ∗θ .

Consider the experiment depicted in Figure 1 (with data generated via
MATLAB). Based on the simple method of collecting one measurement at each
increment of 0.1 over the interval defined by Θ (including the endpoints 0 and 7),
the analyst would falsely conclude that the minimum is at θ = 5.9. As shown, this
false minimum is far from the actual ∗θ .

Figure 1. Simple loss function L(θ) with indicated minimum ∗θ . Note how noise causes
the algorithm to be deceived into sensing that the minimum is at the indicated false
minimum. (Reprinted from Introduction to Stochastic Search and Optimization with
permission of John Wiley & Sons, Inc.)

Noise in the loss function measurements arises in almost any case where
physical system measurements or computer simulations are used to approximate a
steady-state criterion. Some specific areas of relevance include real-time
estimation and control problems where data are collected “on the fly” as a system
is operating and problems where large-scale simulations are run as estimates of
actual system behavior.

Let us summarize two distinct problems involving noise in the loss
function measurements: target tracking and simulation-based optimization. In the
tracking problem there is a mean-squared error (MSE) criterion of the form

L(θ) = ()2actual output desired outputE − .

The stochastic optimization algorithm uses the actual (observed) squared error
y(θ) = 2⋅ , which is equivalent to an observation of L embedded in noise. In the
simulation problem, let L(θ) be the loss function representing some type of
“average” performance for the system. A single run of a Monte Carlo simulation
at a specific value of θ provides a noisy measurement: y(θ) = L(θ) + noise at θ.
(Note that it is rarely desirable to spend computational resources in averaging
many simulation runs at a given value of θ; in optimization, it is typically

necessary to consider many values of θ.) The above problems are described in
more detail in Examples 1.5 and 1.6 in Spall (2003).

Relative to the other defining property of stochastic optimization, property
II (i.e., randomness in the search direction), it is sometimes beneficial to
deliberately introduce randomness into the search process as a means of speeding
convergence and making the algorithm less sensitive to modeling errors. This
injected (Monte Carlo) randomness is usually created via computer-based
pseudorandom number generators. One of the roles of injected randomness in
stochastic optimization is to allow for “surprise” movements to unexplored areas
of the search space that may contain an unexpectedly good θ value. This is
especially relevant in seeking out a global optimum among multiple local
solutions. Some algorithms that use injected randomness are random search
(Section 2), simultaneous perturbation stochastic approximation (Section 3), and
genetic algorithms (Section 4).

1.4 Some Principles of Stochastic Optimization

The discussion above is intended to motivate some of the issues and

challenges in stochastic optimization. Let us now summarize some important
issues for the implementation and interpretation of results in stochastic
optimization.

The first issue we mention is the fundamental limits in optimization with
only noisy information about the L function. Foremost, perhaps, is that the
statistical error of the information fed into the algorithm—and the resulting error
of the output of the algorithm—can only be reduced by incurring a significant cost
in number of function evaluations. For the simple case of independent noise, the
error decreases at the rate 1 N , where N represents the number of L
measurements fed into the algorithm. This is a classical result in statistics,
indicating that a 25-fold increase in function evaluations reduces the error by a
factor of five.

A further limit for multivariate (p > 1) optimization is that the volume of
the search region generally grows rapidly with dimension. This implies that one
must usually exploit problem structure to have a hope of getting a reasonable
solution in a high-dimensional problem.

All practical problems involve at least some restrictions on θ, although in
some applications it may be possible to effectively ignore the constraints.
Constraints can be encountered in many different ways, as motivated by the
specific application. Note that the constraint set Θ does not necessarily correspond
to the set of allowable values for θ in the search since some problems allow for
the “trial” values of the search to be outside the set of allowable final estimates.
Constraints are usually handled in practice on an ad hoc basis, especially tuned to
the problem at hand. There are few general, practical methods that apply broadly
in stochastic optimization. Michalewicz and Fogel (2000, Chap. 9), for example,

discuss some of the practical methods by which constraints are handled in
evolutionary computation. Similar methods apply in other stochastic algorithms.

In general search and optimization, it is very difficult (perhaps impossible)
to develop automated methods for indicating when the algorithm is close enough
to the solution that it can be stopped. Without prior knowledge, there is always the
possibility that ∗θ could lie in some unexplored region of the search space. This
applies even when the functions involved are relatively benign; see Solis and
Wets (1981) for mention of this in the context of twice-differentiable convex L.
Difficulties are compounded when the function measurements include noise.

It is quite normal for the environment to change over time. Hence, the
solution to a problem now may not be the best (or even a good) solution to the
corresponding problem in the future. In some search and optimization problems,
the algorithm will be explicitly designed to adapt to a changing environment and
automatically provide a new estimate at the optimal value (e.g., a control system).
In other cases, one needs to restart the process and find a new solution. In either
sense, the problem solving may never stop!

In reading or contributing to the literature on stochastic optimization, it is
important to recognize the limits of numerical comparisons by Monte Carlo.
Monte Carlo studies can be a sound scientific method of gaining insight and can
be a useful supplement to theory, much of which is based on asymptotic (infinite
sample) analysis. In fact, it is especially popular in certain branches of
optimization to create “test suites” of problems, where various algorithms
compete against each other. A danger arises, however, in making broad claims
about the performance of individual algorithms based on the results of numerical
studies. Performance can vary tremendously under even small changes in the form
of the functions involved or the coefficient settings within the algorithms
themselves. One must be careful about drawing conclusions beyond those directly
supported by the specific numerical studies performed. For purposes of drawing
objective conclusions about the relative performance of algorithms, it is preferable
to use both theory and numerical studies.

Some real systems have one (unique) globally “best” operating point (∗θ)
in the domain Θ while others have multiple global solutions (in either case, of
course, there could be many locally optimal solutions). To avoid excessively
cumbersome discussion of algorithms and supporting implementation issues and
theory, we often refer to “the” solution ∗θ (versus “a” solution ∗θ). In practice,
an analyst may be quite satisfied to reach a solution at or close to any one ∗θ ∈

∗Θ .
The so-called no free lunch (NFL) theorems provide a formal basis for the

intuitively appealing idea that there is a fundamental tradeoff between algorithm
efficiency and algorithm robustness (reliability and stability in a broad range of
problems). In essence, algorithms that are very efficient on one type of problem
are not automatically efficient on problems of a different type. Hence, there can
never be a universally best search algorithm just as there is rarely (never?) a

universally best solution to any general problem of society. Wolpert and
Macready (1997) provided a general formal structure for the NFL theorems,
although the general ideas had been around for a long time prior to their paper
(Wolpert and Macready were the ones to coin the expression “no free lunch” in
this search and optimization context). The NFL theorems are established for
discrete optimization with a finite (but arbitrarily large) number of options.
However, their applicability includes most practical continuous problems because
virtually all optimization is carried out on 32- or 64-bit digital computers. The
theorems apply to the cases of both noise-free and noisy loss measurements. NFL
states, in essence, that an algorithm that is effective on one class of problems is
guaranteed to be ineffective on another class. Spall (2003, Sects. 1.2.2 and 10.6)
provides more-detailed discussion on the basis and implications of NFL.

We are now in a position to discuss several popular stochastic
optimization methods. The summaries here are just that—summaries. Much more
complete discussions are available in the indicated references or in Spall (2003).
We let ˆ

kθ represent the estimate for θ at the kth iteration of an algorithm under
consideration. Section 2 discusses random search methods, which are simple and
surprisingly powerful in many applications. Section 3 discusses stochastic
approximation and Section 4 discusses the popular genetic algorithms. Because of
the relative brevity of this review, there are many methods of stochastic
optimization not covered here, including simulated annealing, stochastic
programming, evolutionary computation other than genetic algorithms, temporal
difference methods, and so on. Readers with an interest in one of those may
consult the references mentioned at the end of Section 1.1.

2. Random Search

This section describes some simple methods based on the notion of
randomly searching over the domain of interest. Section 2.1 gives a short
discussion of general issues in direct random search methods. The algorithms
discussed in Section 2.2 represent two versions of random search.

2.1 Some General Properties of Direct Random Search

Consider the problem of trying to find the optimal θ ∈ Θ based on noise-
free measurements of L = L(θ). Random search methods are perhaps the simplest
methods of stochastic optimization in such a setting and can be quite effective in
many problems. Their relative simplicity is an appealing feature to both
practitioners and theoreticians. These direct random search methods have a
number of advantages relative to most other search methods. The advantages
include relative ease of coding in software, the need to only obtain L
measurements (versus gradients or other ancillary information), reasonable

computational efficiency (especially for those direct search algorithms that make
use of some local information in their search), broad applicability to non-trivial
loss functions and/or to θ that may be continuous, discrete, or some hybrid form,
and a strong theoretical foundation. Some of these attributes were mentioned in
the forward-looking paper of Karnopp (1963). A good recent survey of random
search and related methods is Kolda et al. (2003).

2.2 Two Algorithms for Random Search

This section describes two direct random search techniques. These two
algorithms represent only a tiny fraction of available methods. Solis and Wets
(1981) and Zhigljavsky (1991) are among many references discussing these and
other random search methods. The two algorithms here are intended to convey the
essential flavor of most available direct random search algorithms. With the
exception of some discussion at the end of the subsection, the methods here
assume perfect (noise-free) values of L.
 The first method we discuss is “blind random search.” This is the simplest
random search method, where the current sampling for θ does not take into
account the previous samples. That is, this blind search approach does not adapt
the current sampling strategy to information that has been garnered in the search
process. The approach can be implemented in batch (non-recursive) form simply
by laying down a number of points in Θ and taking the value of θ yielding the
lowest L value as our estimate of the optimum. The approach can be conveniently
implemented in recursive form as we illustrate below.

The simplest setting for conducting the random sampling of new
(candidate) values of θ is when Θ is a hypercube and we are using uniformly
generated values of θ. The uniform distribution is continuous or discrete for the
elements of θ depending on the definitions for these elements. In fact, the blind
search form of the algorithm is unique among all general stochastic optimization
algorithms in that it is the only one without any adjustable algorithm coefficients
that need to be “tuned” to the problem at hand. (Of course, a de facto tuning
decision has been made by choosing the uniform distribution for sampling.)

For a domain Θ that is not a hypercube or for other sampling distributions,
one may use transformations, rejection methods, or Markov chain Monte Carlo to
generate the sample θ values (see, e.g., Gentle, 2003). For example, if Θ is an
irregular shape, one can generate a sample on a hypercube superset containing Θ
and then reject the sample point if it lies outside of Θ.

The steps for a recursive implementation of blind random search are given
below. This method applies when θ has continuous, discrete, or hybrid elements.

Blind Random Search

Step 0 (Initialization) Choose an initial value of θ, say 0θ̂ ∈ Θ, either

randomly or deterministically. (If random, usually a uniform distribution
on Θ is used.) Calculate 0

ˆ()L θ . Set k = 0.
Step 1 Generate a new independent value θnew(k + 1) ∈ Θ, according to the

chosen probability distribution. If L(θnew(k + 1)) < ˆ()kL θ , set 1
ˆ

k+θ =
θnew(k + 1). Else, take 1

ˆ
k+θ = ˆ

kθ .
Step 2 Stop if the maximum number of L evaluations has been reached or the

user is otherwise satisfied with the current estimate for θ via appropriate
stopping criteria; else, return to step 1 with the new k set to the former
k + 1.

The above algorithm converges almost surely (a.s.) to ∗θ under very

general conditions (see, e.g., Spall, 2003, pp. 40−41). Of course, convergence
alone is an incomplete indication of the performance of the algorithm. It is also of
interest to examine the rate of convergence. The rate is intended to tell the analyst
how close ˆ

kθ is likely to be to ∗θ for a given cost of search. While blind random
search is a reasonable algorithm when θ is low dimensional, it can be shown that
the method is generally a very slow algorithm for even moderately dimensioned θ
(see, e.g., Spall, 2003, 42−43). This is a direct consequence of the exponential
increase in the size of the search space as p increases. As an illustration, Spall
(2003, Example 2.2) considers a case where Θ = [0, 1]

p (the p-dimensional
hypercube with minimum and maximum values of 0 and 1 for each component of
θ) and where one wishes to guarantee with probability 0.90 that each element of θ
is within 0.04 units of the optimal value. As p increases from one to ten, there is
an approximate 1010-fold increase in the number of loss function evaluations
required.
 Blind search is the simplest random search in that the sampling generating
the new θ value does not take account of where the previous estimates of θ have
been. The random search algorithm below is slightly more sophisticated in that the
random sampling is a function of the position of the current best estimate for θ. In
this way, the search is more localized in the neighborhood of that estimate,
allowing for a better exploitation of information that has previously been obtained
about the shape of the loss function.

The localized algorithm is presented below. This algorithm was described
in Matyas (1965). Note that the use of the term “localized” here pertains to the
sampling strategy and does not imply that the algorithm is only useful for local
(versus global) optimization in the sense described in Section 1. In fact, the
algorithm has global convergence properties as described below. As with blind
search, the algorithm may be used for continuous or discrete problems.

Localized Random Search

Step 0 (Initialization) Pick an initial guess 0θ̂ ∈ Θ, either randomly or with

prior information. Set k = 0.
Step 1 Generate an independent random vector dk ∈ p and add it to the

current θ value, ˆ
kθ . Check if ˆ

kθ + dk ∈ Θ. If ˆ
kθ + dk ∉ Θ, generate a

new dk and repeat or, alternatively, move ˆ
kθ + dk to the nearest valid

point within Θ. Let θnew(k+1) equal ˆ
kθ + dk ∈ Θ or the aforementioned

nearest valid point in Θ.
Step 2 If new (1)()L k +θ < ˆ()kL θ , set 1

ˆ
k+θ = θnew(k+1); else, set 1

ˆ
k+θ = ˆ

kθ .
Step 3 Stop if the maximum number of L evaluations has been reached or the

user is otherwise satisfied with the current estimate for θ via appropriate
stopping criteria; else, return to step 1 with the new k set to the former
k + 1.

 For continuous problems, Matyas (1965) and others have used the
(multivariate) normal distribution for generating dk . However, the user is free to
set the distribution of the deviation vector dk. The distribution should have mean
zero and each component should have a variation (e.g., standard deviation)
consistent with the magnitudes of the corresponding θ elements. This allows the
algorithm to assign roughly equal weight to each of the components of θ as it
moves through the search space. Although not formally allowed in the
convergence theory, it is often advantageous in practice if the variability in dk is
reduced as k increases. This allows one to focus the search more tightly as
evidence is accrued on the location of the solution (as expressed by the location of
our current estimate ˆ

kθ).
The convergence theory for the localized algorithms tends to be more

restrictive than the theory for blind search. Solis and Wets (1981) provide a
theorem for global convergence of localized algorithms, but the theorem
conditions may not be verifiable in practice. An earlier theorem from Matyas
(1965) (with proof corrected in Baba et al., 1977) provides for global convergence
of the localized search above if L is a continuous function. The convergence is in
the “in probability” sense. The theorem allows for more than one global minimum
to exist in Θ. Therefore, in general, the result provides no guarantee of ˆ

kθ ever
settling near any one value ∗θ . We present the theorem statement below.

Convergence theorem for localized search. Let ∗Θ represent the set of global
minima for L (see Section 1). Suppose that L is continuous on a bounded domain
Θ and that if ˆ

kθ + dk ∉ Θ at a given iteration, a new dk is randomly generated. For

any η > 0, let Rη = : ()| () |{ }L L∗ ∗∈Θ
∗− < ηθ θ θ θ . Then, for dk having an i.i.d.

N(0, Ip) distribution, ˆlim 1()k kP R→∞ η∈ =θ .

The above algorithm might be considered the most naïve of the localized
random search algorithms. More sophisticated approaches are also easy to
implement. For instance, if a search in one direction increases L, then it is likely to
be beneficial to move in the opposite direction. Further, successive iterations in a
direction that tend to consistently reduce L should encourage further iterations in
the same direction. Many algorithms exploiting these simple properties exist (e.g.,
Solis and Wets, 1981, and Zhigljavsky, 1991).
 In spite of its simplicity, the localized search algorithm is surprisingly
effective in a wide range of problems. Several demonstrations are given in
Sections 2.2 to 2.4 in Spall (2003).

The random search algorithms above are usually based on perfect (noise-
free) measurements of the loss function. This is generally considered a critical part
of such algorithms (Pflug, 1996, p. 25). In contrast to the noise-free case, random
search methods with noisy loss evaluations of the form y(θ) = L(θ) + ε(θ)
generally do not formally converge.

There are, however, means by which the random search techniques can be
modified to accommodate noisy measurements, at least on a heuristic basis. Some
of the limited formal convergence theory for random search as applied to the
noisy measurement case includes Yakowitz and Fisher (1973, Sect. 4) and
Zhigljavsky (1991, Chap. 3). Spall (2003, Sect. 2.3) discusses some practical
methods for coping with noise, including simple averaging of the noisy loss
function evaluations y(θ) at each value of θ generated in the search process and a
modification of the algorithm’s key decision criterion (step 1 of blind random
search and step 2 of localized random search) to build in some robustness to the
noise. However, the averaging method can be costly since the error decreases only
at the rate of 1 N when averaging N function evaluations with independent
noise. Likewise, the altered threshold may be costly by rejecting too many
changes in θ due to the conservative nature of the modified criterion. The
presence of noise in the loss evaluations makes the optimization problem so much
more challenging that there is little choice but to accept these penalties if one
wants to use a simple random search. We see in the next section that stochastic
approximation tends to be more adept at coping with noise at the price of a more
restrictive problem setting than the noise-free convergence theorem above.

3. Stochastic Approximation

3.1 Introduction

Stochastic approximation (SA) is a cornerstone of stochastic optimization.

Robbins and Monro (1951) introduced SA as a general root-finding method when
only noisy measurements of the underlying function are available. Let us now
discuss some aspects of SA as applied to the more specific problem of root-
finding in the context of optimization. With a differentiable loss function L(θ),
recall the familiar set of p equations and p unknowns for use in finding a
minimum ∗θ :

() L∂
= =

∂
θ 0

θ
g . (3.1)

(Of course, side conditions are required to guarantee that a root of (3.1) is a
minimum, not a maximum or saddlepoint.) Note that (3.1) is nominally only
directed at local optimization problems, although some extensions to global
optimization are possible, as briefly discussed in Section 3.3. There are a number
of approaches for solving the problem represented by (3.1) when direct (usually
noisy) measurements of the gradient g are available. These typically go by the
name of stochastic gradient methods (e.g., Spall, 2003, Chap. 5). In contrast to
the stochastic gradient approach—but consistent with the emphasis in the random
search and genetic algorithms (Sections 2 and 4 here)—let us focus on SA when
only measurements of L are available. However, unlike the emphasis in random
search and genetic algorithms, we consider noisy measurements of L.

To motivate the general SA approach, first recall the familiar form for the
unconstrained deterministic steepest descent algorithm for solving (3.1):

1
ˆ ˆ ˆ()k k k ka+ = −θ θ θg ,

where the gain (or step size) satisfies ak > 0 (see, e.g., Bazaraa et al., 1993, pp.
300−308 or any other book on mathematical programming; Spall, 2003, Sect.
1.4). This algorithm requires exact knowledge of g. Steepest descent converges to

∗θ under certain fairly general conditions. (A notable variation of steepest descent
is the Newton-Raphson algorithm [sometimes called Newton’s method; e.g.,
Bazaraa et al., 1993, pp. 308−312], which has the form 1

ˆ
k+θ =

1ˆ ˆ ˆ() ()k k k ka −−θ θ θH g , where H(⋅) is the Hessian [second derivative] matrix of L.
Under more restrictive conditions, the Newton-Raphson algorithm has a much

faster rate of convergence to ∗θ than steepest descent. However, with its
requirement for a Hessian matrix, it is generally more challenging to implement.
An SA version of Newton-Raphson is discussed briefly at the end of Section 3.3.)

Unlike with steepest descent, it is assumed here that we have no direct
knowledge of g. The recursive procedure of interest is in the general SA form

1
ˆ ˆ ˆˆ ()k k k k ka+ = − gθ θ θ , (3.2)

where ˆˆ ()k kg θ is the estimate of g at the iterate ˆ

kθ based on measurements of the
loss function. Hence, (3.2) is analogous to the steepest descent algorithm, with the
gradient estimate ˆ ()k θg replacing the direct gradient g at θ = ˆ .kθ The gain ak > 0
here also acts in a way similar to its role in the steepest descent form. Under
appropriate conditions, the iteration in (3.2) converges to ∗θ in some stochastic
sense (usually almost surely, a.s.). (There are constrained forms of SA, but we do
not discuss those here; see, e.g., Spall, 2003, Chaps. 4−7).
 Sections 3.2 and 3.3 discuss two SA methods for carrying out the
optimization task using noisy measurements of the loss function. Section 3.2
discusses the traditional finite-difference SA method and Section 3.3 discusses the
more recent simultaneous perturbation method.

3.2 Finite-Difference SA

 The essential part of (3.2) is the gradient approximation ˆˆ ()k kg θ . The
traditional means of forming the approximation is the finite-difference method.
Expression (3.2) with this approximation represents the finite-difference SA
(FDSA) algorithm. One-sided gradient approximations involve measurements

ˆ()ky θ and ˆ perturbation()ky +θ , while two-sided approximations involve
measurements of the form ˆ perturbation()ky ±θ . The two-sided FD approximation
for use with (3.2) is

1 1
ˆ ˆ

2
ˆˆ

ˆ ˆ

2

() ()

()
() ()

k k k k

k

k k

k k p k k p

k

y c y c
c

y c y c
c

 + − −

=
 + − −

g

θ ξ θ ξ

θ

θ ξ θ ξ

, (3.3)

where ξ i denotes a vector with a 1 in the ith place and 0’s elsewhere and ck > 0
defines the difference magnitude. The pair {ak , ck} are the gains (or gain
sequences) for the FDSA algorithm. The two-sided form in (3.3) is the obvious

multivariate extension of the scalar two-sided form in Kiefer and Wolfowitz
(1952). The initial multivariate method in Blum (1954) used a one-sided
approximation.

It is of fundamental importance to determine conditions such that ˆ
kθ as

shown in (3.2) and (3.3) converges to ∗θ in some appropriate stochastic sense.
The convergence theory for the FDSA algorithm is similar to “standard”
convergence theory for the root-finding SA algorithm of Robbins and Monro
(1951). Additional difficulties, however, arise due to a bias in ˆˆ ()k kg θ as an
estimator of ˆ()kθg . That is, standard conditions for convergence of SA require
unbiased estimates of g(⋅) at all k. On the other hand, ˆˆ ()k kg θ , as shown in (3.3),
is a biased estimator, with the bias having a magnitude of order 2

kc . We do not
present the details of the convergence theory here, as it is available in many other
references (e.g., Fabian, 1971; Kushner and Yin, 2003, Chaps. 5 − 8 ; Ruppert,
1991; Spall, 2003, Chap. 6). However, let us note that the standard conditions on
the gain sequences are: ak > 0, ck > 0, ak → 0, ck → 0, 0 kk a∞

=∑ = ∞, and
2 2

0 k kk a c∞
=∑ < ∞. The choice of these gain sequences is critical to the

performance of the method. Common forms for the sequences are:

α++
=

)1(Ak
aak and

γ+
=

)1(k
cck ,

where the coefficients a, c, α, and γ are strictly positive and A ≥ 0. The user must
choose these coefficients, a process usually based on a combination of the
theoretical restrictions above, trial-and-error numerical experimentation, and basic
problem knowledge. In some cases, it is possible to partially automate the
selection of the gains (see, e.g., Spall, 2003, Sect. 6.6).

Let us summarize a numerical example based on the following p = 10 loss
function:

10 10
3 4

1 1
() 0.1 () 0.01 ()T T

i i
i i

L
= =

= + +∑ ∑θ θ θ θ θB B B B ,

where (⋅)i represents the ith component of the argument vector Bθ, and B is such
that 10B is an upper triangular matrix of 1’s. The minimum occurs at ∗θ = 0 with

()L ∗θ = 0; all runs are initialized at 0θ̂ = [1, 1,…, 1]T (so 0
ˆ()L θ = 4.178).

Suppose that the measurement noise ε is independent, identically distributed
(i.i.d.) N(0, 1). All iterates ˆ

kθ are constrained to be in Θ = [−5, 5]10. If an iterate
falls outside of Θ, each individual component of the candidate θ that violates the
interval [−5, 5] is mapped to it nearest endpoint ± 5. The subsequent gradient

estimate is formed at the modified (valid) θ value. (The perturbed values ˆ
kθ ± ckξ i

are allowed to go outside of Θ.)
 Using n = 1000 loss measurements per run, we compare FDSA with the
localized random search method of Section 2. Based on principles for gain
selection in Spall (2003, Sect. 6.6) together with some limited trial-and-error
experimentation, we chose a = 0.5, c = 1, A = 5, α = 0.602, and γ = 0.101 for
FDSA and an average of 20 loss measurements per iteration with normally
distributed perturbations having distribution N(0, 0.52I10) for the random search
method.

Figure 2 summarizes the results. Each curve represents the sample mean of
50 independent replications. An individual replication of one of the two
algorithms has much more variation than the corresponding smoothed curve in the
figure.

Figure 2. Comparison of FDSA and localized random search. Each curve represents
sample mean of 50 independent replications.

Figure 2 shows that both algorithms produce an overall reduction in the

true loss function as the number of measurements approach 1000. The curves
illustrate that FDSA outperforms random search in this case. To make the
comparison fair, attempts were made to tune each algorithm to provide
approximately the best performance possible. Of course, one must be careful
about using this example to infer that such a result holds in other problems as
well.

3.3 Simultaneous Perturbation SA

 The FDSA algorithm of Section 3.2 is a standard SA method for carrying
out optimization with noisy measurement of the loss function. However, as the
dimension p grows large, the number of loss measurements required may become
prohibitive. That is, each two-sided gradient approximation requires 2p loss
measurements. More recently, the simultaneous perturbation SA (SPSA) method
was introduced, requiring only two measurements per iteration to form a gradient
approximation independent of the dimension p. This provides the potential for a
large savings in the overall cost of optimization.

Beginning with the generic SA form in (3.2), we now present the SP form
of the gradient approximation. In this form, all elements of ˆ

kθ are randomly
perturbed together to obtain two loss measurements y(⋅). For the two-sided SP
gradient approximation, this leads to

1

1 1 1
1 2

ˆ ˆ

2
ˆˆ

ˆ ˆ

2

ˆ ˆ
, , , ,

2

() ()

()
() ()

() ()

k k k k k k

k k

k k

k k k k k k

k kp

Tk k k k k k
k k kp

k

y c y c
c

y c y c
c

y c y c
c

− − −

 + − −

∆

=
 + − −
 ∆

+ − − = ∆ ∆ ∆

g

θ ∆ θ ∆

θ

θ ∆ θ ∆

θ ∆ θ ∆

(3.4)

where the mean-zero p-dimensional random perturbation vector, ∆k =
[∆k1, ∆k2,…, ∆kp]T, has a user-specified distribution satisfying certain conditions
and ck is a positive scalar (as with FDSA). Because the numerator is the same in
all p components of ˆˆ ()k kg θ , the number of loss measurements needed to estimate
the gradient in SPSA is two, regardless of the dimension p.

Relative to FDSA, the p-fold measurement savings per iteration, of course,
provides only the potential for SPSA to achieve large savings in the total number
of measurements required to estimate θ when p is large. This potential is realized
if the number of iterations required for effective convergence to an optimum ∗θ
does not increase in a way to cancel the measurement savings per gradient
approximation. One can use asymptotic distribution theory to address this issue. In
particular, both FDSA and SPSA are known to be asymptotically normally
distributed under very similar conditions. One can use this asymptotic distribution
result to characterize the mean-squared error ()2ˆ

kE ∗−θ θ for the two
algorithms for large k. Fortunately, under fairly broad conditions, the p-fold

savings at each iteration is preserved across iterations. In particular, based on
asymptotic considerations:

Under reasonably general conditions (see Spall, 1992, or Spall,
2003, Chap. 7), the SPSA and FDSA algorithms achieve the
same level of statistical accuracy for a given number of iterations
even though SPSA uses only 1 p times the number of function
evaluations of FDSA (since each gradient approximation uses
only 1 p the number of function evaluations).

The SPSA Web site www.jhuapl.edu/SPSA includes many references on

the theory and application of SPSA. On this Web site, one can find many accounts
of numerical studies that are consistent with the efficiency statement above. (Of
course, given that the statement is based on asymptotic arguments and associated
regularity conditions, one should not assume that the result always holds.) In
addition, there are references describing many applications. These include
queuing systems, pattern recognition, industrial quality improvement, aircraft
design, simulation-based optimization, bioprocess control, neural network
training, chemical process control, fault detection, human-machine interaction,
sensor placement and configuration, and vehicle traffic management.

We do not present here the formal conditions for convergence and
asymptotic normality of SPSA, as such conditions are available in many
references (e.g., Dippon and Renz, 1997; Gerencsér, 1999; Spall, 1992; Spall,
2003, Chap. 7). These conditions are essentially identical to the standard
conditions for convergence of SA algorithms, with the exception of the additional
conditions on the user-generated perturbation vector ∆k .

The choice of the distribution for generating the ∆k is important to the
performance of the algorithm. The standard conditions for the elements ∆ki of ∆k
are that the {∆ki} are independent for all k, i, identically distributed for all i at each
k, symmetrically distributed about zero and uniformly bounded in magnitude for
all k. In addition, there is an important inverse moments condition:

2 21

ki
E

+ τ
 ∆

 ≤ C

for some τ > 0 and C > 0. The role of this condition is to control the variation of
the elements of ˆˆ ()k kg θ (which have ∆ki in the denominator). One simple and
popular distribution that satisfies the inverse moments condition is the symmetric
Bernoulli ± 1 distribution. (In fact, as discussed in Spall, 2003, Sect. 7.7, this
distribution can be shown to be optimal under general conditions when using
asymptotic considerations.) Two common mean-zero distributions that do not
satisfy the inverse moments condition are symmetric uniform and normal with

mean zero. The failure of both of these distributions is a consequence of the
amount of probability mass near zero. Exercise 7.3 in Spall (2003) illustrates the
dramatic performance degradation that can occur through using distributions that
violate the inverse moments condition.
 As with any real-world implementation of stochastic optimization, there
are important practical considerations when using SPSA. One is to attempt to
define θ so that the magnitudes of the θ elements are similar to one another. This
desire is apparent by noting that the magnitudes of all components in the
perturbations k kc ∆ are identical in the case where identical Bernoulli
distributions are used. Although it is not always possible to choose the definition
of the elements in θ, in most cases an analyst will have the flexibility to specify
the units for θ to ensure similar magnitudes. Another important consideration is
the choice of the gains ak , ck . The principles described for FDSA above apply to
SPSA as well. Section 7.5 of Spall (2003) provides additional practical guidance.
 There have been a number of important extensions of the basic SPSA
method represented by the combination of (3.2) and (3.4). Three such extensions
are to the problem of global (versus local) optimization, to discrete (versus
continuous) problems, and to include second-order-type information (Hessian
matrix) with the aim of creating a stochastic analogue to the deterministic
Newton-Raphson method.
 The use of SPSA for global minimization among multiple local minima is
discussed in Maryak and Chin (2008). One of their approaches relies on injecting
Monte Carlo noise in the right-hand side of the basic SPSA updating step in (3.2).
This approach is a common way of converting SA algorithms to global optimizers
through the additional “bounce” introduced into the algorithm (Yin, 1999).
Maryak and Chin (2008) also show that basic SPSA without injected noise (i.e.,
eqns. (3.2) and (3.4) without modification) may, under certain conditions, be a
global optimizer. Formal justification for this result follows because the random
error in the SP gradient approximation acts in a way that is statistically equivalent
to the injected noise mentioned above.
 Discrete optimization problems (where θ may take on discrete or
combined discrete/continuous values) are discussed in Gerencsér et al. (1999),
Hill (2005), and Wang and Spall (2011). Discrete SPSA relies on a fixed-gain
(constant ak and ck) version of the standard SPSA method. The parameter
estimates produced are constrained to lie on a discrete-valued grid. Although
gradients do not exist in this setting, the approximation in (3.4) (appropriately
modified) is still useful as an efficient measure of slope information.
 Finally, using the simultaneous perturbation idea, it is possible to construct
a simple method for estimating the Hessian (or Jacobian) matrix of L while,
concurrently, estimating the primary parameters of interest (θ). This adaptive
SPSA (ASP) approach produces a stochastic analogue to the deterministic
Newton−Raphson algorithm (e.g., Bazaraa et al., 1993, pp. 308−312), leading to a
recursion that is optimal or near-optimal in its rate of convergence and asymptotic

error. The approach applies in both the gradient-free setting emphasized in this
section and in the root-finding/stochastic gradient-based (Robbins−Monro) setting
reviewed in Spall (2003, Chaps. 4 and 5). Like the standard SPSA algorithm, the
ASP algorithm requires only a small number of loss function (or gradient, if
relevant) measurements per iteration—independent of the problem dimension—to
adaptively estimate the Hessian and parameters of primary interest. Further
information is available at Spall (2000) or Spall (2003, Sect. 7.8). A recent paper
(Spall, 2009) presents two enhancements to ASP, one related to feedback to
reduce the error and the other enhancement related to optimal weighting of input
information. Both enhancements are aimed at improving the quality of the
estimates for underlying Hessian (or Jacobian) matrices, thereby improving the
quality of the estimates for the primary parameters of interest θ.
 The Hessian estimation aspect of ASP is also useful in non-SA
applications, such as calculating the Fisher information matrix (FIM) for problems
where the FIM is difficult to obtain analytically (e.g., Spall, 2005, and Das et al.,
2010). The FIM has wide applications in areas such as uncertainty calculation
(Ljung, 1999, pp. 215−219), experimental design (Spall, 2003, Chap. 17; Spall,
2010), and Bayesian prior distribution selection (Jeffreys, 1946). The Hessian
estimation provides an efficient Monte Carlo method for determining the FIM in
difficult high-dimensional problems.

4. Genetic Algorithms

4.1 Introduction

Genetic algorithms (GAs) represent a popular approach to stochastic
optimization, especially as relates to the global optimization problem of finding
the best solution among multiple local mimima. (GAs may be used in general
search problems that are not directly represented as stochastic optimization
problems, but we focus here on their use in optimization.) GAs represent a special
case of the more general class of evolutionary computation algorithms (which also
includes methods such as evolutionary programming and evolution strategies).
The GA applies when the elements of θ are real-, discrete-, or complex-valued. As
suggested by the name, the GA is based loosely on principles of natural evolution
and survival of the fittest. In fact, in GA terminology, an equivalent maximization
criterion, such as −L(θ) (or its analogue based on a bit-string form of θ), is often
referred to as the fitness function to emphasize the evolutionary concept of the
fittest of a species.

A fundamental difference between GAs and the random search and SA
algorithms considered in Sections 2 and 3 is that GAs work with a population of
candidate solutions to the problem. The previous algorithms worked with one
solution and moved toward the optimum by updating this one estimate. GAs

simultaneously consider multiple candidate solutions to the problem of
minimizing L and iterate by moving this population of solutions toward a global
optimum. The terms generation and iteration are used interchangeably to describe
the process of transforming one population of solutions to another. Figure 3
illustrates the successful operations of a GA for a population of size 12 with
problem dimension p = 2. In this conceptual illustration, the population of
solutions eventually come together at the global optimum.

Figure 3. Minimization of multimodal loss function. Successful operations of a GA with
a population of 12 candidate solutions clustering around the global minimum after some
number of iterations (generations). (Reprinted from Introduction to Stochastic Search
and Optimization with permission of John Wiley & Sons, Inc.)

The use of a population versus a single solution affects in a basic way the
range of practical problems that can be considered. In particular, GAs tend to be
best suited to problems where the loss function evaluations are computer-based
calculations such as complex function evaluations or simulations. This contrasts
with the single-solution approaches discussed earlier, where the loss function
evaluations may represent computer-based calculations or physical experiments.
Population-based approaches are not generally feasible when working with real-
time physical experiments. Implementing a GA with physical experiments
requires that either there be multiple identical experimental setups (parallel
processing) or that the single experimental apparatus be set to the same state prior
to each population member’s loss evaluation (serial processing). These situations
do not occur often in practice.

Specific values of θ in the population are referred to as chromosomes. The
central idea in a GA is to move a set (population) of chromosomes from an initial
collection of values to a point where the fitness function is optimized. We let N
denote the population size (number of chromosomes in the population). Most of
the early work in the field came from those in the fields of computer science and
artificial intelligence. More recently, interest has extended to essentially all
branches of business, engineering, and science where search and optimization are
of interest. The widespread interest in GAs appears to be due to the success in

solving many difficult optimization problems. Unfortunately, to an extent greater
than with other methods, some interest appears also to be due to a regrettable
amount of “salesmanship” and exaggerated claims. (For example, in a recent
software advertisement, the claim is made that the software “…uses GAs to solve
any optimization problem.” Such statements are provably false.) While GAs are
important tools within stochastic optimization, there is no formal evidence of
consistently superior performance—relative to other appropriate types of
stochastic algorithms—in any broad, identifiable class of problems.

Let us now give a very brief historical account. The reader is directed to
Goldberg (1989, Chap. 4), Mitchell (1996, Chap. 1), Michalewicz (1996, pp.
1−10), Fogel (2000, Chap. 3), and Spall (2003, Sect. 9.2) for more complete
historical discussions. There had been some success in creating mathematical
analogues of biological evolution for purposes of search and optimization since at
least the 1950s (e.g., Box, 1957). The cornerstones of modern evolutionary
computation—evolution strategies, evolutionary programming, and GAs—were
developed independently of each other in the 1960s and 1970s. John Holland at
the University of Michigan published the seminal monograph Adaptation in
Natural and Artificial Systems (Holland, 1975). There was subsequently a
sprinkle of publications, leading to the first full-fledged textbook Goldberg
(1989). Activity in GAs grew rapidly beginning in the mid-1980s, roughly
coinciding with resurgent activity in other artificial intelligence-type areas such as
neural networks and fuzzy logic. There are now many conferences and books in
the area of evolutionary computation (especially GAs), together with countless
other publications.

4.2 Chromosome Coding and the Basic GA Operations

This section summarizes some aspects of the encoding process for the
population chromosomes and discusses the selection, elitism, crossover, and
mutation operations. These operations are combined to produce the steps of the
GA.

An essential aspect of GAs is the encoding of the N values of θ appearing
in the population. This encoding is critical to the GA operations and the
associated decoding to return to the natural problem space in θ. Standard binary
(0, 1) bit strings have traditionally been the most common encoding method, but
other methods include gray coding (which also uses (0, 1) strings, but differs in
the way the bits are arranged) and basic computer-based floating-point
representation of the real numbers in θ. This 10-character coding is often referred
to as real-number coding since it operates as if working with θ directly. Based
largely on successful numerical implementations, this natural representation of θ
has grown more popular over time. Details and further references on the above
and other coding schemes are given in Michalewicz (1996, Chap. 5), Mitchell

(1996, Sects. 5.2 and 5.3), Fogel (2000, Sects. 3.5 and 4.3), and Spall (2003, Sect.
9.3).

Let us now describe the basic operations mentioned above. For
consistency with standard GA terminology, let us assume that L(θ) has been
transformed to a fitness function with higher values being better. A common
transformation is to simply set the fitness function to −L(θ) + C, where C ≥ 0 is a
constant that ensures that the fitness function is nonnegative on Θ (nonnegativity
is only required in some GA implementations). Hence, the operations below are
described for a maximization problem. It is also assumed here that the fitness
evaluations are noise-free. Unless otherwise noted, the operations below apply
with any coding scheme for the chromosomes.

The selection and elitism steps occur after evaluating the fitness function
for the current population of chromosomes. A subset of chromosomes is selected
to use as parents for the succeeding generation. This operation is where the
survival of the fittest principle arises, as the parents are chosen according to their
fitness value. While the aim is to emphasize the fitter chromosomes in the
selection process, it is important that not too much priority is given to the
chromosomes with the highest fitness values early in the optimization process.
Too much emphasis of the fitter chromosomes may tend to reduce the diversity
needed for an adequate search of the domain of interest, possibly causing
premature convergence in a local optimum. Hence methods for selection allow
with some nonzero probability the selection of chromosomes that are suboptimal.

Associated with the selection step is the optional “elitism” strategy, where
the Ne < N best chromosomes (as determined from their fitness evaluations) are
placed directly into the next generation. This guarantees the preservation of the Ne
best chromosomes at each generation. Note that the elitist chromosomes in the
original population are also eligible for selection and subsequent recombination.

As with the coding operation for θ, many schemes have been proposed for
the selection process of choosing parents for subsequent recombination. One of
the most popular methods is roulette wheel selection (also called fitness
proportionate selection). In this selection method, the fitness functions must be
nonnegative on Θ. An individual’s slice of a Monte Carlo-based roulette wheel is
an area proportional to its fitness. The “wheel” is spun in a simulated fashion
N − Ne times and the parents are chosen based on where the pointer stops. Another
popular approach is called tournament selection. In this method, chromosomes are
compared in a “tournament,” with the better chromosome being more likely to
win. The tournament process is continued by sampling (with replacement) from
the original population until a full complement of parents has been chosen. The
most common tournament method is the binary approach, where one selects two
pairs of chromosomes and chooses as the two parents the chromosome in each
pair having the higher fitness value. Empirical evidence suggests that the
tournament selection method often performs better than roulette selection. (Unlike
tournament selection, roulette selection is very sensitive to the scaling of the

fitness function.) Mitchell (1996, Sect. 5.4) provides a good survey of several
other selection methods.

The crossover operation creates offspring of the pairs of parents from the
selection step. A crossover probability Pc is used to determine if the offspring
represents a blend of the chromosomes of the parents. If no crossover takes place,
then the two offspring are clones of the two parents. If crossover does take place,
then the two offspring are produced according to an interchange of parts of the
chromosome structure of the two parents. Figure 4 illustrates this for the case of a
ten-bit binary representation of the chromosomes. This example shows one-point
crossover, where the bits appearing after one randomly chosen dividing (splice)
point in the chromosome are interchanged. In general, one can have a number of
splice points up to the number of bits in the chromosomes minus one, but one-
point crossover appears to be the most commonly used.

Note that the crossover operator also applies directly with real-number
coding since there is nothing directly connected to binary coding in crossover. All
that is required are two lists of compatible symbols. For example, one-point
crossover applied to the chromosomes (θ values) [6.7, −7.4, 4.0, 3.9 | 6.2, −1.5]
and [−3.8, 5.3, 9.2, −0.6 | 8.4, −5.1] yields the two children:
[6.7, −7.4, 4.0, 3.9, 8.4, −5.1] and [−3.8, 5.3, 9.2, −0.6, 6.2, −1.5].

Figure 4. Example of crossover operator under binary coding with one splice point.

The final operation we discuss is mutation. Because the initial population

may not contain enough variability to find the solution via crossover operations
alone, the GA also uses a mutation operator where the chromosomes are randomly
changed. For the binary coding, the mutation is usually done on a bit-by-bit basis
where a chosen bit is flipped from 0 to 1, or vice versa. Mutation of a given bit
occurs with small probability Pm . Real-number coding requires a different type of
mutation operator. That is, with a (0, 1)-based coding, an opposite is uniquely
defined, but with a real number, there is no clearly defined opposite (e.g., it does
not make sense to “flip” the 2.74 element). Probably the most common type of
mutation operator is simply to add small independent normal (or other) random
vectors to each of the chromosomes (the θ values) in the population.

As discussed in Section 1.4, there is no easy way to know when a
stochastic optimization algorithm has effectively converged to an optimum. This
includes GAs. The one obvious means of stopping a GA is to end the search when

a budget of fitness (equivalently, loss) function evaluations has been spent.
Alternatively, termination may be performed heuristically based on subjective and
objective impressions about convergence. In the case where noise-free fitness
measurements are available, criteria based on fitness evaluations may be most
useful. For example, a fairly natural criterion suggested in Schwefel (1995, p.
145) is to stop when the maximum and minimum fitness values over the N
population values within a generation are sufficiently close to one another.
However, this criterion provides no formal guarantee that the algorithm has found
a global solution.

4.3 The Core Genetic Algorithm

The steps of a basic form of the GA are given below. These steps are general
enough to govern many (perhaps most) modern implementations of GAs,
including those in modern commercial software. Of course, the performance of a
GA typically depends greatly on the implementation details, just as with other
stochastic optimization algorithms. Some of these practical implementation issues
are taken up in the next section.

Core GA Steps for Noise-Free Fitness Evaluations

Step 0 (Initialization) Randomly generate an initial population of N

chromosomes and evaluate the fitness function (the conversion of L(θ)
to a function to be maximized for the encoded version of θ) for each of
the chromosomes.

Step 1 (Parent selection) Set Ne = 0 if elitism strategy is not used; 0 < Ne < N
otherwise. Select with replacement N − Ne parents from the full
population (including the Ne elitist elements). The parents are selected
according to their fitness, with those chromosomes having a higher
fitness value being selected more often.

Step 2 (Crossover) For each pair of parents identified in step 1, perform
crossover on the parents at a randomly (perhaps uniformly) chosen
splice point (or points if using multi-point crossover) with probability
Pc. If no crossover takes place (probability 1 − Pc), then form two
offspring that are exact copies (clones) of the two parents.

Step 3 (Replacement and mutation) While retaining the Ne best chromosomes
from the previous generation, replace the remaining N − Ne
chromosomes with the current population of offspring from step 2. For
the bit-based implementations, mutate the individual bits with
probability Pm; for real coded implementations, use an alternative form
of “small” modification (in either case, one has the option of choosing
whether to make the Ne elitist chromosomes candidates for mutation).

Step 4 (Fitness and end test) Compute the fitness values for the new
population of N chromosomes. Terminate the algorithm if the stopping
criterion is met or if the budget of fitness function evaluations is
exhausted; else return to step 1.

4.4 Some Implementation Aspects

While the above steps provide the broad outline for many modern
implementations of GAs, there are some important implementation aspects that
must be decided before a practical implementation. This section outlines a few of
those aspects. More detailed discussions are given in Mitchell (1996, Chap. 5),
Michalewicz (1996, Chaps. 4 – 6), Fogel (2000, Chaps. 3 and 4), Goldberg (2002,
Chap. 12), and other references mentioned below. A countless number of
numerical studies have been reported in the literature; we do not add to that list
here.

As with other stochastic optimization methods, the choice of algorithm-
specific coefficients has a significant impact on performance. With GAs, there is a
relatively large number of user decisions required. The following must be set: the
choice of chromosome encoding, the population size (N), the probability
distribution generating the initial population, the strategy for parent selection
(roulette wheel or otherwise), the number of splice points in the crossover, the
crossover probability (Pc), the mutation probability (Pm), the number of retained
chromosomes in elitism (Ne), and some termination criterion. Some typical values
for these quantities are discussed, for example, in Mitchell (1996, pp. 175−177)
and Spall (2003, Sect. 9.6).

Constraints on L(θ) (or the equivalent fitness function) and/or θ are of
major importance in practice. The bit-based implementation of GAs provide a
natural way of implementing component-wise lower and upper bounds on the
elements of θ (i.e., a hypercube constraint). More general approaches to handling
constraints are discussed in Michalewicz (1996, Chap. 7 and Sects. 4.5 and 15.3)
and Michalewicz and Fogel (2000, Chap. 9).

Until now, it has been assumed that the fitness function is observed
without noise. One of the two possible defining characteristics of stochastic
optimization, however, is optimization with noise in the function measurements
(Property I in Section 1.3). There appears to be relatively little formal analysis of
GAs in the presence of noise, although the application and testing of GAs in such
cases has been carried out since at least the mid-1970s (e.g., De Jong, 1975, p.
203). A large number of numerical studies are in the literature (e.g., the references
and studies in Spall, 2003, Sects. 9.6 and 9.7). As with other algorithms, there is a
fundamental tradeoff of more accurate information for each function input
(typically, via an averaging of the inputs) and fewer function inputs versus less
accurate (“raw”) information to the algorithm together with a greater number of
inputs to the algorithm. There appears to be no rigorous comparison of GAs with
other algorithms regarding relative robustness to noise. Regarding noise,

Michalewicz and Fogel (2000, p. 325) state: “There really are no effective
heuristics to guide the choices to be made that will work in general.”

4.5 Some Comments on the Theory for GAs

 One of the key innovations in Holland (1975) was the attempt to put GAs
on a stronger theoretical footing than the previous ad hoc treatments. He did this
by the introduction of schema theory. While many aspects and implications of
schema theory have subsequently been challenged (Reeves and Rowe, 2003,
Chap. 3; Spall, 2003, Sect. 10.3), some aspects remain viable. In particular,
schema theory itself is generally correct (subject to a few modifications), although
many of the assumed implications have not been correct. With the appropriate
caveats and restrictions, schema theory provides some intuitive explanation for the
good performance that is frequently observed with GAs.
 More recently, Markov chains have been used to provide a formal
structure for analyzing GAs. First, let us mention one negative result. Markov
chains can be used to show that a canonical GA without elitism is (in general)
provably nonconvergent (Rudolph, 1994). That is, with a GA that does not hold
onto the best solution at each generation, there is the possibility (through
crossover and mutation) that a chromosome corresponding to ∗θ will be lost.
(Note that the GA without elitism corresponds to the form in Holland, 1975.)
 On the other hand, conditions for the formal convergence of GAs to an
optimal ∗θ (or its coded equivalent) are presented in Vose (1999, Chaps. 13 and
14), Fogel (2000, Chap. 4), Reeves and Rowe (2003, Chap. 6), and Spall (2003,
Sect. 10.5), among other references. Consider a binary bit-coded GA with a
population size of N and a string length of B bits per chromosome. Then the total
number of possible unique populations is:

(2 1)!2 1
(2 1)! !

BB

P B
NNN

N N
+ −+ − ≡ =

 −

(Suzuki, 1995). It is possible to construct an NP × NP Markov transition matrix P,
where the ijth element is the probability of transitioning from the ith population of
N chromosomes to the jth population of the same size. These elements depend in a
nontrivial way on N, the crossover rate, and the mutation rate; the number of elite
chromosomes is assumed to be Ne = 1 (Suzuki, 1995). Let pk be an NP × 1 vector
having jth component pk(j) equal to the probability that the kth generation will result
in population j, j = 1, 2,…, NP .

From basic Markov chain theory,

1
1 0

T T T k
k k

+
+ =p p P = p P ,

where p0 is an initial probability distribution. A standard result in Markov chain
theory is that if the chain is irreducible and ergodic (see, e.g., Spall, 2003,
Appendix E, Theorem E.1), then the limiting distribution of the GA exists and
satisfies the stationarity equation. (Recall from basic Markov chain theory that
irreducibility indicates that any state may be reached from any other state after a
finite number of steps.) However, the chain for a GA is not irreducible because
the GA cannot move to a population whose best fitness value is lower than the
current best fitness (hence, the convergence Theorem E.1 in Spall, 2003, does not
apply). Nevertheless, the chain does have a unique limiting value Tp satisfying
the stationarity equation T Tp = p P . An individual element in P can be computed
according to the formulas in Suzuki (1995) and Stark and Spall (2003). These
elements depend in a nontrivial way on N, the crossover rate, and the mutation
rate; the number of elite chromosomes is assumed to be Ne = 1.
 Suppose that ∗θ is unique (i.e., ∗Θ is the singleton ∗θ). Let J ⊆ {1, 2,…,
NP} be the set of indices corresponding to the populations that contain at least one
chromosome representing ∗θ . So, for example, if J = {1, 6, NP − 3}, then each of
the three populations indexed by 1, 6 and NP − 3 contains at least one chromosome
that, when decoded, is equal to ∗θ . Under the above-mentioned assumptions of
irreducibility and ergodicity, ii J p∈∑ = 1, where ip is the ith element of p .
Hence, a GA with Ne = 1 and a transition matrix that is irreducible and ergodic
converges in probability to ∗θ .

To establish the fact of convergence alone, it may not be necessary to
compute the P matrix. Rather, it suffices to know that the chain is irreducible and
ergodic. (For example, Rudolph, 1997, p. 125, shows that the Markov chain
approach yields convergence when 0 < Pm < 1.) However, P must be explicitly
computed to get the rate of convergence information that is available from pk.
This is rarely possible in practice because the number of states in the Markov
chain (and hence dimension of the Markov transition matrix) grows very rapidly
with increases in the population size and/or the number of bits used in coding for
the population elements. For example, in even a trivial problem of N = B = 6,
there are ∼108 states and ∼1016 elements in the transition matrix; this problem is
much smaller than any practical GA, which can easily have 50 to 100 population
elements and 15 to 40 bits per population element (leading to well over 10100
states, with each element in the corresponding row and column in the transition
matrix requiring significant computation).

5. Concluding Remarks

 Stochastic optimization is a major branch of computational statistics. This
chapter has been a whirlwind tour through some important issues and methods in
stochastic optimization. Stochastic optimization applies when there are noisy

measurements of the criterion being optimized and/or there is an injected Monte
Carlo randomness as part of the algorithm. Of necessity, we cover only a small
fraction of available methods in this relatively brief review, although the methods
described (random search, stochastic approximation, and genetic algorithms) are
representative of a broad range of important and widely used algorithms. Further,
the treatment here on the specific algorithms is relatively brief. In particular, the
subjects covered in this chapter of approximately 30 pages are treated in over 160
pages in Spall (2003, Chaps. 1−2, 6−7, and 9−10) and are given an even more
detailed treatment in the many specialized books or other references.
 There are many challenges to carrying out real-world optimization,
including the presence of noise in the function evaluations, the difficulties in
distinguishing a globally optimal solution from locally optimal solutions, the
“curse of dimensionality,” the difficulties associated with nontrivial constraints,
and the lack of stationarity in the solution as a result of the conditions of the
problem changing over time. Stochastic optimization methods are especially
useful in treating some of these challenges. In particular, by definition, they are
designed for noisy function evaluations. Further, when considering injected
(Monte Carlo) randomness (property II in Section 1.3), certain stochastic
optimization algorithms will (under conditions, of course) serve as global
optimizers. That is, the injected randomness provides enough “bounce” to the
algorithm to allow for escape from local minima en route to achieving a global
minimum.
 In summary, while classical deterministic optimization methods (linear and
nonlinear programming) are effective for a range of problems, stochastic methods
are able to handle many of the problems for which deterministic methods are
inappropriate. It is hoped that this summary gives the reader a flavor of the issues,
algorithms, and challenges in carrying out optimization in the face of stochastic
effects.

Acknowledgments

I appreciate the helpful comments of Dr. Stacy Hill on a draft version of this
chapter. Funding was provided by the U. S. Navy (contract N00024-03-D-6606)
and the JHU/APL Independent Research and Development (IRAD) Program.
Selected parts of this article have been reprinted, by permission, from J.C. Spall,
Introduction to Stochastic Search and Optimization, 2003 by John Wiley and
Sons, Inc.

References

Arsham, H. (1998), “Techniques for Monte Carlo Optimizing,” Monte Carlo

Methods and Applications, vol. 4, pp. 181−229.
Baba, N., Shoman, T., and Sawaragi, Y. (1977), “A Modified Convergence

Theorem for a Random Optimization Method,” Information Sciences, vol.
13, pp. 159−166.

Bazaraa, M. S., Sherali, H. D., and Shetty, C. M. (1993), Nonlinear
Programming: Theory and Algorithms (2nd ed.), Wiley, New York.

Blum, J. R. (1954), “Multidimensional Stochastic Approximation Methods,”
Annals of Mathematical Statistics, vol. 25, pp. 737−744.

Box, G. E. P. (1957), “Evolutionary Operation: A Method for Increasing
Industrial Productivity,” Journal of the Royal Statistical Society, Ser. C.,
vol. 6, pp. 81−101.

Cochran, J. J. (ed.) (2011), Encyclopedia of Operations Research and
Management Science, Wiley, Hoboken, NJ.

Das, S., Spall, J. C., and Ghanem, R. (2010), “Efficient Monte Carlo Computation
of Fisher Information Matrix Using Prior Information,” Computational
Statistics and Data Analysis, vol. 54(2), pp. 272−289.

De Jong, K. A. (1975), “An Analysis of the Behavior of a Class of Genetic
Adaptive Systems,” Ph.D. dissertation, University of Michigan, Ann
Arbor, MI (University Microfilms no. 76-9381).

Dippon, J. and Renz, J. (1997), “Weighted Means in Stochastic Approximation of
Minima,” SIAM Journal of Control and Optimization, vol. 35, pp.
1811−1827.

Fabian, V. (1971), “Stochastic Approximation,” in Optimizing Methods in
Statistics (J. S. Rustigi, ed.), Academic Press, New York, pp. 439−470.

Fogel, D. B. (2000), Evolutionary Computation: Toward a New Philosophy of
Machine Intelligence (2nd ed.), IEEE Press, Piscataway, NJ.

Fouskakis, D. and Draper, D. (2002), “Stochastic Optimization: A Review,”
International Statistical Review, vol. 70, pp. 315−349.

Fu, M. C. (2002), “Optimization for Simulation: Theory vs. Practice” (with
discussion by S. Andradóttir, P. Glynn, and J. P. Kelly), INFORMS
Journal on Computing, vol. 14, pp. 192−227.

Gentle, J. E. (2003), Random Number Generation and Monte Carlo Methods (2nd
ed.), Springer-Verlag, New York.

Gerencsér, L. (1999), “Convergence Rate of Moments in Stochastic
Approximation with Simultaneous Perturbation Gradient Approximation
and Resetting,” IEEE Transactions on Automatic Control, vol. 44, pp.
894−905.

Gerencsér, L, Hill, S. D., and Vágó, Z. (1999), “Optimization Over Discrete Sets
via SPSA,” in Proceedings of the IEEE Conference on Decision and
Control, 7−10 December 1999, Phoenix, AZ, pp. 1791−1795.

Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley, Reading, MA.

Goldberg, D. E. (2002), The Design of Innovation: Lessons from and for
Competent Genetic Algorithms, Kluwer Academic, Boston.

Gosavi, A. (2003), Simulation-Based Optimization: Parametric Optimization
Techniques and Reinforcement Learning, Kluwer Academic, Boston.

Hill, S. D. (2005), “Discrete Stochastic Approximation with Application to
Resource Allocation,” Johns Hopkins APL Technical Digest, vol. 26, pp.
15−21.

Holland, J. H. (1975), Adaptation in Natural and Artificial Systems, University of
Michigan Press, Ann Arbor, MI.

Jeffreys, H. (1946), “An Invariant Form for the Prior Probability in Estimation
Problems,” Proceedings of the Royal Society of London. Series A
Mathematical and Physical Sciences, vol. 186, pp. 453−461.

Karnopp, D. C. (1963), “Random Search Techniques for Optimization Problems,”
Automatica, vol. 1, pp. 111−121.

Kiefer, J. and Wolfowitz, J. (1952), “Stochastic Estimation of a Regression
Function,” Annals of Mathematical Statistics, vol. 23, pp. 462−466.

Kolda, T. G., Lewis, R. M., and Torczon, V. (2003), “Optimization by Direct
Search: New Perspectives on Some Classical and Modern Methods,”
SIAM Review, vol. 45, pp. 385−482.

Kushner, H. J. and Yin, G. G. (2003), Stochastic Approximation and Recursive
Algorithms and Applications (2nd ed.), Springer-Verlag, New York.

Ljung, L. (1999), System Identification—Theory for the User (2nd ed.), Prentice
Hall PTR, Upper Saddle River, NJ.

Maryak, J. L., and Chin, D. C. (2008), “Global Random Optimization by
Simultaneous Perturbation Stochastic Approximation,” IEEE Transactions
on Automatic Control, vol. 53, pp. 780−783

Matyas, J. (1965), “Random Optimization,” Automation and Remote Control, vol.
26, pp. 244−251.

Michalewicz, Z. (1996), Genetic Algorithms + Data Structures = Evolution
Programs (3rd ed.), Springer-Verlag, New York.

Michalewicz, Z. and Fogel, D. B. (2000), How to Solve It: Modern Heuristics,
Springer-Verlag, New York.

Mitchell, M. (1996), An Introduction to Genetic Algorithms, MIT Press,
Cambridge, MA.

Nelder, J. A. and Mead, R. (1965), “A Simplex Method for Function
Minimization,” The Computer Journal, vol. 7, pp. 308−313.

Pflug, G. Ch. (1996), Optimization of Stochastic Models: The Interface Between
Simulation and Optimization, Kluwer Academic, Boston.

Reeves, C. R. and Rowe, J. E. (2003), Genetic Algorithms—Principles and
Perspectives: A Guide to GA Theory, Kluwer Academic, Boston.

Robbins, H. and Monro, S. (1951), “A Stochastic Approximation Method,”
Annals of Mathematical Statistics, vol. 22, pp. 400−407.

Rudolph, G. (1994), “Convergence Analysis of Canonical Genetic Algorithms,”
IEEE Transactions on Neural Networks, vol. 5, pp. 96−101.

Rudolph, G. (1997), Convergence Properties of Evolutionary Algorithms, Verlag
Kovac, Hamburg.

Ruppert, D. (1991), “Stochastic Approximation,” in Handbook of Sequential
Analysis (B. K. Ghosh and P. K. Sen, eds.), Marcel Dekker, New York,
pp. 503−529.

Schwefel, H.-P. (1995), Evolution and Optimum Seeking, Wiley, New York.
Solis, F. J. and Wets, J. B. (1981), “Minimization by Random Search

Techniques,” Mathematics of Operations Research, vol. 6, pp. 19−30.
Spall, J. C. (1992), “Multivariate Stochastic Approximation Using a Simultaneous

Perturbation Gradient Approximation,” IEEE Transactions on Automatic
Control, vol. 37, pp. 332−341.

Spall, J. C. (2000), “Adaptive Stochastic Approximation by the Simultaneous
Perturbation Method,” IEEE Transactions on Automatic Control, vol. 45,
pp. 1839−1853.

Spall, J. C. (2003), Introduction to Stochastic Search and Optimization:
Estimation, Simulation, and Control, Wiley, Hoboken, NJ.

Spall, J. C. (2005), “Monte Carlo Computation of the Fisher Information Matrix
in Nonstandard Settings,” Journal of Computational and Graphical
Statistics, vol. 14(4), pp. 889−909.

Spall, J. C. (2009), “Feedback and Weighting Mechanisms for Improving
Jacobian Estimates in the Adaptive Simultaneous Perturbation Algorithm,”
IEEE Transactions on Automatic Control, vol. 54(6), pp. 1216−1229.

Spall, J. C. (2010), “Factorial Design for Choosing Input Values in
Experimentation: Generating Informative Data for System Identification,”
IEEE Control Systems Magazine, vol. 30(5), pp. 38–53.

Stark, D. R. and Spall, J. C. (2003), “Rate of Convergence in Evolutionary
Computation,” Proceedings of the American Control Conference, Denver,
CO, 4−6 June 2003, pp. 1932−1937.

Suzuki, J. (1995), “A Markov Chain Analysis on Simple Genetic Algorithms,”
IEEE Transactions on Systems, Man, and Cybernetics, vol. 25, pp. 655–
659.

Vose, M. (1999), The Simple Genetic Algorithm, MIT Press, Cambridge, MA.
Wang, Q. and Spall, J. C. (2011), “Discrete Simultaneous Perturbation Stochastic

Approximation on Loss Functions with Noisy Measurements,”
Proceedings of the American Control Conference, 29 June–1 July 2011,
San Francisco, CA, pp. 4520–4525 (paper FrB10.3).

Wolpert, D. H. and Macready, W. G. (1997), “No Free Lunch Theorems for
Optimization,” IEEE Transactions on Evolutionary Computation, vol. 1,
pp. 67−82.

Yakowitz, S. J. and Fisher, L. (1973), “On Sequential Search for the Maximum of
an Unknown Function,” Journal of Mathematical Analysis and
Applications, vol. 41, pp. 234−259.

Yin, G. (1999), “Rates of Convergence for a Class of Global Stochastic
Optimization Algorithms,” SIAM Journal on Optimization, vol. 10, pp.
99−120.

Zhigljavsky, A. A. (1991), Theory of Global Random Search, Kluwer Academic,
Boston.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for export to IEEE PDF eXpress. May 2005. PaperCept.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

